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ABSTRACT
Accurate measurement of program execution time is indis-
pensable to time-based charge systems and performance de-
bugging in all computer systems. However, cloud applica-
tion execution time cannot be measured properly because
measurement in a virtual machine (VM) includes additional
time called steal time. The steal time of each program in a
VM is unrecognizable by existing standard operating system
(OS) tools. Therefore, it is quite difficult for performance
engineers to grasp the accurate execution time of each pro-
gram in a VM.
In this ongoing work, we show the novel point of steal in

the broad sense and describe how to compensate for function-
level execution time in each program in a VM. Our novel
approach works by subtracting steal time, which is based
on the time-series data of host-level sampling in each func-
tion. We implement our approach as a host-level kernel
module based on hardware performance counters and some
user-level analysis programs. Therefore, our method re-
quires no modification of user applications, guest OSes, a
virtual machine monitor (VMM) or a host OS. Finally, our
results demonstrate accurate execution time of a function-
level guest program, with an overhead lower than 1% for
practical use.
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1. INTRODUCTION
Accurate cloud application execution time is required for

time-based meter rate charge systems and for performance
debugging of guest programs. It provides opportunities for
cloud service providers to charge based on actual CPU us-
age rather than instance hours, which are CPU elapsed time.
Accordingly, the costs of cloud service usage can be reduced
by paying precisely for the instance being used. Besides, ac-
curate execution time of guest programs can also be used to
determine which part has the cause of performance degrada-
tion; a proprietary program, other virtual machines (VMs)
or a virtual machine monitor (VMM). Thus, accurate mea-
surement of program execution time is indispensable in a
virtualized environment, which is the underlying infrastruc-
ture in cloud computing.

However, the precise execution time of each program can-
not be obtained in a virtualized environment because guest-
inside measurement includes steal time as additional time.
Steal time is a characteristic issue in a virtualized environ-
ment. It is the duration in which a guest is unable to run
because physical CPUs cannot be assigned to the guest.
That is, it is the time spent in involuntary wait by a vir-
tual CPU (vCPU) while a VMM is servicing another vCPU.
Steal is caused by the operation of a VMM. The cause of
steal in a guest exists outside the guest. It is in other guests
or a VMM. Moreover, although recent VMMs expose the
steal time of a VM to the guest OS, the steal time of each
program is still unrecognizable using existing standard OS
tools, application programming interfaces and VMM inter-
faces. Guest OSes are unaware of being in virtualized envi-
ronments. They are implicitly convinced that they occupy
the underlying physical resources. Consequently, accurate
execution time excluding steal time cannot be obtained in
a virtualized environment, and it is quite difficult for per-
formance engineers to measure the actual execution time of
each program in a VM.

In this paper, we reveal steal time even in the case of
no CPU oversubscription. Such steal time is unrecogniz-
able, even through a VMM interface. We propose a solution
that compensates for the function-level execution time of
each program in a guest. Our solution subtracts steal time,
which is included, from each function based on the time-
series data of host-level sampling. This ongoing research
draws on our earlier work [1, 2], Unified Performance Profil-
ing of an Entire Virtualized Environment, for the host-level
sampling. Finally, we implement our approach, and our re-
sults demonstrate accurate function-level execution time of
a guest program, excluding steal time, with a low overhead
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of 1% or less for practical use.
The main contributions of this paper are as follows:

1. We generalize steal in the broad sense and analyze un-
recognizable steal, even through a VMM interface.

2. We present a novel method of attributing steal data
sampled in the host to corresponding processes, threads
and functions in the guest. It requires no modification
of user applications, guest OSes, a VMM or a host OS.

3. We present a preliminary evaluation. We demonstrate
accuracy and feasibility. Then, we show negligible
overhead using real applications on a more recent plat-
form than that used in previous work [1, 2].

2. STEAL IN THE BROAD SENSE
Some guest OSes can show the steal usage of an entire

VM or vCPU using standard statistical tools, such as sys-
stat. This is because a VMM exposes the information of
steal usage to guest OSes in each vCPU. In the Linux man-
pages proc(5) [3], steal time is defined as the time spent in
other operating systems when running in a virtualized en-
vironment. However, the blank time in a VM includes not
only the time spent in other VMs, but also the time spent in
a VMM. Accordingly, from the user point of view, we pro-
pose referring to the former as “steal in the narrow sense”
and both as “steal in the broad sense”. In addition, the for-
mer is also referred to as type-1 and the latter type-2. We
cannot capture type-2 steal with an existing standard tool,
as demonstrated below.

Table 1: Summary of experimental environment

Host Environment
CPU Intel Xeon E5-2697 v3, 2.60GHz
Num of pCPU 14
Memory 128GB
OS RHEL Server 7.11 64bit

(kernel 3.10.0-229.el7.x86 64)
VMM KVM [4] (qemu-kvm-1.5.3-86.el7.x86 64 [5])

Guest Environment
Num of vCPU 2
Memory 8GB
OS RHEL Server 7.11 64bit

(kernel 3.10.0-229.el7.x86 64)

The experimental environment is summarized in Table 1.
The host machine is a Fujitsu Primergy CX400 M1 server.
We enabled only one socket and disabled the CPU Hyper-
Threading, Enhanced SpeedStep and Turbo Boost features
to obtain more stable results. We used PostgreSQL 9.2.7-
1 [6] for evaluation of type-2 steal as unrecognizable steal.
PostgreSQL is a widely used open-source relational database
management system. It is a popular database for Web appli-
cations. Moreover, we used SysBench 0.4.12-12 [7] for mea-
surement of PostgreSQL’s OLTP (online transaction pro-
cessing) performance. In this section, we used only one VM.
No other VM was booted. We had two vCPUs available and
pinned each vCPU to the specified physical CPU (pCPU).
Furthermore, PostgreSQL processes were bonded to vCPU0,
and a SysBench process was bonded to vCPU1. We simul-
taneously invoked 16 OLTP threads to make CPU usage
almost 100%.
1Red Hat Enterprise Linux Server release 7.1

Table 2: Unified VM profiling

Total samples:29932
Samples %Ratio Function Module
2366 7.90 [ steal ] (outside)
1098 3.67 rb iterate postgres
855 2.86 ip6t do table ip6 tables
655 2.19 hash search with hash value postgres
575 1.92 SearchCatCache postgres
532 1.78 PostgresMain postgres
(snip)
9 0.03 [ idle ] (halt exit)
(snip)

The average results of the mpstat command on vCPU0
showed that %usr was 53.27, %sys 23.33, %soft 23.36,
%idle 0.03 and %steal 0.00. In contrast, we found the
blank time for type-2 %steal on vCPU0 to be 7.90 from the
result of unified VM profiling [1, 2], as shown in Table 2.
From the analysis of the VM-exit reason number, it can be
seen that the causes of these steal cycles include the exe-
cution of the WRMSR instruction in the guest (exit reason
number 32) with 90.25%, external interrupts (exit reason
number 1) with 9.62%, EPT violation (exit reason number
48) with 0.08% and execution of I/O instruction in the guest
(exit reason number 30) with 0.04%. In other data, we can
also confirm other causes of type-2 steal, such as the exe-
cution of the CPUID instruction in the guest (exit reason
number 10), the execution of the PAUSE instruction in the
guest (exit reason number 40) and EPT misconfiguration
(exit reason number 49). From these results, we found that
the impact of steal could occur without other VMs running
on the same host. In addition, we found that such type-2
steal is unrecognizable with existing standard OS tools, even
with steal information from a VMM.

3. COMPENSATION OF EXECUTION TIME

Figure 1: An executing function and a steal time section in
a VM with time-series samplings in a host

Approach: In our approach, we assume two things. One
is that sampling rate is less than an interval of VM switch,
as shown in Figure 1. For instance, an interval of VM switch
is 20 milliseconds, and a sampling rate is 1 millisecond. The
other is that a running program context is the same one
across a steal time section. Thereby, we can recognize such
steal time is attributed to the context and use it for compen-
sation of execution time of the running program. The con-
text includes processes, threads or functions. For instance,
in Figure 1, the running function is the same“Func A”before
and after the steal time which is also known as blank time
in a VM. Then, we can recognize the steal time as that at-
tributed to“Func A”, shown in Figure 1. Thus, the apparent
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execution time of “Func A” becomes larger than the actual
execution time. The guest OS is unaware of the occurrence
of steal time, which is additional CPU time to “Func A” of
the executing program. This is because the control of the
VM is stolen involuntarily by a VMM from the guest OS
when the steal occurs. Incidentally, when the context is dif-
ferent from each other across a steal time section, we don’t
use such steal time for compensation of execution time. This
is because we cannot identify the context which such steal
time is attributed to. Our techniques, based on these two
assumptions, are that:

• Firstly, we extract steal samples attributed to the tar-
get context from guest-level virtual sampling data.

• Secondly, we sum up steal time of the target context
using above-mentioned target steal sampling data.

• Finally, we get accurate execution time by subtracting
the aggregation steal time of the target context from
measured apparent execution time of the context.

Figure 2: Converting host-level real sampling data to guest-
level virtual sampling data based on host time

Generating guest-level sampling data from host-
level sampling data: Each guest has a blank time in
which it is unable to run because a physical CPU cannot be
assigned to a guest. We believe that the blank time should
be interpolated with host time as a single common time, and
we chose the physical TSC value as host time. As a result,
host-level sampling results reflect the actual time even to
guests, including the blank time. To interpolate the blank
time in each guest, the compensated sampling data of each
guest should be generated. Figure 2 illustrates how to build
the compensated virtual guest sampling data.
Figure 2 assumes an environment in which the host has

two pCPUs and two VMs running: VM0 and VM1. VM0

has one vCPU, and the VM1 has two vCPUs. No vCPU is
bound to a pCPU. The time axis represents elapsed time by
host time. This figure shows sampling data from t1 to t4.
The virtual guest sampling data is generated with the host
time by the virtual CPU unit from real host-level sampling
data. The above figure displays the sampling format held in
the kernel buffer. We can convert this format into the format
below as virtual guest sampling data. When doing so, the
host time is used as the base common time, thereby correctly
reflecting the blank time of each vCPU. Blank time is an
interval that does not include valid periodic sampling data
corresponding to the vCPU. Blank time can be classified
into two states, halt or steal, by the VM-Exit reason. If the
exit reason number is 12, blank time is recognizable as halt.
Otherwise, blank time is handled as steal.

Figure 3: Attributing steal samples to the corresponding
context

Extracting steal samples and attributing them to
the corresponding processes, threads, and functions:
In Figure 3, a line represents one sample data in the time-
series sampling. Figure 3a illustrates our input data which
are guest-level virtual sampling data obtained from the re-
sults of unified VM profiler. Those data are used for extract-
ing the target context steal. Figure 3b represents comple-
mented steal sampling data with the corresponding context
information those are processes ID, thread ID and function
name.

4. EVALUATION

4.1 Results
The experimental environment is the same as shown in

Table 1 in §2. In this subsection, we boot three VMs and
pinned all VM’s vCPU0 to pCPU0. This way, each vCPU0 is
overcommitted on pCPU0. Each VM’s vCPU1 is pinned to a
pCPU other than pCPU0. We verify the accuracy of our ap-
proach using a computation-intensive workload, which per-
forms floating point arithmetic. It consists of two functions,
compute a and compute b, which consume 80 and 20% of
CPU cycles, respectively. Consequently, total CPU usage is
almost 100% with this workload. In one VM, referred to as
an execution time measurement VM, we ran this workload
with a fixed number of iterations. In other VMs, as CPU
load generator VMs, we continuously ran that. We mea-
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sured the wall-clock execution time of each function in an
execution time measurement VM. We simultaneously took
samples every 1 millisecond in a host. A Hardware perfor-
mance counter triggered the sampling through the counter
overflow interrupt after a specified number of event counts.
At every interrupt, sampling data were recorded into the
host kernel buffer in turn without aggregation [1, 2].
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Figure 4: Comparison of normalized execution time

Figure 4a shows the results of apparent execution time of
each function. They are found to be twice or three times
than criteria of each function execution time. This indicates
that the apparent execution time increases in proportion to
the CPU load generated by other VMs. This is because the
workload is CPU-bound. By contrast, Figure 4b shows the
results of compensated execution time. These corrected ex-
ecution time are found to be close to the criteria. From the
results, the accuracy of our approach can be confirmed. Fur-
thermore, the effect of excluding steal time can be confirmed
by comparison between Figure 4a and 4b.
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Figure 5: Comparison of normalized total execution time of
multiple processes of PostgreSQL in a VM

In addition, we conducted preliminary study for apply-
ing our method to real applications. An environment is the
same as explained in this section. We used the number of
sampling of PostgreSQL for this study. First, we continu-
ously ran the aforementioned workload in a load generator
VM. Next, in an execution time measurement VM, we in-
voked 16 OLTP threads in the same way in §2. Then, we
performed host-level sampling every 1 millisecond for 60 sec-
onds during OLTP performance measurement. As a result,
for example, we obtained 213.34 seconds as an apparent exe-
cution time and captured 35788 steal samples on vCPU0 for

60 seconds. This number of steal samples can be converted
to 127.25 seconds for total period of the measurement. Cor-
rected execution time becomes 86.09 seconds by subtracting
steal time from apparent time. Reference execution time
was 89.51 seconds without other VMs load. Thus, we ob-
tained above results, as shown in Figure 5. It can be seen
from Figure 5 that our approach can be used to compen-
sate real application execution time. On the other hand, an
average result of %steal by mpstat was 56.27%. Using this
result, corrected execution time becomes 94.01 seconds. Our
result is closer to the reference execution time. This differ-
ence between the result of our approach and that of mpstat
is assumed to be caused by type-2 steal.

4.2 Overhead
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Figure 6: Overhead of our approach against execution time
of PostgreSQL by 16 OLTP threads

We determined the overhead by comparing the execution
time, with and without host-level sampling, of 16 OLTP
threads invoked in the same way in §2. Figure 6 shows the
overhead results (blue curve) and the allowable borderline
(red line) of our sampling overhead for practical use even in
performance-critical cases. From the results, we found that,
with host-level sampling, we could use 1 millisecond as the
practical sampling rate, even in virtualized environments.

5. RELATED WORK
The issue of steal time has been addressed in previous

work. Weaver et al. extended PAPI to provide the support
for running inside VMs [8]. This extension enables develop-
ers to use PAPI to carry out performance analysis in virtual-
ized cloud environments. It relies on Linux and KVM/Xen,
which support steal time reporting. It is a sort of paravir-
tualized function that provides information from the VMM
on how often a VM was scheduled out. In PAPI 5, this
function is used to implement compensation for steal time
in the PAPI get virt usec routine under KVM. However, this
function only provides system-wide steal time values. PAPI
only returns per-process results. Therefore, it is difficult for
PAPI to automatically and completely adjust process time
measurements in guests. Regarding this problem, Weaver
et al. stated that steal time is only an issue if a machine
is oversubscribed with VMs; in most HPC situations, only
one task is running per node, so this might not be a critical
limitation. On the other hand, in more general virtualized
environments, this becomes a critical limitation. In most
general cloud-service situations, VMs and vCPUs are over-
committed to physical resources. In addition, as was shown
in §2, steal time occurs even if VMs and vCPUs are not
overcommitted. Therefore, this work focuses on resolving
the steal time issue.
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Hofer et al. broke down the steal time provided by the
VMM to the monitored application threads [9]. They base
their analysis on the fact that threads that use the most
CPU time (or to which the most CPU time is allocated) are
the ones most affected by the steal of vCPUs. Hence, they
divide the steal time among the threads in proportion to
the CPU time they consumed. Actually, they implemented
their approach in a Java VM. Therefore, their approach can
handle only Java applications in a VM. Furthermore, their
approach depends on the steal information provided from
a VMM. Hence, their approach cannot include type-2 steal
time.

6. CONCLUSIONS AND FUTURE WORK
Accurate execution time of cloud applications is required.

However, the actual execution time of each program cannot
be obtained in a virtualized environment because of steal
time as additional time. This is a specific issue that must
be tackled in virtualized environments. In this paper, we
revealed steal time even when there is no overcommitted
CPU and demonstrated such steal time is unrecognizable
even through VMM interfaces. We then proposed a novel
method for compensation of execution time of cloud applica-
tions by subtracting steal time based on host-level sampling.
We developed prototype implementation and demonstrated
that it works as well as expected. That is, its results re-
flected the actual execution time even in guest programs.
In subsequent steps, we will evaluate our method in each

process and in each thread. We then plan to provide accu-
racy information more about real-world cloud applications,
such as OLTP applications, Web applications and big data
analyzers. Such experiments using real applications will help
determine how our approach applies to meter rate charge
systems. Furthermore, we plan to generalize this approach
by extending our prototype to a general tool. A general tool
is required for performance debugging of cloud applications
as well as application performance management in the cloud.
As a challenge for future work, we are considering applying
this technique to anomaly detection in cloud environments,
which have the characteristic steal issues of virtualized envi-
ronments. For that purpose, enhancement with continuous
sampling and automated online analysis is required.
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