
DiffLQN: Differential Equation Analysis of
Layered Queuing Networks

Tabea Waizmann Mirco Tribastone
IMT — School for Advanced Studies

Lucca, Italy
{tabea.waizmann,mirco.tribastone}@imtlucca.it

ABSTRACT
Layered queuing networks are a popular technique in soft-
ware performance engineering. In this paper we present
DiffLQN, a tool for the analysis of networks using ordinary
differential equations. It estimates average performance in-
dices such as throughput, utilization, and response time of
software and hardware devices. The complexity of com-
puting the solution is independent of the concurrency lev-
els in the model (i.e., thread multiplicities and processing
units) and the estimates are theoretically guaranteed to be
asymptotically correct for large enough concurrency levels.
DiffLQN is designed having in mind compatibility with other
tools that support state-of-the-art methods based on mean
value analysis.

CCS Concepts
•General and reference → Performance; •Software
and its engineering → Software performance;

Keywords
Layered queuing networks; Ordinary differential equations;
PEPA

1. INTRODUCTION
Layered Queuing Networks (LQN) are a popular model

in software performance engineering because they support,
as first-class citizens, frequently used high-level mechanisms
such as synchronous and asynchronous communication, lay-
ered services (i.e., entities that work as clients as well as
servers), and fork/join synchronization [6]. In addition to
stochastic simulation, LQNs are traditionally solved analyt-
ically using approximate mean value analysis (AMVA), an
efficient technique that provides estimates of steady-state
performance indices such as throughput, utilization, and
response time. The approximation comes from two main
sources: first, a recursive algorithm depending on the num-
ber of jobs in the network is replaced by a fixed-point iter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16 Companion, March 12-18, 2016, Delft, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4147-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2859889.2859896

ation independent on them, e.g., [4]; second, heuristics are
used to capture non-product-form behavior in the AMVA
framework, e.g., [15].

Although the approximation has been empirically shown
to be satisfactory, no guarantees can be provided [13]. To
partially mitigate this problem, more recently an alterna-
tive interpretation of LQNs in terms of ordinary differential
equations (ODEs) has been proposed [17, 18, 19]. This has
been motivated by (unrelated) results on ODE approxima-
tions for process algebra models, specifically for PEPA [9,
24, 20]. In this view, an ODE is associated with every ba-
sic activity in the LQN which provides an estimate of the
average number of jobs executing that activity. Notably,
building on a fundamental result by Kurtz on fluid limits
of Markov population processes [12], the approximation has
an asymptotic guarantee of exactness when the multiplic-
ity of jobs and servers is large enough. This is in contrast
to the error behavior of AMVA, which may even increase
with larger multiplicities [19]. A useful side product of the
ODE approach is that it also readily gives indices of per-
formance for the transient behavior. Indeed, while AMVA
only considers the steady state, this is computed by running
a transient analysis for long enough until convergence to a
fixed point.

This paper presents DiffLQN, a software tool that supports
ODE analysis of LQNs. DiffLQN is 100% Java. A single-JAR
executable is available for download at
http://sysma.imtlucca.it/tools/difflqn/.

With this contribution we aim to address the following
software performance engineering challenges:

• We reduce the effort in applying performance methods
that use formal languages as the underlying engine.
Indeed, the main design rationale behind the tool de-
velopment was to hide the process algebra to the end
user, who is exposed to the more common vocabulary
of LQNs. This can be further bridged to higher-level
specifications such as performance-annotated UML di-
agrams (e.g., [25, 22, 23]).

• With formal asymptotic guarantees of correctness, we
aim to increase the modeller’s confidence to interpret
and use the performance results obtained through the
ODE analytical solver.

• From a practical viewpoint we ease (and encourage)
tight integration with other software modeling tools,
by providing a self-contained application that requires
no further libraries or execution environments than a
Java virtual machine.

63

2. RELATED WORK
The state-of-the-art tool for LQNs is Carleton University’s

LQNS [3]. It offers simulation and analytical computation
of performance measures for LQNs, using AMVA-based al-
gorithms. To facilitate easy usability of DiffLQN, we de-
signed it having in mind compatibility with LQNS, support-
ing a text-based syntax that presents only minor deviations.
Support for the alternate XML-based input format used by
LQNS will be implemented in the future.

The Palladio-Bench is an Eclipse-based integrated mod-
elling environment and uses the Palladio Component Model
(PCM) [2] to predict performance measures. A PCM-to-
LQN model transformation was introduced in order to make
use of efficient solving strategies for LQNs to analyze Palla-
dio models [11]. The Palladio-Bench now includes a module
for automatic translation of PCM instances into LQNs. It
would be possible to use DiffLQN to mediate the transfor-
mation from PCM to LQN, in this way providing another
alternative, ODE-based, analysis method for PCMs.

With LINE [14], another tool for ODE-based analysis
of queuing networks has recently been developed. LINE
supports processor-sharing scheduling, whereas DiffLQN as-
sumes a FCFS scheduling. Unlike DiffLQN it supports per-
centile analysis and can output ODE transient performance
indices. However, it does not yet cover a number of core
features of the LQN model, such as asynchronous calls, task
multiplicities, fork/join synchronization nodes, and activi-
ties with second phases (early replies). All these features
are available in DiffLQN. Finally, regarding the user inter-
face, LINE depends on MATLAB, while DiffLQN is a Java
application. LINE accepts LQNs in the XML format, while
DiffLQN uses the textual syntax of LQNs.

3. OVERVIEW OF LQNS
In order to make this paper self-contained, we start with

a brief overview of LQNs using an example that exhibits all
the features supported by DiffLQN. We refer to [6] for the
details on LQNs. Our sample LQN is graphically depicted
in Fig. 1 (although we remark that this is specified con-
cretely in a text format). The basic computational resource
is a processor (ovals) on which tasks (large parallelograms),
for instance software services, are deployed. A task consists
of different entries (smaller parallelograms) that represent
distinct kinds of services. An entry can be a basic activi-
ty, the atomic unit of operation in LQN if it is not further
specified. Otherwise, it points to a diagram of basic activi-
ties (rectangles) which are performed in sequence (linked by
an arrow), through probabilistic choice via decision/merge
nodes (‘+’ operator), or by means of fork/join synchroniza-
tion (‘&’ operator).

Activities can call entries synchronously (closed arrow-
head) or asynchronously (open arrowhead, not shown in ex-
ample). Asynchronous requests just start the requested en-
try while continuing the current activity, without waiting
for a reply. In synchronous requests, the activity is stopped
until a reply arrives. An activity can send any number of
requests to the same entry; the number of requests is written
next to the call arrow in brackets. When called, an activity
consumes time on the processor where the task is deployed.
Time demands are shown below the activity name within
square brackets. When two time demands are listed, as in
write, second-phases are modeled. The second time demand

think
[0.1] Client

<2>

(3) (1) (1)

(1)

(1)

notify
[0.08]visit Server

<2>

Backup <1>

update
[0.01]

get
[0.01]

(0,1)(0,1)

cache
[0.001]

external
[0.003]

+

internal
[0.001]

0.050.95

prepare
[0.01]

ship
[0.01]

&

pack
[0.03]

display
[0.001]

&

buy

(1) (1)

save
[0.02]

 FileServer <1>

write
[0.001 0.04]

read
[0.01]

PClient
<2>

PServer
<2>

PDisk
<2>

+

Figure 1: Graphical representation of an LQN, taken
from [19].

happens after the activity has returned control to the caller,
effectively executing asynchronously.

4. DIFFLQN

4.1 Architecture
Currently, the front-end of DiffLQN is a command line that

accepts a text-based representation of an LQN. The parser
is automatically generated from Eclipse’s Xtext framework.
In [19], the algorithmic derivation of the ODEs was medi-
ated by a translation of an LQN into a model written in the
process algebra PEPA [8]. We exploit this fact, by convert-
ing the abstract syntax tree of an LQN into a PEPA model
in order to leverage the tool support for this process algebra:
in particular, we use PEPAto, the API of the PEPA Eclipse
Plugin [21] in order to generate, analyze, and manipulate
the ODEs of the LQN model.

In essence, DiffLQN tracks the correspondence from LQN
elements to process-algebra models, and back for the propa-
gation of the analysis results. In this way, the intermediate
translation step into PEPA is hidden to the end user.

4.2 Capabilities
DiffLQN provides the following LQN performance indices:

• Throughput, at different levels of granularity: it pro-
vides the average number of activities, entries, or tasks
completed per unit time at steady state.

64

• Utilization for processors and tasks, giving the average
number of busy entities at steady state. Utilization es-
timates are also provided per single entry and activity,
giving their contribution to the utilization of the pro-
cessor on which they are deployed.

• Response time, the average response time at steady
state for the execution of entries or tasks.

These can be computed by numerical integration of the ODEs
or by simulation. Because of the presence of very fast rates
in the LQN encoding presented in [19], we extended PEPAto
with a stiff solver, adapted from the BioUML workbench
[10]. Stochastic simulation is implemented using Gillespie’s
algorithm [7], directly leveraging the implementation avail-
able in the PEPA Eclipse plug-in.

4.3 Syntax

Model specification. To favour compatibility, DiffLQN ac-
cepts a slight variant of the text-based input format for
LQNS. We refer to [3] for a complete documentation on
the grammar. Naming conventions specific to DiffLQN are
described on our website.

Some LQN features, e.g. loops and tasks with infinite
multiplicity, are not currently supported. The input file tem-
plate that is available on the website explains all supported
keywords. DiffLQN accepts LQN models containing unsup-
ported features as valid syntax, but the solver either emits
a warning, or explains the problem in an error message.

Fig. 2 shows the input file for the network of Fig. 1.
Briefly, the G-block in lines 1–7 is ignored by DiffLQN be-
cause it provides parameter settings specific to LQNS. Pro-
cessors are defined in lines 11–13 within the block P 0 and
-1. Keyword m declares their multiplicity. Tasks are defined
in a similar fashion (lines 17–22). Each line declares the list
of entries running on the task. Keyword r declares refer-
ence tasks, i.e., tasks that do not accept requests (to model
jobs/clients). Entries are specified in lines (26–42). Service
demands are given in lines starting with s, calls are speci-
fied by the keyword y (synchronous) and z (asynchronous).
Activities are declared using keyword A and are further spec-
ified in block (46–61). Finally, options specific to DiffLQN
are in lines 65–70.

Solver settings. ODE analysis is performed by solving an
initial value problem numerically until convergence to steady
state is detected (or if a threshold time horizon is reached, in
which case a warning is issued if convergence has not been
reached). The convergence criteria are based on absolute
and relative tolerances. The former considers the Euclidean
norm of the derivatives of the solution at the current time
point, and absolute convergence is reached when this value is
below a given threshold (formally, the norm must be equal to
zero in the steady state); the latter compares the norm of the
difference between the solutions at successive time points.
By default, the analysis terminates successfully when both
the absolute and the relative convergence criteria are met.

Stochastic simulation is performed using the method of
batch means [16]: roughly speaking, a single simulation run
is performed and statistics are collected across different non-
overlapping parts of the run (the batches) which are assumed
to be long enough that the system has reached steady state.

1 G
2 "Example-LQN"
3 0.0001
4 500
5 1
6 0.5
7 -1
8
9 # processor definition block

10 P 0
11 p PClient f m 2
12 p PServer f m 2
13 p PDisk f m 2
14 -1
15
16 # task definition block
17 T 0
18 t Client r think -1 PClient m 2
19 t Server n visit buy notify save -1

PServer m 2
20 t FileServer n read write -1 PDisk
21 t Backup n get update -1 PDisk
22 -1
23
24 # entry definition block
25 E 0
26 s think 0.1 -1
27 y think visit 3.0 -1
28 y think save 1.0 -1
29 y think notify 1.0 -1
30 y think read 1.0 -1
31 y think buy 1.0 -1
32 A visit cache
33 A buy prepare
34 s save 0.02 -1
35 y save write 1.0 -1
36 s notify 0.08 -1
37 s read 0.01 -1
38 s write 0.001 0.04 -1
39 y write get 0.0 1.0 -1
40 y write update 0.0 1.0 -1
41 s get 0.01 -1
42 s update 0.01 -1
43 -1
44
45 # activity definition block for task

Server
46 A Server
47 s prepare 0.01
48 s pack 0.03
49 s ship 0.01
50 s display 0.001
51 s cache 0.001
52 s internal 0.001
53 s external 0.003
54 y external read 1.0
55 :
56 prepare -> pack & ship;
57 pack & ship -> display;
58 cache -> (0.95) internal + (0.05)

external;
59 internal[visit];
60 external[visit];
61 display[buy]
62 -1
63
64 # DiffLQN settings block
65 #! v 1.0e5
66 #! solver sim
67 #! confidence_level 0.98
68 #! confidence_percent_error 2.0
69 #! stoptime 1000.0
70 #! export csv

Figure 2: Example input file for the network of
Fig. 1.

65

Scenario x1 Scenario x10 Scenario x20

Metric/Kind/Name ODE Sim. Error ODE Sim. Error ODE Sim. Error

Th / act / prepare 7.685 6.741 14.01 76.854 76.490 0.48 153.708 153.544 0.11
Th / act / external 1.153 1.010 14.18 11.528 11.391 1.21 23.056 22.945 0.49
Th / entry / visit 23.056 20.282 13.68 230.561 229.743 0.36 461.123 460.283 0.18
Th / task / Server 46.112 40.491 13.88 461.123 459.580 0.34 922.245 921.388 0.09
Th / task / Backup 15.371 13.491 13.93 153.708 152.976 0.48 307.415 307.535 0.04
Ut / proc / PClient 0.769 0.674 13.98 7.685 7.663 0.29 15.371 15.357 0.09
Ut / task / Server 1.142 1.132 0.90 11.418 11.534 1.01 22.835 23.034 0.86
Ut / task / Backup 0.154 0.135 13.93 1.540 1.533 0.48 3.080 3.081 0.04
PU / act / pack 0.231 0.203 13.81 2.306 2.309 0.14 4.611 4.611 0.00
RT / entry / think 0.260 0.297 12.26 0.260 0.261 0.29 0.260 0.260 0.09
RT / entry / save 0.021 0.031 32.29 0.021 0.021 0.65 0.021 0.021 0.03
RT / entry / notify 0.080 0.080 0.24 0.080 0.080 0.00 0.080 0.080 0.00
RT / entry / visit 0.002 0.003 34.10 0.002 0.003 18.07 0.002 0.003 15.61
RT / task / Server 0.025 0.028 11.40 0.025 0.025 1.34 0.025 0.025 0.96
RT / task / FileServer 0.034 0.034 0.02 0.034 0.034 0.02 0.034 0.034 0.11

Average percentage errors 13.51 1.67 1.25

Table 1: Numerical results, internal comparison of DiffLQN.

Solver settings for DiffLQN are backward compatible with
LQNS since every line must start with ‘#!’, which is treated
by LQNS as a comment. Below we list the settings that are
currently supported.

• v specifies the value for a fast rate v that approximates
the behavior of certain operations, such as forks and
joins, that are assumed to be instantaneous in LQNs.
This is the only mandatory setting.

• solver [ode | sim] specifies whether to use ODE anal-
ysis or stochastic simulation.

• stoptime specifies the maximum time horizon for the
numerical ODE integration or the length of an initial
transient simulation run that is removed before batch
statistics are collected.

• solver_abs_tol and solver_rel_tol are typical ab-
solute and relative tolerances for the ODE numerical
integration [1].

• steady_abs_tol and steady_rel_tol specify the tol-
erances for ODE steady-state detection, as discussed
above.

• [absolute | relative] steady state is a flag for
using only one of the two criteria of steady-state con-
vergence.

• batch_length_factor specifies the length of a batch,
relative to the initial transient defined with stoptime.

• confidence_level/confidence_percent_error spec-
ify the usual termination criteria for stochastic simu-
lation.

Output settings. By default, DiffLQN computes all possible
performance measures discussed in Sect. 4.2. Optionally the
user can explicitly choose which measures to track. This can
be speed up the computation, especially for large networks

analyzed using simulation [20]. This is done in a block with
lines starting (in order) with keywords throughput, util-
isation, and response time, followed by a list of desired
elements for the respective performance index.

Exporting options. By default, analysis results are out-
putted to the screen in a human-readable format. However,
the LQN model as well as the results can be exported in dif-
ferent formats. Each export command is specified in a new
line with the export keyword, followed by the type of ex-
port requested (and an optional file path). Available export
types are:

• pepa: Export of the PEPA encoding of the input LQN,
in a format that is compatible with the PEPA Eclipse
plug-in.

• matlab: A function file in Matlab-compatible form
which can be used in conjunction with Matlab’s ODE
solvers (e.g., the stiff solver ode15s)

• csv: Results are saved to a comma-separated values
file.

5. CASE STUDY
As a case study we evaluate DiffLQN on the running ex-

ample. For this, we consider a comparison between the ODE
results and the simulation results. The latter are taken to be
the “true” values of the performance indices, following the
successful validation against the simulation results of LQNS
performed in [19]. In particular, the settings in Fig. 2 in-
dicate that the simulations were set to stop when the 98%
confidence levels were within 2% of the estimated averages.
The errors are measured as percentage relative errors from
the simulation estimate. To show the advantages in using
ODE analysis for larger multiplicities we consider three sce-
narios: the first scenario uses the parameters as shown in
Fig. 2 (we denote this by the label x1); the second scenario
uses the same service demands, but all multiplicities for pro-
cessors and tasks are increased by a factor 10 (label x10); the

66

Scenario x1 Scenario x10 Scenario x20

Metric/Kind/Name ODE Sim. LQNS ODE Sim. LQNS ODE Sim. LQNS

Th / act / prepare 25.73 10.28 2.15 1.88 1.39 51.93 0.95 0.85 62.39
Th / entry / visit 25.78 10.65 2.11 1.86 1.50 51.94 0.98 0.79 62.38
Th / task / Server 25.79 10.46 2.10 1.85 1.51 51.94 0.97 0.88 62.38
Ut / proc / PClient 25.80 10.37 2.19 1.83 1.54 51.96 0.96 0.87 62.38
Ut / task / Server 5.45 6.30 1.49 1.68 0.69 11.04 1.67 0.82 14.70
Ut / task / Backup 26.00 10.59 2.17 1.72 1.24 52.10 1.17 1.21 62.38
RT / entry / think 20.42 9.29 2.35 1.80 1.52 108.13 0.95 0.86 165.85
RT / entry / save 65.42 48.93 11.44 6.24 5.63 503.64 0.87 0.84 787.90
RT / entry / notify 0.01 0.25 0.99 0.00 0.00 0.03 0.03 0.03 0.00
RT / entry / visit 37.20 4.70 70.61 19.05 1.20 214.83 17.89 2.71 321.06

Average 25.76 12.18 9.76 3.79 1.62 109.76 2.65 0.99 160.14

Table 2: Relative percentage errors of solvers against LQSim.

third scenario is doubled again in the same way (label x20).
(For convenience, all scenarios are available for download as
separate input files.)

The numerical results of DiffLQN are presented in Tab. 1.
However, to reduce clutter only a selection of all perfor-
mance estimates are presented. In particular, we removed
repeated throughput estimates that were equal to those al-
ready found in the table. (This can happen when certain ac-
tivities are performed sequentially, for instance prepare and
display have the same steady-state throughput). The first
column gives the type of the measure as a triple consisting
of a metric — throughput (Th), utilization (Ut), proces-
sor utilization (PU), or response time (RT) — kind of LQN
entity, and LQN entity name. The other columns show the
performance estimates from ODE analysis and simulation in
both scenarios, together with the percentage relative errors.

Overall, we can make the following main observations:

• Despite the low multiplicities of processors and tasks
in scenario x1, the ODE estimates enjoy good accuracy
in most cases.

• The highest errors in all scenarios occur for response-
time metrics (entries save, visit). This confirms that
response times can be challenging to approximate, be-
cause the errors of the basic metrics from which they
are computed through Little’s law can propagate [20].

• Scaling up multiplicities in scenarios x10 and x20 shows
a considerable improvement on the accuracy, with the
error dropping below 1% for all but one value, despite
the fact that the model has populations of entities in
the order of tens, which is significantly away from a
limiting regime with infinitely many entities, where the
ODE estimate is asymptotically exact.

• In scenario x10, the largest error is roughly halved.
Although still large, it is possible to notice that the
trend of that response-time metric is followed fairly
well. All other errors drop to values well within the
requested simulation accuracy and shrink even further
in the x20 scenario.

• It can be observed that the only error that maintains
a value above 1% in the x20 scenario coincides with
the smallest value. We remark that this is an instance
where the percentage relative error may not be very

Runtime (mm:ss.ms)
Solver x1 x10 x20

LQSim 01:04.6 15:01.3 30:03.1
LQNS 00:00.1 00:00.1 00:00.1
Sim. 02:12.0 06:16.4 12:38.5
ODE 00:03.7 00:03.7 00:03.7

Table 3: Runtime comparison.

informative because it tends to penalize small varia-
tions in metrics that have small “true” values to start
with [5].

Table 2 shows how the performance of DiffLQN compares to
LQNS in the running example. For this purpose, the ODE-
based solver as well as the DiffLQN simulation (sim) and the
analytical LQNS solver were measured against the result of
the simulation tool included in LQNS (LQSim). To avoid
clutter, this table has been reduced to only a few represen-
tative values, and shows only the relative errors, omitting
the explicit results:

• In scenario x1, LQNS clearly provides the best approx-
imation and the ODE solution shows the lowest ac-
curacy, while the simulation on the PEPA model lies
between the two. Despite the discrepancies, results
of DiffLQN are in the correct order of magnitude and
proportions are kept intact.

• As the size of the scenario is scaled up, the errors of
the analytical LQNS solver rise dramatically, while the
approximation by DiffLQN improves. In scenario x10,
the accuracy of both DiffLQN results is already better
than LQNS in the unscaled scenario.

• Interestingly, the most extreme errors in LQNS appear
for those elements where DiffLQN has the lowest accu-
racy in the unscaled scenario. It seems that approxi-
mation difficulty for specific values is more dependent
on the structure of the problem itself than on the so-
lution method. The response time of save appears to
be especially difficult to approximate, as could already
be seen from Table 1.

The runtime comparison in Tab. 3 shows that LQNS is
extremely fast in this example, with no noticeable runtime

67

increase in the scaled versions. The ODE-based solver is
only slightly slower, and equally consistent. Runtimes of
both simulations scale with the size of the model, but the
runtime of the DiffLQN simulation rises at a slower rate.

6. CONCLUSION
This paper has presented DiffLQN, a tool that supports

differential-equation analysis for layered queuing networks
(LQNs). It is under active development and new features
have been planned in order to increase its usability and ap-
plicability. Being based on Eclipse’s Xtext framework, a
natural evolution will be to provide a graphical user inter-
face as an Eclipse plug-in, with the possibility of drawing
LQNs in addition to specifying them textually. To enhance
the capability of conducting large experiments such as what-
if scenarios or capacity-planning studies, we plan to augment
the syntax with parametric variables that can be instanti-
ated (and the resulting model evaluated) over user-defined
ranges. The numerical analysis of ODEs gives the time-
course evolution of the queue-length process at each station,
from which the steady-state LQN metrics are derived. Fu-
ture releases will make these traces available to the user in
order to obtain performance indices of the transient regime
on an LQN as well.

From a more theoretical perspective, DiffLQN will allow
us to carry out more extensive analyses of the error behavior
of the differential analysis with respect to the ground truth
of simulation as well as to alternative analytical techniques
based on mean value analysis. Without the automated sup-
port offered by DiffLQN, these studies cannot but be per-
formed manually on selected model instances, as has been
done in the literature [17, 18, 19], necessarily limiting their
scope of validity.

Acknowledgment
This work was partially supported by the EU project QUAN-
TICOL, 600708.

7. REFERENCES
[1] U. M. Ascher and L. R. Petzold. Computer Methods

for Ordinary Differential Equations and
Differential-Algebraic Equations. SIAM, 1988.

[2] S. Becker, H. Koziolek, and R. Reussner. Model-based
performance prediction with the palladio component
model. In Proceedings of the 6th International
Workshop on Software and Performance, WOSP ’07,
pages 54–65, New York, NY, USA, 2007. ACM.

[3] Carleton University Software Performance Research
Group. Layered queueing research resource page.
http://www.layeredqueues.org/, Aug. 2014.

[4] K. M. Chandy and D. Neuse. Linearizer: A heuristic
algorithm for queueing network models of computing
systems. Commun. ACM, 25(2):126–134, 1982.

[5] D. L. Eager and J. N. Lipscomb. The AMVA priority
approximation. Perf. Eval., (8):173–193, 1988.

[6] G. Franks, T. Al-Omari, M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of
layered queueing networks. IEEE Trans. Software
Eng., 35(2):148–161, 2009.

[7] D. Gillespie. Exact stochastic simulation of coupled
chemical reactions. Journal of Physical Chemistry,
81(25):2340–2361, December 1977.

[8] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[9] J. Hillston, M. Tribastone, and S. Gilmore. Stochastic
process algebras: From individuals to populations.
The Computer Journal, 2011.

[10] Institute of Systems Biology. BioUML documentation.
http://www.biouml.org/index.shtml, May 2015.

[11] H. Koziolek and R. Reussner. A model transformation
from the palladio component model to layered
queueing networks. In SIPEW, 2008.

[12] T. G. Kurtz. Solutions of ordinary differential
equations as limits of pure Markov processes. J. Appl.
Prob., 7(1):49–58, April 1970.

[13] K. R. Pattipati, M. M. Kostreva, and J. L. Teele.
Approximate mean value analysis algorithms for
queuing networks: Existence, uniqueness, and
convergence results. J. ACM, 37(3):643–673, 1990.

[14] J. Perez and G. Casale. Assessing SLA compliance
from palladio component models. In 2nd Workshop on
Management of resources and services in Cloud and
Sky computing (MICAS), pages 409–416, Sept 2013.

[15] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Trans. Software Eng., 21(8):689–700, 1995.

[16] W. J. Stewart. Probability, Markov Chains, Queues,
and Simulation. Princeton University Press, 2009.

[17] M. Tribastone. Relating layered queueing networks
and process algebra models. In WOSP, 2010.

[18] M. Tribastone. Approximate mean value analysis of
process algebra models. In MASCOTS, pages 369–378,
2011.

[19] M. Tribastone. A fluid model for layered queueing
networks. IEEE Trans. Software Eng., 39(6):744–756,
2013.

[20] M. Tribastone, J. Ding, S. Gilmore, and J. Hillston.
Fluid rewards for a stochastic process algebra. IEEE
Trans. Software Eng., 38:861–874, 2012.

[21] M. Tribastone, A. Duguid, and S. Gilmore. The PEPA
Eclipse Plug-in. Performance Evaluation Review,
36(4):28–33, March 2009.

[22] M. Tribastone and S. Gilmore. Automatic Extraction
of PEPA Performance Models from UML Activity
Diagrams Annotated with the MARTE Profile. In
WOSP, 2008.

[23] M. Tribastone and S. Gilmore. Automatic Translation
of UML Sequence Diagrams into PEPA Models. In
QEST, 2008.

[24] M. Tribastone, S. Gilmore, and J. Hillston. Scalable
differential analysis of process algebra models. IEEE
Trans. Software Eng., 38(1):205–219, 2012.

[25] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen,
T. Israr, and J. Merseguer. Performance by Unified
Model Analysis (PUMA). In WOSP, 2005.

68

