
Towards Using Code Coverage Metrics for Performance
Comparison on the Implementation Level

Mathias Menninghaus
mathias.menninghaus@uos.de

Elke Pulvermüller
elke.pulvermueller@uos.de

University of Osnabrück, Institute of Computer Science
Albrechtstraße 28, 49069 Osnabrück, Germany

ABSTRACT
The development process for new algorithms or data struc-
tures often begins with the analysis of benchmark results
to identify the drawbacks of already existing implementa-
tions. Furthermore it ends with the comparison of old and
new implementations by using one or more well established
benchmark. But how relevant, reproducible, fair, verifiable
and usable those benchmarks may be, they have certain
drawbacks. On the one hand a new implementation may
be biased to provide good results for a specific benchmark.
On the other hand benchmarks are very general and often
fail to identify the worst and best cases of a specific im-
plementation. In this paper we present a new approach for
the comparison of algorithms and data structures on the im-
plementation level using code coverage. Our approach uses
model checking and multi-objective evolutionary algorithms
to create test cases with a high code coverage. It then ex-
ecutes each of the given implementations with each of the
test cases in order to calculate a cross coverage. Using this
it calculates a combined coverage and weighted performance
where implementations, which are not fully covered by the
test cases of the other implementations, are punished. These
metrics can be used to compare the performance of several
implementations on a much deeper level than traditional
benchmarks and they incorporate worst, best and average
cases in an equal manner. We demonstrate this approach
by two example sets of algorithms and outline the next re-
search steps required in this context along with the greatest
risks and challenges.

Keywords
performance comparison, algorithm engineering, test case
generation, performance tests

1. INTRODUCTION AND RELATED WORK
Developing new algorithms and data structures often starts

with the analysis of the already existing approaches. A help-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16, March 12 - 18, 2016, Delft, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4080-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2851553.2858663

ful tool for finding drawbacks are well established bench-
marks [6] for the particular problem domain. They are also
used to compare the performance of the new to the perfor-
mance of the existing approaches. Either type of benchmark
has two major drawbacks when used for the comparison of
new to previous implementations. On the one hand, an im-
plementation may be biased to provide good results for a
specific benchmark. On the other hand, benchmarks are
designed to evaluate the impact of specific data sets and
configurations and not for a specific implementation. They
therefore do not necessarily expose the worst and best cases
of an implementation.
We propose a solution to these problems by comparing im-
plementations via performance tests which are dynamically
created and can not be biased as easily as common bench-
marks. Additionally our performance tests cover all aspects
of an implementation in equal measure and not only those
parts which where foreseen by the creators of a benchmark.
[8] propose a model driven automated benchmark creator
which relies on a UML 2.0 testing profile and creates bench-
marks from the architecture and basic design of the soft-
ware. Contrary to that, we create test sets on basis of the
actual implementation and not the specification. This way,
we create test sets which do not miss any part of the code
and therefore our tests do not miss certain best and worst
case scenarios. [2] propose WISE, a tool to automatically
generate inputs which cause worst case performance using
symbolic execution. Since they use the actual implementa-
tion as a basis, WISE seems to be a good start. However,
it searches for a certain behavior instead of representing the
overall performance conduct with one test set, which is our
goal. [7] criticize the lack of coverage in performance test-
ing and question significance if the coverage is ignored. By
generating test sets with the aim of a maximized coverage,
we also face this problem.
Beside the generation of test cases which cover the complete
implementation, we develop a metric to compare implemen-
tations of the same algorithm or implementations of different
algorithms which solve the same problem. Such a metric is
useful to decide if two implementations are comparable at
all. In some cases, several implementations may be used
to solve the same problem but focus on different aspects of
this problem. In contrast to focusing on one of the aspects
and therefore specializing the comparison, we want to com-
pare every speciality of the implementations automatically.
Therefore, we need a metric which determines how differ-
ent the implementations are. To our knowledge there is no

101

other metric which examines the comparability of implemen-
tations available at present.
In order to provide complete and somehow fair performance
tests we combine both aspects, the test sets with a maxi-
mized coverage and the comparability metric. Using this,
we can evaluate which implementation performs generally
best, independently from certain performance profiles.
We give an overview of our framework and the creation of
test case sets along with the explanation of our compara-
bility metric. Using a simple example we explain our com-
parison formula, which is called combined coverage and in-
troduce the weighted performance which evaluates an imple-
mentation based on the aforementioned comparability and
test cases with maximized coverage. As the framework is
still work in progress we address the main risks and chal-
lenges in chapter 3 and conclude with an outlook in chapter
4.

2. PERFORMANCE TEST COMPARISON
In this chapter, we will describe the generation of test

cases and the calculation of the combined coverage and
weighted performance.
First, for each implementation a test case set with maxi-
mized coverage is generated. Second, each implementation
is executed with each of the test case sets as parameters.
The coverage and average performance of this executions is
measured for each test case set. Third, using the coverage of
each test case set given by an implementation, the combined
coverage for measuring the comparability of one implemen-
tation to the others is generated. Fourth and last, using the
coverage and performance of each test case set on an imple-
mentation, the weighted performance is generated.

As an introduction consider the four Java code-snippets as
depicted in Figure 1. Each of them is an implementation of
the method public int max(int a, int b) which returns
the maximum value of the two given parameters a and b.
We want to evaluate which implementation performs best in
comparison to the others. It is crucial to note that two dif-
ferent implementations of the max method can be compared
much better, if the test cases generated for comparison cover
the whole code of both implementations. Otherwise the test
cases miss uncovered sections and no valid conclusion about
the overall performance can be derived. The only require-
ment for our procedure is that every implementation fulfills
the same specification and reacts with an identical output
on certain inputs. So either the same algorithm has been
implemented or algorithms which solve the same problem.
The framework does not test the functionality of the given
implementations, but measures their comparability and per-
formance.
The framework does not generate test cases which cover all
given implementations, since that would cause a great com-
putation overhead every time a new implementation has to
be compared to the existing ones. Instead, it generates test
cases for each of the given implementations. It can either use
a model checking approach using Java Path Finder (JPF)
[5, 3] or an evolutionary approach using the multi-objective
evolutionary algorithm (MOEA) [1] framework. The first is
able to find all simple paths in the control flow and there-
fore maximal covering test cases but fails for rather complex
implementations as it faces a state-explosion and too many
possible paths. The latter is not confronted with state ex-
plosions and may find an ideal implementation which has a

maximal coverage and minimal number of test cases but this
depends on the given fitness function and mutation opera-
tors. An evolutionary algorithm may get stuck in an local
optima and not find a good implementation. As the given
examples are rather simple we use the JPF-based approach
and get the test cases as depicted in Figure 1 in the second
column. Another point for adjustment in our framework is
the coverage metric on which the comparison weights are
based. Since there are many different code coverage metrics
available, the framework only provides a general interface
for the implementation of additional metrics together with
the major ones like statement, branch and path coverage
metrics. The decision for one of the metrics should be made
in respect for the intended aspect and how detailed the com-
parability should be determined. For the given example we
simply calculate the basic block coverage not only for each of
the implementations but for each implementation and each
set of test cases. Each entry cij in Table 1 contains the
coverage of test case set j executed on implementation i.

Table 1: Basic block coverage for each of the test
case sets executed on each of the algorithms

test cases of
implementation A B C D

A 1.0 2/3 1.0 1.0
B 2/3 1.0 1.0 2/3
C 0.8 0.8 1.0 0.8
D 1.0 2/3 1.0 1.0

The covered paths in the control flow graphs of each im-
plemenation when executed with the test case set generated
from solution A are shown in Figure 1 in the third column.
The coverage value may not exceed a maximum value and
should be calculated in relation to the maximal possible cov-
erage. In our case, the maximum is always 1.0. For some
coverage metrics, which may not be fully covered or imple-
mentations which contain unreachable, dead code, it may be
less. The coverage value is therefore adjusted to

covij =

{
cij

maxi
if cij < maxi

1 else
(1)

where maxi is the maximal possible coverage on implemen-
tation i. For a proper comparison of the implementations
the framework needs to combine the coverage values for each
implementation. If one implementation only covers the test
case set of one other implementation well, this indicates that
it may be designed especially for this competitor. There-
fore, some very good and very bad coverage values are worse
than average coverage values only. The combined coverage
should also take into account how many test case sets have
been combined. A combination of only two implementations
should assign a higher weight to a single coverage value than
the combination of 10 values. We propose the combined cov-
erage ci as

ci =

n∏
j=1

(covij)
k
n (2)

where n is the total number of implementations and k is the
parameter to adjust the impact of bad coverage values on
the combined coverage. The combined coverages for our ex-
ample are presented in table 2 in the middle column. They

102

Implementations

int c = a - b;

return c < 0 ? b : a;
A

int c = b - a;

return c < 0 ? a : b;
B

if (a == b) {

return a;

} else {

return a < b ? b : a;

}

C

return a < b ? b : a;D

Test case sets

(0, 0)

(0, 1)

(0, 0)

(1, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 1)

Coverage
(for test case set A)

Performance
(for test case set A)

5
5

5
5

3
5

3
3

Figure 1: Overview over our framework. Sets of test cases with maximized coverage are generated from each
implementation (first to second column). Each implementation is executed with each test case set and the
coverage (third column) and performance (fourth column) are measured.

Table 2: Combined coverage and weighted perfor-
mance with k = 2

combined weighted
implementation coverage performance

A 0,816497 6,562500
B 0,666667 8,125000
C 0,715542 5,770833
D 0,816497 3,937500

can be interpreted as follows: Implementations A and D
have the same control flow graph and therefore react equal
on test cases. Implementation C has an additional test case,
caused by the first statement, the test on the equality of
parameters a and b. Therefore the test cases of C cover all
other implementations, but C is not fully covered by the
others. In contrast to A, C and D implementation B returns
parameter b if it equals a and therefore has the least com-
bined coverage. That means, that B can not be compared
to the other implementations as good as A, C and D.
In the last step, the performance of each implementation
is combined with the coverage for each test case set. In
our approach a higher performance value is worse and the
best possible performance is 1. To maintain a comparability
we calculate the weighted performance pi with the following
definition

pi =

(
n∑

j=1

pij
(covij)k

)
/n (3)

where pij is the average performance of implementation i
when executed with the test cases from implementation j.
Similar to the coverage calculation, the way the performance
of the implementations is measured, has an impact on the
outcome of the evaluation. For our example we use the num-

ber of bytecode load and store operations on integers as
performance values. The best performing implementation is
assumed to be the one with the least number of those in-
structions. The performance of every implementation when
executed with the test cases from A is shown in Figure 1
in the right column. One may consider other performance
values like the number of executed cpu cycles, the wall clock
time etc., but counting the bytecode operations is sufficient
for our explanation. We also disabled Java’s just-in-time-
compilation which has to be taken into account outside of
our simple example.
As for the combined coverage, the coverage values are weight-
ed with the parameter k in order to punish a bad coverage
more than an average coverage. The weighted performance
of our example is presented in table 2 in the right column. It
shows that implementation D is considered to have the best
weighted performance. This means, that this implementa-
tion not only has a good average performance but also is
covered best by the test cases of the other implementations.

3. DISCUSSION
From this first view on our procedure we can identify sev-

eral uncertainties and open issues which will be discussed in
this chapter.
The performance value pij treats every test case in the same
way. It does not weight very unlikely or likely test cases.
On the one hand this is not fair, if one implementation has
a clearly better average performance but one very unlikely
worst case and the other performs worse in average but has
no worst case. On the other hand, the aim of our framework
is to fully compare several implementations, and not build
another benchmark generator. Weighting one test case more
than another would also imply knowledge of the intended use
and that disagrees our introductive claim to cover all aspects
of an implementation equally. Therefore, a full comparison

103

needs to incorporate all cases in equal measure. Nonethe-
less, at least the graphical representation of our framework
will highlight worst, best, and average case scenarios and
identify often used paths and instructions. A prototype of
the UI is shown in figure 2.

Figure 2: UI - excerpt of our framework. Source
code (left) and control nodes (right) are linked to
each other. After execution, the visited paths are
highlighted and the edges are labeled with the num-
ber of accesses.

In the end, the developer who uses our tools, may adjust
the weights for the specific purpose after getting a complete
overview about the investigated implementations.
The chosen coverage metric is essential and clearly has an
impact on the overall computation. For example, we also
computed the combined coverage and weighted performance
for four sorting algorithms with a quadratic average compu-
tation time: BubbleSort, InsertionSort, SelectionSort and
ShellSort. When using basic block coverage as metric, each
implementation is fully covered by each test case set and
therefore also the combined coverage for each implementa-
tion is 1.0. We also used path coverage, with the constraint
that every loop should be accessed at least twice for full cov-
erage, as metric. Although this changes the combined cover-
age, it does not change the general outcome for the weighted
performance. As the four algorithms are very similar it is
only logical that their test cases cover each other and that
there is no reasonable coverage metric which would alter the
weighted performance such that the performance ranking of
the algorithms would change. When confronted with very
different implementations, the coverage has a greater impact
than for similar implementations.
Not only the way the performance and coverage are calcu-
lated, but also the generation of the test cases affects the
outcome. In the previous chapter we used JPF to create
relatively universal test cases which cover all control flow
paths. Changing the test cases of B to (1, 0) | (0, 1) al-
ready changes the coverage for A and D but not for B and C.
This has an impact on the weighted performance and even
on the performance ranking. But it is rather obvious that
even a slight change on one of two test cases changes the
outcome. Problems which require more complex implemen-
tations than the simple max example in this paper will also
produce more test cases per test case set and therefore be
less prone to minor changes in the test cases.

4. CONCLUSIONS AND OUTLOOK
In this paper, we present a new approach for comparing

the performance of algorithms and data structures on the
implementation level. We provide two metrics, the com-
bined coverage and the weighted performance which can be
used to compare the coverage and the performance of differ-
ent implementations. We also discuss our work in progress
and state that our calculations may be altered by using dif-
ferent performance weights, coverage metrics and test case
generators but none of the alterations let the overall reason-
ing behind our metrics fail.
In the next steps, we need to apply our framework on a
more complex domain. Complex data structures for index-
ing spatio-temporal data like the RST-tree [4] are generated
on the prior analyzation of their predecessors and therefore
are exactly the structures we aim at. We also need to com-
pare our framework to the already existing benchmarks and
test sets for those structures or find a way to incorporate
them in our performance comparison.
For more complex implementations the usage of JPF is un-
practical not only because of a possible state explosion but
also because JPF is not able to handle input arrays of vari-
able length. Beside the risk of getting stuck in a local op-
timum, evolutionary algorithms have to be set up for every
problem domain anew. Especially the definition of the fit-
ness function and the mutation operators is crucial for the
success of the evolutionary algorithms. Therefore, we need
to build a simple and more general framework for the gener-
ation of test cases via evolutionary algorithms, which takes
one method call as a single gene and a chromosome as one
test case. After an extensive test of this evolutionary com-
putation framework, the user will be able to use predefined
mutation operators and algorithms which have proven best
in previous evaluations.

5. REFERENCES
[1] MOEA Framework. pages 1–210, Jan. 2015.

[2] J. Burnim, S. Juvekar, and K. Sen. WISE: Automated
test generation for worst-case complexity. 2009 IEEE
31st International Conference on Software Engineering,
pages 463–473, 2009.

[3] S. Monpratarnchai, S. Fujiwara, A. Katayama, and
T. Uehara. Automated testing for Java programs using
JPF-based test case generation. ACM SIGSOFT
Software Engineering Notes, 39(1):1–5, Feb. 2014.

[4] S. Saltenis and C. S. Jensen. R-Tree Based Indexing of
General Spatio-Temporal Data. 1999.

[5] W. Visser, C. S. Păsăreanu, S. Khurshid, and
S. Khurshid. Test input generation with java
PathFinder. ACM SIGSOFT Software Engineering
Notes, 29(4):97–107, July 2004.

[6] J. von Kistowski, J. A. Arnold, K. Huppler, K.-D.
Lange, J. L. Henning, and P. Cao. How to Build a
Benchmark. In the 6th ACM/SPEC International
Conference, pages 333–336, New York, New York, USA,
2015. ACM Press.

[7] M. Woodside, G. Franks, and D. C. Petriu. The Future
of Software Performance Engineering. IEEE, 2007.

[8] L. Zhu, N. B. Bui, Y. Liu, and I. Gorton. MDABench:
Customized benchmark generation using MDA. Journal
of Systems and Software, 80(2):265–282, Feb. 2007.

104

