
BFT-Bench: A Framework to Evaluate BFT Protocols

[Work-In-Progress Paper]

Divya Gupta
Univ. Grenoble Alpes, LIG

Grenoble, France
divya.gupta@imag.fr

Lucas Perronne
Univ. Grenoble Alpes, LIG

Grenoble, France
lucas.perronne@imag.fr

Sara Bouchenak
INSA Lyon, LIRIS

Lyon, France
sara.bouchenak@insa-

lyon.fr

ABSTRACT
Byzantine Fault Tolerance (BFT) has been extensively stud-
ied and numerous protocols and software prototypes have
been proposed. However, most BFT prototypes have been
evaluated in an ad-hoc setting, considering different fault
types and fault injection scenarios. In this paper, we present
BFT-Bench, the first benchmarking framework for evaluat-
ing and comparing BFT protocols in practice. BFT-Bench in-
cludes different BFT protocols implementations, their au-
tomatic deployment in a distributed setting, the ability to
define and inject different faulty behaviors, and the online
monitoring and reporting of performance and dependabil-
ity measures. Preliminary results of BFT-Bench show the
effectiveness of the framework, easily allowing an empirical
comparison of different BFT protocols, in various workload
and fault scenarios.

Keywords
Fault Tolerance; Byzantine Faults; Fault Injection; Perfor-
mance; Robustness; Benchmarking

1. INTRODUCTION
Cloud computing environments are now increasingly com-

mon. With their expansion, unpredictable events such ma-
licious attacks, network delays, data corruption, and other
types of Byzantine faults require specific fault tolerance mech-
anisms. Byzantine Fault Tolerance (BFT), based on state
machine replication, consists in replicating the critical ser-
vice in several replicas running on different nodes, and thus,
ensuring service availability despite failure occurrence [15].
When clients access the service, this is done through a spe-
cific BFT communication protocol that ensures that client
requests are processed by replicas in the same order.

There has been a large amount of work on Byzantine Fault
Tolerance (BFT) protocols. Early efforts have explored the
practicality of Byzantine Fault Tolerance, with PBFT pro-
tocol[6]. Other efforts have been made to improve the per-
formance of the protocols and reduce the cost they induce

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16, March 12-18, 2016, Delft, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2858667

due to many message rounds and cryptographic operations.
Thus, some BFT protocols focus on improving performance
in fault-free cases [16, 12, 11, 10, 8, 17], while other proto-
cols improve performance in presence of failures, each one
proposing and applying techniques to counter specific types
of faults such as network contention, system overload, etc. [2,
7, 9, 1]. However, there has been very little in the way of
empirical evaluation of BFT protocols. Evaluations of the
protocols have often been conducted in an ad-hoc way, which
makes them difficult to reproduce, and compare with new
protocols. Moreover, it is generally admitted that BFT pro-
tocols are too complex to implement, thus, re-implementing
them each time a new protocol must be compared with ex-
isting ones is not realistic.

In this paper, we present BFT-Bench, a benchmarking
environment for evaluating performance and robustness of
Byzantine fault tolerance systems. BFT-Bench enables the
definition of various execution scenarios and faultloads, their
automatic deployment in an online system, and the produc-
tion of various monitoring statistics. This provides a means
to analyze and compare the effectiveness of the protocols
in various situations. BFT-Bench is an open framework
that includes state-of-the-art BFT protocols, and may be
extended with new BFT protocols. In addition, the paper
presents an evaluation with BFT-Bench, empirically com-
paring different BFT protocols, and exhibiting their level
of performance and robustness in different scenarios. The
remainder of the paper is structured as follows. Section 2
presents an overview of BFT-Bench. Section 3 describes the
experimental evaluation, and Section 4 concludes the paper.

2. OVERVIEW OF BFT-Bench
We present BFT-Bench, a novel framework for empirical

evaluation and comparison of Byzantine Fault-Tolerant sys-
tems.

2.1 BFT Protocols in Consideration
BFT-Bench is intended to be an open framework, that in-

cludes BFT protocol prototypes, and that may be extended
with new BFT protocols. In the following, we consider state-
of-the-art BFT protocols: PBFT for being the first practi-
cal BFT protocol [6], Chain for its performance efficiency
in fault-free conditions [10], and RBFT as an instance of
robust protocol that minimizes performance in presence of
failures [2].

PBFT is considered the baseline of BFT protocols [6];
and its communication pattern is used by many other pro-
tocols [7, 2, 4]. In PBFT, there is a primary and replicas that

109

interact through three stages of message exchanges, before
the client can commit its request. First, primary sends pre-
prepare messages to other replicas with assigned sequence
number to each request. The two following message stages,
prepare and commit, are dedicated to the exchange and val-
idation of the sequence numbers proposed by the primary.
PBFT ensures Safety and Liveness; upon violation of these
properties the primary is suspected to be faulty and thus, a
primary view change is initiated by replicas.

As the name suggests, Chain has a chain-like communi-
cation pattern for replicas that greatly benefits from the
batch optimization (i.e. multiple messages in one batch) [10].
Thus, Chain allows to handle a high load of requests. Chain
must rely on a protocol switching mechanism when subject
to failures.

RBFT is a robust protocol that strengthens the architec-
ture of PBFT and incorporates fault adaptive mechanisms
to deal with certain faulty behaviors [2]. RBFT runs f + 1
multiple instances of the same protocol in parallel but the
requests are executed only by one of the instances called
master instance while other f instances are called backup
instances. Each backup instance has its own primary which
orders the incoming requests in order to monitor the differ-
ence of throughput between the master instance and itself.
If the performance at backup and master instances differs
by a defined threshold at more than 2f + 1 replicas, the pri-
mary replica at master instance is considered faulty and a
view change is triggered, where a new primary is elected at
every instance.

2.2 Faultload
Faults can occur accidentally or can be induced intention-

ally. Users of BFT-Bench framework can generate various
faultloads involving different faulty behaviors. Each fault-
load contains various information which we describe below:

• Fault Trigger Time: The fault trigger time contains
the time stamp at which the fault must be triggered.

• Fault Type: Byzantine faults encompass numerous
faulty behaviors, e.g. hardware failure, software failure,
network congestion, etc.

• Fault Parameters: Different faults may require addi-
tional fault parameters at time of fault injection. Ac-
cording to the type of fault to be injected, fault pa-
rameters might vary. For replica crash, message delay
& network flooding, the location of the fault must be
specified, whereas in system overloading, the location
is irrelevant since no replica acts faulty. For network
flooding, the size of the corrupted messages is an im-
portant factor, whereas for message delay, the value
of the delay introduced before sending a message must
be specified.

Fault types that are tackled by the considered BFT pro-
tocols are the following:

Replica Crash. Crash of a server is a common perfor-
mance failure that can happens in a system. Upon crash,
the server stops completely and do not participates in any
further communication with the clients or the servers. Most
of the industries like Salesforce, Amazon, Oracle, etc, rely
on Paxos[14, 13] for handling crash but are unable to de-
tect byzantine faults and face challenges due to disrupted

availability. BFT protocols consider crash as yet another
byzantine fault.

Message Delay. Delaying the sending of messages benefits
from the difficulty to distinguish a faulty replica from a slow
network. When a replica starts delaying of messages, it slows
down all future operations depending on these messages.
As described in section 2.1, most of BFT protocols ensure
the Safety property by reaching an agreement on the total
order of execution of the requests. If the messages containing
these information are delayed, then the whole protocol is
delayed, thus leading to degradation in performance. This
byzantine behavior is thus especially critical when it occurs
at the primary.

Network Flooding. Network flooding is meant to overload
both the network and the computational resources with ma-
licious messages which cannot be said invalid until verified.
This verification of messages consumes a lot of computa-
tional cycles and prevents the resources from focusing on
the correct messages.

System Overload. Overloading the system with a large
number of requests sent by a large number of clients can
prove to be catastrophic and can affect the performance to a
large extent. Although none of the servers behave malicious
in this attack, but continuous increase in concurrent clients
can eventually deteriorate the performance or lead to system
failure.

2.3 Workload
The workload is first characterized by number of concur-

rent clients sending requests to the BFT system. Client
requests are executed in FIFO order in a closed loop, where
a client submits a request, waits for the request to get pro-
cessed and receives a response, before sending another re-
quest. The workload is also characterized by the size of
client request/response messages exchanged with the BFT
system. It is an important parameter as large size mes-
sages affect BFT system performance, due to time consum-
ing cryptographic operations executed by BFT protocols.
BFT-Bench includes a client emulator implementing multi-
client behavior, where each client process sends requests to
the underlying BFT system, and receives corresponding re-
sponses.

2.4 Performance and Dependability Analysis
BFT-Bench produces statistics for performance metrics,

namely Throughput and Latency. The former is the number
of client requests handled by the system per unit of time,
and the latter is the time elapsed from the moment a client
submits a request until the complete response is received by
this client. Availability is measured in terms of time when
the service is available, i.e., the service is responding. It
is the ratio of the time the service was returning responses
(correct or incorrect) to the total time the service was meant
to run. It is usually measured over a period of time, usually
in terms of days, months or years. BFT protocols should
theoretically be 100% reliable and available. The experi-
mental evaluation (see Section 3) describes how well they
perform in practice.

3. EXPERIMENTAL EVALUATION
In this section we present a preliminary comparative anal-

ysis of the three BFT protocols, PBFT, Chain and RBFT
when facing different types of faults.

110

3.1 Experimental Setup
Our experiments were conducted on a cluster running

in Grid’5000 [5] composed of 34 nodes. Each node hosts
two 4-core Intel Xeon E5420 QC processors at 2.50GHz fre-
quency with 8GB of RAM and 160GB SATA of storage
space. Machines are interconnected through 1 Gigabit Eth-
ernet and have only a single network interface. In the ex-
periments we consider a cluster of 4 nodes (3f + 1) for run-
ning BFT protocol instances. We reserve 2 extra nodes, one
for concurrent clients’ emulator, and one for hosting BFT-
Bench framework. A client requests incurs 30 (±10%) mil-
liseconds emulating application computations. We use a/b
micro-benchmark by Castro and Liskov [6] for evaluating
throughput and latency for each faulty behavior. We used
original versions of the code bases for the three protocols in
consideration1.

3.2 Replica Crash
Here, we consider the Byzantine misbehavior described by

the following faultload:
<300s, replica crash, {primary}>, defining fault trigger time,
fault type and fault location, respectively.

For our evaluation, we consider crash of primary. Since
primary replica is responsible for ordering the incoming re-
quests, its crash leads to expensive view change protocol ini-
tiated by other replicas, thus degrading the overall perfor-
mance. In our experiments, all the backup replicas wait for
5 seconds before considering primary to be unresponsive.
In case of non primary crash, protocol continues as replicas
need only 2f+1 matching responses.

Figure 1 presents the performance of the prototypes when
a primary crashes. In the results for PBFT, we observe
a sudden increase in latency (Figure 1-a), and throughput
(Figure 1-b) drops sharply upon crash of the primary. This
is due to the view change protocol which replaces the faulty
primary. Prototypes for Chain and RBFT fail to respond
once the primary crashes. Upon crash, Chain cannot main-
tain its pipeline structure as the successor of the crashed
server never receives any messages. Chain must switch to
PBFT upon crash, but unfortunately this mechanism is not
present in the original prototype. We would have observed
the same performance as PBFT if switching was possible [3].
In RBFT, clients broadcast requests to all replicas. During
crash fault, client enters an infinite request re-transmission
loop while attempting to send request to the crashed replica.
This is due to the absence of a crash handling mechanism
at client side.

3.3 Network Flooding
Figure 2 presents the performance of PBFT & RBFT

when a non-primary replica starts to flood (sends as many
malicious/corrupt messages as possible) other replicas. Fault-
load used is as follows:
<300s, network flooding, {Replica2, 4KB}>, where Replica2

will start to flood other servers with corrupt messages of size
4KB at 300s.

BFT-Bench implements this behavior by forcing a replica
to enter an infinite loop of continuous transmission of mali-
cious messages to other servers until the end of the exper-

1Code base of PBFT was downloaded from
http://www.pmg.csail.mit.edu/bft/#sw whereas RBFT
and Chain implementations were obtained directly from
authors [10, 2].

0

1000

2000

3000

4000

5000

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Single event of
 replica crash

Fault-free scenario
 with 5 clients

(a) Latency

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Single event of
 replica crash

Fault-free scenario
 with 5 clients

(b) Throughput

Figure 1: Evaluation in presence of replica crash

iment. We observe that any replica, either primary or non
primary would impact the performance in the same way.

The results illustrate that Chain makes no progress upon
fault injection while performance of PBFT becomes spo-
radic. This is due to the expensive time consuming cryp-
tographic operations performed over corrupt messages by
all the replicas in PBFT and successor replica in Chain. In-
ability to handle corrupt messages introduces a gap in the
communication pattern and lack of protocol switching mech-
anism, holds the Chain from continuing.

RBFT uses multiple NICs to avoid malicious clients and
replicas from flooding client-to-replica & replica-to-replica
communications. RBFT also employs flood adaptive mecha-
nism where non-faulty replicas can detect a flooding replica
and blacklist it [2]. Flood protection enables a non-faulty
replica to monitor the number of messages (including cor-
rect & malicious messages) received. If a non faulty replica
receives more than a specific number of messages from a
particular replica in a period of time, then it can label this
replica as faulty and initiate a blacklisting protocol. When
this happens, RBFT closes the NIC of the misbehaving
replica for some time but after a given period it rejoins the
system again. Due to this we observe slight variations in
performance with upto 5% of degradation.

4. CONCLUSION

111

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

La
te

n
cy

(m
s)

Time (s)

PBFT
Chain
RBFT

Continous Network FloodingFault-free scenario
 with 10 clients

(a) Latency

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t

(#
re

q
u
e
st

s/
s)

Time (s)

PBFT
Chain
RBFT

Continous Network Flooding

Fault-free scenario
 with 10 clients

(b) Throughput

Figure 2: Evaluation in presence of network flooding

This paper presented BFT-Bench, the first framework for
evaluating BFT implementations under different faulty be-
haviors and workloads. BFT-Bench framework includes three
state-of-the-art BFT protocols, automatically deploys them,
allows to generate different types of faults, injects them at
different locations and different rates, and computes perfor-
mance and dependability measures. The paper presented
preliminary experiments conducted with BFT-Bench. The
evaluation results show that BFT-Bench is able to success-
fully compare various BFT protocols, in various faulty be-
haviors. We wish to make BFT benchmarking easy to adopt
by developers and end-users of BFT protocols. BFT-Bench frame-
work aims to help researchers and practitioners to better an-
alyze and evaluate the effectiveness and robustness of BFT
systems.

Acknowledgement
This work was partly supported by AMADEOS, a collabora-
tive project funded under the European Commission’s FP7
(FP7-ICT-2013-610535). The experiments presented in the
paper were conducted in Grid’5000, an experimental testbed
developed under the INRIA ALADDIN development action
with support from CNRS, RENATER and several Universi-
ties, as well as other funding bodies.

5. REFERENCES
[1] Y. Amir, B. A. Coan, J. Kirsch, and J. Lane.

Byzantine Replication Under Attack. In DSN, pages
197–206, 2008.

[2] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. RBFT:
Redundant Byzantine Fault Tolerance. In ICDCS,
pages 297–306, 2013.

[3] J.-P. Bahsoun, R. Guerraoui, and A. Shoker. Making
BFT Protocols Adaptive.

[4] A. Bessani, J. Sousa, and E. E. Alchieri. State
Machine Replication for the Masses with
BFT-SMART. In Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International
Conference on, pages 355–362. IEEE, 2014.

[5] F. Cappello, E. Caron, M. Dayde, F. Desprez,
Y. Jégou, P. Primet, E. Jeannot, S. Lanteri, J. Leduc,
N. Melab, et al. Grid’5000: A Large Scale and Highly
Reconfigurable Grid Experimental Testbed. In
Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, pages 99–106. IEEE
Computer Society, 2005.

[6] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In OSDI, pages 173–186, 1999.

[7] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making Byzantine Fault Tolerant
Systems Tolerate Byzantine Faults. In NSDI, pages
153–168, 2009.

[8] M. Correia, N. F. Neves, and P. Veŕıssimo. BFT-TO:
Intrusion Tolerance with Less Replicas. Comput. J.,
56(6):693–715, 2013.

[9] G. S. V. et. al. Spin one’s wheels? byzantine fault
tolerance with a spinning primary.

[10] R. Guerraoui, N. Knezevic, V. Quéma, and
M. Vukolic. The Next 700 BFT Protocols. In EuroSys,
pages 363–376, 2010.

[11] R. Guerraoui, N. Knezevic, V. Quema, and
M. Vukolic. Stretching BFT. Technical report,
Technical Report EPFL-REPORT-149105, EPFL,
2011.

[12] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L.
Wong. Zyzzyva: Speculative Byzantine Fault
Tolerance. ACM Trans. Comput. Syst., 27(4), 2009.

[13] L. Lamport. The Part-Time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[14] L. Lamport. Paxos Made Simple. SIGACT News,
32(4):51–58, 2001.

[15] F. B. Schneider. Implementing Fault-tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Comput. Surv., 22(4):299–319, Dec. 1990.

[16] R. van Renesse and F. B. Schneider. Chain
Replication for Supporting High Throughput and
Availability. In OSDI, pages 91–104, 2004.

[17] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung,
and P. Veŕıssimo. Efficient Byzantine Fault-Tolerance.
IEEE Trans. Computers, 62(1):16–30, 2013.

112

