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ABSTRACT

More and more software owners consider moving their IT infras-
tructure to the cloud. At present, cloud providers offer easy man-
ners to deploy software artifacts. Therefore, the profile of cloud
clients is no longer limited to computing experts. However, an ap-
propriate configuration of the elasticity offered by cloud computing
is still complicated. To help these clients, this work presents a sim-
ulator of the behavior of software services that run on the cloud
and use the cloud elasticity for adapting their infrastructure in or-
der to accommodate their workload in each moment. This work
identifies techniques that are used to help mitigating at runtime the
lack of predictability of workload changes. The presented simula-
tor implements the identified techniques and allows users to execute
scenarios where a combination of these techniques is enabled.
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INTRODUCTION

Many organizations are daily moving their computing infrastruc-
ture to the cloud, or at least studying this option as a plausible al-
ternative. This is true not only for companies that provide software
services as main activity but also for generic organizations that pre-
fer using cloud infrastructures to host the internal IT services sup-
porting their main business.

In this context, clients of cloud services are no longer computing
experts that can take informed decisions about the configuration of
the infrastructure. Now, cloud clients hold different types of roles
with less expertise in computing. However, for the deployment
on the cloud of a cost-efficient application that also runs clients’
software with good performance, it is necessary a deep knowledge
on cloud elasticity behavior and on system analysis field. Un-
fortunately, a correct utilization of the elasticity offered by cloud
providers that allows clients to use only the necessary resources in
each moment is among the most intricate concepts when deploying
a software application on the cloud. Therefore, in order to make
cloud computing appealing to this new mass of clients, an accurate
decision support should be offered.

1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICPE’16 Companion, March 12-18, 2016, Delft, Netherlands
© 2016 ACM. ISBN 978-1-4503-4147-9/16/03. .. $15.00
DOI: http://dx.doi.org/10.1145/2859889.2859897

Raffaela Mirandola
Dip. di Elettronica,
Informazione e Bioingegneria
Politecnico di Milano, Italy

raffaela.mirandola@polimi.it marco.scoppetta@mail.polimi.it

51

Marco Scoppetta
Dip. di Elettronica,
Informazione e Bioingegneria
Politecnico di Milano, ltaly

In this direction, related works have directed an effort towards
the development of tools that simulate the entire layered cloud ar-
chitecture [3], tools assessing the cost of running applications un-
der concrete elasticity plans [8, 12, 2] and tools that, using models
of the application and environment and applying formal analysis
techniques, can identify the theoretical optimal software configura-
tion for the given properties of its own components and character-
istics of the changing environment [11, 10, 4, 6, 5, 7]. However,
the application of these theoretical optimal configurations may not
always succeed in the cost- and quality-effective management of
the application because, at runtime, when the application faces the
real execution environment and cloud properties, some phenomena
which were not considered in the analysis may occur. For instance,
a gradient never seen before in the increment of application load
when a burst of service request arrives.

This work identifies and accounts some of these phenomena that
hinder scaling engines from an appropriate management of the ap-
plication elasticity. It also identifies techniques whose application
improves the usage of elasticity and the quality of the application
or the cost of running it on the cloud, for instance the well-known
hysteresis technique.

We experiment the usage of these techniques through a simu-
lation tool called PERFSCALE' which is intended to help cloud
clients to unveil expected availability and performance properties
of their application. PERFSCALE allows simulating the behavior
of an elastic application executing in the cloud, under the identi-
fied phenomena and variable workload. PERFSCALE also simu-
lates the execution of the application when any combination of the
identified techniques improving the behavior of scaling engines is
applied. PERFSCALE requires as input: the expected execution
time of requests, a workload trace with the application requests,
which is usually easy to obtain from application logs, and an ini-
tial scaling plan that contains the optimal workload thresholds for
which the scaling engine should modify the application infrastruc-
ture by activating or deactivating resources. These threshold values
are represented in the output format of SCOAP tool [10], which is a
tool that can compute such optimal threshold based on the tradeoff
between cost and performance requirements.

The rest of the work is organized as follows: Section 2 presents
the identified phenomena that may prevent the appropriate execu-
tion of scaling engines. Section 3 presents the identified techniques
to be included in the synthesis of a scaling plan. Section 4 describes
the experiments carried out with PERFSCALE, the results obtained
and the type of information that PERFSCALE can offer to applica-
tion owners to estimate the effect of moving their software to cloud
computing infrastructures. Section 5 concludes the work.

"Detailed description of the simulation tool is not reported here for
space reasons.



2. INFRASTRUCTURE AND WORKLOAD

PROPERTIES

This section discusses factors that have an impact on the good-
ness of a scaling plan when executing in a real scenario. There
are phenomena at runtime that prevent the system from executing
optimally if the scaling plans are only based on the threshold work-
load values of optimal infrastructure configuration. We separate the
identified phenomena into two groups according to: the workload
nature and the cloud infrastructure nature.

2.1 Workload nature

A phenomenon that continuously happens to applications offered
as publicly accessible service is the variation in its workload. In or-
der to show good behavior, simple scaling plans expect the trend of
this workload variation to be easily predictable and smooth. How-
ever, these expectations are not usually met in variable workloads.
On the contrary, it frequently happens that workloads show the fol-
lowing characteristics.

Fast fluctuation: the number of requests received over the re-
cently measured time intervals fluctuates around a specific value.
If this phenomenon is not managed by the scaling plan, the infras-
tructure controller can continuously acquire and release cloud re-
sources, which can cause that the infrastructure costs soar while the
application still shows poor performance since many of the active
resources are in their booting phase instead of serving requests.

Burstiness: the application notices a fast grow in the number of
legitimate incoming requests. Although scaling plans are intended
to avoid congestion even in cases of large differences in the arrival
rate of requests, the unexpected speed with which the peak of in-
coming requests is reached together with the required time to adapt
the infrastructure lead the application to showing a degraded per-
formance.

2.2 Infrastructure nature

Every cloud infrastructure and cloud provider shows its own par-
ticularities, which entails that a scaling plan that is suitable for
a certain type of infrastructure can behave poorly in other types.
PERFSCALE considers the following particularities:

Startup time: cloud resources are not operative right after their
acquisition but they need a startup time that includes, among others,
operative system booting, application load and binding to applica-
tion components running on other machines. These booting times
are not constant among different providers nor for different types of
computing resources within the same provider. Startup time varia-
tions have been identified [9] depending on: the cloud provider, the
operative system of the virtual machine (VM) to start, VM charac-
teristics and VM acquisition method (e.g,. spot [1] or on-demand).

Billing model: each cloud provider follows a different and some-
times complex template to calculate its clients bill for the utilization
of its resources. Among the particularities of each template, there is
the common property of minimum billing period for the utilization
of a VM (e.g., the utilization of a VM is charged in the number of
complete hours, rounding up the real resource utilization time to the
next full hour). The effect of this property on the pricing model is
that scale-in operations shortly followed by some scale-out opera-
tions make clients to pay twice for the same computational resource
for a given time period.

3. TECHNIQUES FOR PERFORMANCE IM-

PROVEMENT

We have identified a set of techniques, which are already used in
computing areas, to face the effect of the phenomena presented in
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Section 2 on the system performance. We have adapted these tech-
niques for the IaaS management environment, and we have imple-
mented their behavior in PERFSCALE. The objective is to allow
cloud clients to simulate their execution with different parameter
values in order to realize the parameterization leading to the best
tradeoff between application performance and infrastructure cost.
Hereafter, we focus on two of techniques called hysteresis and de-
activation decision interval.

The necessity of some techniques that enhance the behavior of
the application with respect to the direct application of a scaling
plan is depicted through an example in Figure 1. This figure shows
an example of workload trace with 2.5 millions of request to an
application. It has been taken from [13]. The arrival rate shows
frequent fluctuations around a value of 50 requests/s. The darkest
line in the figure depicts the arrival rate values that the infrastruc-
ture configuration in each moment (i.e., servers running and with
their booting period finished) is able to satisfy with appropriate
performance when no mitigation technique is used. The frequent
fluctuation in the infrastructure configuration is the consequence
of a scaling plan that only takes into account the current workload
and current configuration to decide to reconfigure the application
infrastructure. Furthermore, despite this frequent fluctuation, we
can also see in the figure several intervals where the application is
under-provisioned; those intervals where the incoming arrival rate
(lightest line) line is above the darkest line.

[ Arrival Rate
Arrival Rate

Requests in Interval

o 250000 500000 750000 1000000  1250.000

Total Requests

Arrival Rate — Servers Capacity|

1500000 1750000 2000000 2250000 2500

Figure 1: Fast fluctuating workload and arrival rate that can
be served by the active servers proposed by a basic scaling plan

The following subsections describe the techniques that PERFS-
CALE can simulate.

3.1 Hysteresis technique

The hysteresis is a well-known technique in scaling plans. It is
based on having different threshold values for executing the infras-
tructure scale-out or scale-in operations. Its aim is avoiding con-
tinuous scaling actions when the workload fluctuates around the
optimal threshold value.

In our concrete problem, we change from using the single thresh-
old workload value w; given in the scaling plan for defining the
change between activating or deactivating the i-th resource (i.e.,
activate the i-#h when the workload is above w; and deactivate the
i-th when it decreases below w;) to use two values. These values
are an activation threshold wj' that defines the activation of the i-th
resource and a deactivation threshold w that defines the deactiva-
tion of the i-th resource.



The effectiveness of this technique to reduce the switching rate
depends on the hysteresis width. Larger values of width produce
lower switching rates, at the cost of wasting more resources along
time since the system will tend to keep more resources active even
when they are not completely necessary to prevent additional acti-
vations if they become necessary in the near future.

The optimal width value for a scaling plan depends on the work-
load pattern and on the arrival rate that each resource can handle
while executing with appropriate performance. For this reason, we
experiment with tailored values for the hysteresis width that take
into account the capacity of a resource to serve requests, rather than
with absolute hysteresis width values based on workload. There-
fore, in PERFSCALE, the activation threshold is wi = w; and
the deactivation threshold w¢ = w;_, meaning the latter that the
deactivation threshold of the i-#k resource coincides with the acti-
vation threshold of the (i-h)-#k resource. In this way we avoid ex-
perimenting with hysteresis width values that are unrelated to the
infrastructure and workload properties.

Cloud clients can hardly calculate optimal hysteresis values in
their scaling plans, avoiding both wasting resources (e.g., not too
wide hysteresis value) and prematurely turning off resources that
will be probably needed again in the very near future (e.g., not too
narrow hysteresis value). For helping them in this setting activ-
ity, PERFSCALE allows cloud clients to simulate the application
expected performance and expected reconfiguration rate of the in-
frastructure under different hysteresis width values h. After having
simulated different scenarios, cloud clients will know what is the
best kind of hysteresis for their application and can better set pa-
rameters values for the scaling plans of their applications.

3.2 Deactivation decision interval

This technique proposes that the decision regarding the deacti-
vation of a resource is not taken right after the workload decreases
under the calculated threshold. By including a “deactivation deci-
sion interval”, the scaling plan proposes to wait an interval of time
in which the workload should continue under the calculated thresh-
old for finally deciding the deactivation of the resource.

This interval improves the application performance in two cases
of workload variation. The first case happens when a peak of re-
quests fades out and the arrival rate goes back to a common value.

In this situation, almost all resources would be instantaneously turned

off. Therefore, when two burst of requests occur close in time re-
quests of the second peak will experience very long response times.
An interval for the deactivation decision can avoid this situation if
the interval length is larger than the time between bursts.

The second case is caused by the fact of a sudden drop in the
number of requests in a certain moment. A very abrupt drop in the
number of requests may indicate problems in reaching the applica-
tion that will be solved in a few moments (e.g., caused by network
congestion or downtime of some networking infrastructure) rather
than meaning that users suddenly stopped using the application.
Therefore, in this situation, the technique of waiting some time for
deciding whether to scale-in the application is a good solution.

This technique brings particularly useful improvements when
used together with the hysteresis technique. For example, notice
that the previous hysteresis technique was unable to mitigate the
effect of the illustrated sudden and short-lived drop in the appli-
cation requests. Working together, once the deactivation threshold
has been crossed, the resources will not be switched off immedi-
ately but instead a deactivation interval will be waited before de-
ciding. If the arrival rate recovers over the threshold value within
the waiting interval, resources will not be switched off and then on
again.
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4. EXPERIMENTATION

This section presents our experimentation with PERFSCALE.
It shows the results that can be obtained by using the simulator,
its usefulness to evaluate applications that are affected by external
factors such as the quantity of time that VMs need to boot, and
how the identified techniques for performance improvement affect
the behavior of the scaling plan and performance of the application.

4.1 Environment of the experiments

We have used for experimentation a simple application that of-
fers a stateless service which requires in average 50ms to execute.
The queue of requests waiting for being served can contain a maxi-
mum of 1000 requests. For the expected workload, we have used a
trace from the World Cup 1998 [13] which contains more than 140
million of requests and covers 34.7 continuous days. This trace,
despite its age, represents well the variability in the arrival rate re-
garding the fast fluctuation and burstiness phenomena and it is still
one of the finest grain publicly available since its timestamps for
requests have the granularity of a second. Therefore, by counting
the requests with the same timestamp, we can arrive to an arrival
rate variability that changes every second.

The scaling plan has been created by SCOAP tool [10] using the
same workload trace for the plan synthesis. The generated plan
provides arrival rate thresholds up to 24 different configurations.
The first six thresholds for activating VMs are the following:

wi = 0, we = 15.15, w3z = 30.4, wy = 44.37,

ws = 57.9, We = 73.4

meaning that the first VM is always active (its activation threshold
is 0); between 15.15 and 30.4 requests/s the optimal configuration
is the one that uses two VMs; between 30.4 and 44.37 requests/s
the optimal configuration is the one that uses three VMs; between
44.37 and 57.9 the optimal configuration is the one that uses four
VMs; and so on.

4.2 Experiments setup

We have executed several experiments for each different perfor-
mance improvement technique by testing them with different pa-
rameters, in different combinations and in different scenarios of the
environment parameters (e.g., for different expected startup times
of VMs). Since the application performance estimation of PERF-
SCALE is based on discrete event simulator following probability
distributions, each of these experiments has been run 25 times. We
report the average value of the simulations in the centered boldface
result in next tables cells together with its minimum and maximum
values in the smaller font values below the average. Table 1 shows
this format.

4.3 Base case experiments

We first experimented the behavior of the scaling plan and per-
formance of the application when the scaling plan is directly exe-
cuted without applying any of the presented performance improve-
ment techniques. Table 2 provides the results.

We have performed six experiments, each of them consisting on
25 runs, by variating the Startup Time parameter from 60 to 900
seconds in order to ensure a realistic set of startup times. We used
this range of times based on work [9], which performs an analysis
of startup times in different cloud computing providers and reported
measured data of startup times from 44 to more than 800 seconds.

Results in Table 2 show how the characteristics of scaling plan
improve when the startup time increases (less cost and less recon-
figurations) while the quality of the application deteriorates (less



Average value
MiniumValue
Maximum Value

Table 1: Example of experiment results in a generic cell

Startup || Average Peak Avai- Cost Num
Time time in time in lability of
queue queue RECOI’lfS
0,4752s | 50,87 s | 99,865% | 16317,15$ | 24735
60 s 0,0005 s 9,985 99,384% 16291,53 $ 24614
1,8149 s 105,28 99,998% 16395.68 $ 24851
0,6420s | 48,73s | 99,726% | 12217,61$ | 18128
120 s 0,0064 s 14,16 s 98,935% 12101,27 $ 18006
22859 s 99,74 s 99,988% 12319,08 $ 18251
0,7671s | 61,94s | 99,538% | 6909,48 $ 9595
360 s 0,0350 s 20,72 s 96,502% 6822,36 $ 9412
2,4692 s 101,42 s 99,917% 7002,86 $ 9750
0,8686s | 49,63s | 99,330% | 5888,15$ 7960
480 s 0,0217 s 13425 94,687% 567126 $ 7837
3,4992 s 119,29 s 99,935% 5974,50 $ 8085
1,4104s | 62,56s | 98,923% | 520547 $ 6865
600 s 0,0229 s 22,76s 96,846% 5152,28 $ 6780
4,6200 s 113,09 s 99,947% 5278,00 $ 6973
2,1704s | 64,35s | 97,995% | 4173,56 $ 5219
900 s 0,0930 s 22,13 s 92,558% 4100,46 $ 5134
5,6954 s 124,89 s 99,748% 424136 $ 5332

Table 2: Results of the direct application of the scaling plan

availability, more waiting time in queue); nonetheless they show
that the scaling plan is not generally able to perform well for any
startup value and some adjustment would be advisable. We do not
enter into a deep evaluation of the absolute values of results in this
moment because they will be discussed in comparison with the rest
of results when adjustments are applied. However, we can already
see that all metrics are quite sensitive to the variation of startup
time. In the real execution of the application, even knowing the ex-
pected values for the startup time, the time required by a concrete
activation order of a resource is hardly predictable.

The rest of the experiments show the influence of the techniques
for performance improvement on the quality properties of the appli-
cation and the scaling engine. These techniques allow solving the
trade-off between performance and availability and, up to a certain
point, they also solve the trade-off between quality properties of
the application and quality properties of the scaling engine (i.e., its
cost and reconfiguration rate). Above such point, improvements in
the quality properties of the application can be reached at the cost
of executing scaling plans that increments in the operational cost
of the application. All the following experiments use a maximum
queue of 1000 requests.

4.4 Deactivation decision interval application

We first experiment the expected properties of the system by us-
ing only the technique called deactivation decision interval. Table
3 shows the results obtained for a representative subset of startup
times: a short startup of 120s, a medium startup time of 360s and
a slow startup of 900s. They show that the utilization of this tech-
nique improves the overall system efficiency with respect to the
base case. All waiting times in queue, availability, cost of the de-
ployment and number of reconfigurations improve with respect to
the base case in Table 2.
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Startup Average Availability Cost Num of
Time time in queue Reconfs
Deactivation decision interval: 1800 s
0,0082 s 99,994 % 2286,08 $ 1585
120 s 0,0004 s 99,943% 221029 $ 1569
0,0842 s 99,998% 2300,89 $ 1607
0,0246 s 99,985 % 2212,56 $ 1493
360 s 0,0005 s 99,898% 2208,22'$ 1478
0,1353 s 99,998% 2225,02'$ 1515
0,0918 s 99,888 % 2087,84 $ 1350
900 s 0,0062 s 99,202% 2051,18 $ 1325
1,5446 s 99,989% 2104,78 $ 1386
Deactivation decision interval: 3600 s
0,0072 s 99,994 % 2266,08 $ 1010
120 s 0,0004 s 99,943% 2200,29 $ 999
0,0641 s 99,998% 2291,89 $ 1013
0,0186 s 99,986 % 2201,51 % 990
360 s 0,0005 s 99,891% 2199,26 $ 981
0,1053 s 99,993% 2205,02 $ 1001
0,0588 s 99,887 % 2078,84 $ 943
900 s 0,0062 s 99,200% 2051,18 $ 920
1,2436 s 99,979% 2104,78 $ 956
Deactivation decision interval: 14400 s
0,0035 s 99,996 % 2378,76 $ 508
120 s 0,0006 s 99,994% 2374,10 $ 504
0,0265 s 99,998% 2382,14 $ 513
0,0287 s 99,984 % 2371,08 $ 500
360 s 0,0002 s 99,945% 235520 $ 491
0,1622 s 99,996% 2381,84 $ 513
0,0606 s 99,879 % 2350,40 $ 489
900 s 0,0058 s 99,747% 2333,37$ 480
0,2760 s 99,986% 2359,38$ 499

Table 3: Experiment results using a deactivation decision inter-
val of 1800,3600 and 14400 seconds

As expected, the reconfiguration rate always decreases as the in-
terval length increases. It is noticeable that, in the table rows with
results for the case of 120 seconds of startup time, for intervals
lengths of 1800s 3600s and 14400s, the reconfiguration rate using
a deactivation time interval is only 8.7%, 5.6% and 2.8 % of the rate
in the base case, respectively. The relation of the decrement in the
reconfiguration rate shows that it decreases in 30~35% each time
that the deactivation interval doubles its length.

Availability has largely increased its value with respect to the
base case, passing from 99.72% to 99.99% of requests served in
the case of 120 seconds of startup time, from 99.53% to 99.98%
in the case of 360 seconds of startup time, and from 97.99% to
99.88% in the case of 900 seconds of startup time. It has achieved
at least one nine more in every case, demonstrating the usefulness
of this technique. Besides, we can see little variance of availability
results for different interval lengths for a given startup time value.
It means that this technique cannot be used in isolation to achieve
any value of quality but that beyond a certain interval length this
technique stops improving the quality of the application.

Waiting time in queue has also decreased with respect to the base
case, concretely for the case of VM startup time of 120 seconds it
dramatically decreased to the 1.3%, 1.12%, and 0.54% of the base
case when using deactivation interval lengths of 1800s, 3600s, and
14400s, respectively. As it is reasonable, even if applying this tech-
nique, higher VM startup times still entail that requests wait higher



time in queue. Regarding the costs of running the application, they
have also dramatically decreased when applying the deactivation
decision interval technique. In this case, it was found that the low-
est costs were found for interval lengths of 3600s. It means that,
for the characteristics of workload received, an interval length of
3600 realizes the variations of the workload not related to its fast
Sfluctuation better than both 1800s -which filters out less variations
coming from the fast fluctuation- and14400s -which misses more
true variations of the workload due to its longer decision time.

Comparing these results with the ones in the base case in Table 2,
we see that the application of this technique reduces both the costs
and the average waiting times of requests. From these facts, we can
deduce that, in the base case, many of the active resources were in
their booting period instead of serving requests, and that this sit-
vation is mitigated using deactivation decision interval technique.
Note that, although PERFSCALE does not compute the optimal
value of interval length, it shows its usefulness by allowing users to
execute what-if scenarios with different interval length values.

Although the properties of the application and the scaling plan
have improved with the application of this technique, we can see
that their values are still quite sensitive to the variation in the startup
time of VMs.

4.5 Application of hysteresis

Next we experimented PERFSCALE on the simulation of the
application when only the hysteresis technique is applied. We have
experimented with hysteresis width values A from 2 to 7, and VMs
startup times of 120, 360 and 900s. Table 4 presents the experi-
mental results, which are discussed in the following.

Results confirm that this commonly used technique allows to im-
prove the performance and availability of the application and can
greatly reduce the reconfiguration rate. The higher the hysteresis
width the better they are. The counterpart is an increment in the
cost of running the application because, in order to increase the
stability of the infrastructure along time, the scaling plan accepts
the situation of continuous slight over-provisioning, i.e., within the
hysteresis width. Contrarily, in the previous deactivation decision
interval technique, the scaling engine always aimed at being in the
optimal configuration specified in the scaling plan, even if it al-
lowed itself for an interval of decision time.

In comparison with the base case, we can see that applying some
hysteresis is certainly advisable because it improves all properties
of the application and scaling engine. The engineer should consider
which is the best value for the hysteresis width since, depending
on the requirements, high width values improve performance and
availability but they also increase the cost of running the application
with respect to h = 2. From the obtained results, we can also
observe that the application properties achieved by this technique
are still quite sensitive to the startup time of VMs. For instance,
the average waiting time in queue of experiments with startup time
of 900s are 4, 12 and 17 times higher than those ones with startup
time of 120 seconds for the case of hysteresis width equal to 2, 4,
and 7, respectively.

4.6 Combination of deactivation decision in-
terval and hysteresis

Our next experiments show PERFSCALE results when it applies
the two previous techniques together. When deciding the type of
scaling plan of an application, it is interesting to know whether the
application of more than one technique to the concrete application
leads them to a symbiotic behavior or to interfere each other, then
causing more running costs and not improving the application prop-
erties. In this technique, the decision time interval to deactivate the
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Startup Average Availability Cost Num of
Time time in queue Reconfs
Hysteresis width: 2
0,0221 s 99,994 % 2092,79 $ 990
120 s 0,0008 s 99,984% 2088,99 $ 983
0,2992 s 99,998% 2100,03 $ 1005
0,0280 s 99,925% 2028,74 $ 884
360 s 0,0013 s 99,875% 2016,81'$ 870
0,0669 s 99,995% 2036,56 $ 899
0,0856 s 99,784 % 1941,01 $ 774
900 s 0,0028 s 99,676% 192588 $ 757
0,0782's 99,795% 1952,36 $ 788
Hysteresis width: 4
0,0034 s 99,992 % 2218,58 $ 362
120 s 0,0004 s 99,985% 2216,87 $ 358
0,0148 s 99,998% 2220,51°$ 366
0,0092 s 99,975 % 2202,54 $ 339
360 s 0,0005 s 99,897% 219933 $ 334
0,0451's 99,998% 2207,94 $ 347
0,0405 s 99,887 % 217451 % 319
900 s 0,0004 s 99,200% 2167,96 $ 308
0,0948 s 99,979% 2178,55 $ 327
Hysteresis width: 7
0,0014 s 99,996 % 3413,71 % 178
120 s 0,0001 s 99,990% 3411,29°$ 177
0,0093 s 99,998% 341590 $ 179
0,0033 s 99,995 % 3406,15 $ 173
360 s 0,0004 s 99,985% 3399,03 $ 172
0,0097 s 99,998% 3409,90 $ 177
0,0239 s 99,973 % 3392,37 $ 168
900 s 0,0008 s 99,891% 3386,26 $ 165
0,0559 s 99,994% 3398,61$ 172

Table 4: Experiment results using hysteresis technique with
width values h = {2,4, 7}

i-th resource is considered after the workload decreases below w¢.

Table 5 shows the experimental results. They show that, for the
example application and expected workload variations, techniques
help each other in achieving better system properties.

Waiting time and availability values have improved from the pre-
vious cases where technique were actuated in isolation. For in-
stance, in the case of VM startup time of 360 s, the combination
of techniques can achieve an expected waiting time of 0.004 at a
cost of 1934.45$ while the utilization of the deactivation decision
interval technique in isolation, whose cost for this case was always
over 22008$, did not achieve such low waiting time. The same hap-
pens for startup time of 900s. The combination of techniques for
deactivation decision interval of 1800s and hysteresis width h = 2
provides better waiting time (0.039s) and lower cost (1909.8$) than
any of the results shown in 3 when the expected startup time of
VMs is 900s. Regarding the comparison with the application of the
hysteresis technique in isolation, for each row of the experiments
shown in Table 4 we can find a row in Table 5 with better value
of waiting time in queue and lower cost. Results also show that
availability values are not largely improved with the combination
of techniques. The reason is that, once we have reached 3 and 4
nines for availability, the requests that are still lost come from mo-
ments of sudden bursts of requests that fill the queue size, but none
of these two techniques can completely eliminate the effect of the
burstiness in the workload nature. Looking at the the difference in



Startup Average Availability Cost Num of
Time time in queue Reconfs
Timeout: 1800 s - Hysteresis length: 2
0,0040 s 99,993 % 1934,45 $ 353
360 s 0,0003 s 99,967% 1929,92 $ 352
0,0363 s 99,999% 1939,18 $ 357
0,0391 s 99,940 % 1909,86 $ 349
900 s 0,0029 s 99,741% 1903,39 $ 347
0,3039 s 99,993% 1914,81 $ 355
Timeout: 3600 s - Hysteresis length: 3
0,0117 s 99,986 % 2197,09 $ 262
360 s 0,0028 s 99,921% 2189,86 $ 260
0,1268 s 99,997% 2205,40 $ 264
Timeout: 7200 s - Hysteresis length: 4
0,0015 s 99,997 % 2559,71 $ 218
120 s 0,0001 s 99,995% 2556,29 $ 217
0,0067 s 99,999% 2562,90 $ 221
0,0052 s 99,991 % 2552,15 % 217
360 s 0,0252 s 99,950% 2549,03 $ 216
0,0097 s 99,998% 2556,90 $ 219
0,0091 s 99,963 % 253541 $ 216
900 s 0,0008 s 99,891% 252837 $ 215
0,0256 s 99,994% 2540,90$ 219
Timeout: 3600 s - Hysteresis length: 5
0,0018 s 99,998 % 2695,03 $ 186
120's 0,0004 s 99,997% 2682,33 $ 186
0,0059 s 99,999% 2702,75 $ 187
0,0023 s 99,994 % 2684,52 $ 186
360 s 0,0005 s 99,977% 267437 $ 185
0,0151 s 99,999% 2697,26 $ 188
0,0089 s 99,976 % 2672,14 $ 186
900 s 0,0004 s 99,922% 265895 $ 185
0,0198 s 99,990% 2690,57 $ 188

Table 5: Experiment results using both techniques deactivation
decision interval and hysteresis.

the reconfiguration rate of columns with h = 4 (with deactivation
interval of 7200 s) and h = 5 (with deactivation interval of 3600
s) with respect to the reconfiguration rate observed for h = 3 (with
deactivation interval of 3600 s), we can deduce that the hysteresis
width value has a more profound effect on the reconfiguration rate
than the decision interval length, at least for the example system
and for large values of interval length.

S.  CONCLUSIONS

Everyday, software services are being migrated to cloud com-
puting infrastructures. Some of the reasons are the pay-as-you go
policies, and the provided elasticity. The achievement of the most
beneficial management of elasticity is one of the hardest issues for
non experts in cloud computing.

To help cloud costumers, this work presents PERFSCALE, a
simulator based on queueing models of application sand scaling en-
gines. PERFSCALE uses as input scaling plans as defined by [10]
and traces of expected workload of the application whose cloud
deployment is under consideration. It allows to simulate the appli-
cation properties when their elasticity is driven by scaling plans and
the identified techniques for applicatin performance improvement.
The application properties for which PERFSCALE offers simula-
tion results are: average waiting time of request to the application
before they are served, availability, expected cost for running the
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application and reconfiguration rate of virtual machines. This work
presents examples of the output of PERFSCALE and the usefulness
of its results for cloud costumers.

As future work, we plan to continue experimenting PERFSCALE
with other possible workloads and we consider integrating the tech-
niques for elasticity utilization improvement in more detailed cloud
simulators like CloudSim [3]. We also plan to extend our research
with more techniques for elasticity improvement and with different
queueing models in order to first simulate the common three-tier
applications and later by allowing the user to specify their particu-
lar application topology.
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