
Performance Mimicking Benchmarks for Multi-tier
Applications

Subhasri Duttagupta
Performance Engineering

Research Center
Tata Consultancy Services

Mumbai, India
subhasri.duttagupta@tcs.com

Mukund Kumar
Performance Engineering

Research Center
Tata Consultancy Services

Mumbai, India
mukund.k@tcs.com

Varsha Apte
Dept of Computer Science

and Engg
Indian Institute of Technology

Mumbai, India
varsha@iitb.ac.in

ABSTRACT
Predicting performance of multi-tier enterprise applications
for a target platform is of significant importance to IT in-
dustries especially when target environment is unavailable
for deployment. Performance modeling techniques depend
on accurate estimation of resource demands for a specific
application. This paper proposes a methodology for deriv-
ing Performance Mimicking benchmarks (PMBs) that can
predict resource demand of application server of multi-tier
on-line transaction processing applications on a target en-
vironment. PMBs do not require the actual application to
be deployed on the target itself. These benchmarks invoke
similar method calls as the application at different layers
in the technology stack that contribute significantly to CPU
utilization. Further, they mimic all send and receive interac-
tions with external servers (e.g., database server) and web
clients. Ability of PMBs for service demand prediction is
validated with a number of sample multi-tier applications
including SPECjEnterprise2010 on disparate hardware con-
figurations. These service demands when used in a modi-
fied version of Mean Value Analysis algorithm, can predict
throughput and response time with accuracy close to 90%.

CCS Concepts
•General and reference → Performance; •Software
and its engineering → Software performance;

Keywords
Performance, Prediction, Benchmarks, Cross-platform

1. INTRODUCTION
Performance characterization of a multi-tier enterprise ap-

plication which is to be deployed on a particular production
platform is a critical step prior to its release. However, due
to various practical constraints, the production platform is
often not available for application deployment. Instead, ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’16 Companion, March 12-18, 2016, Delft, Netherlands
c© 2016 ACM. ISBN 978-1-4503-4147-9/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2859889.2859898

plications are deployed and performance-tested on a sepa-
rate test environment which is often different from the pro-
duction environment. Thus, there is a need for predicting
application performance on the production (target) platform
given its performance on the test (source) platform. Predic-
tion of metrics such as request throughput and server utiliza-
tion can be done using existing performance modeling tools
[3] provided the resource demands of the application (e.g.
CPU execution time of a request) are known. In this pa-
per, we describe a methodology for generating benchmarks
which can be exploited for obtaining estimate of CPU ser-
vice demand of multi-tier applications, specifically, that of
the application tier.

There are a large number of factors that can affect the
CPU service time of an enterprise application—workload
characteristics, the specific technology stack used by the ap-
plication, the amount of data exchanged with other servers
and the platform architecture characteristics. Given the
above, a constructive approach of building a parameterized
model of the execution time of an application program is pro-
hibitively complex. Instead, the paper presents an approach
for developing a set of simpler “benchmarks” which are ex-
ecuted on the target platform. The information acquired
from the benchmark execution along with application pro-
filing information collected on the source platform are used
to estimate application performance on the target. Unlike
applications, these benchmarks may not require installation
and population of the application database or depend on
multiple distributed services running on different servers.
Hence, their deployments are expected to be simpler.

Benchmarks built using the proposed approach mimic the
performance of the actual application by having the right
mix of the type of CPU operations as used by the applica-
tion. These Performance Mimicking Benchmarks (PMBs)
make similar lower-level method calls corresponding to dif-
ferent layers in the technology stack. In addition, they mimic
the send and receive calls of the application as shown in Fig-
ure 1. While profiling a number of mult-tier applications, it
is observed that much of the application server CPU resource
demand come from interactions among the tiers and calls to
various layers as compared to the methods doing the actual
business processing. Hence, the benchmarks are designed to
capture the method calls made across different tiers. As a
result, we expect that the ratio of service demands of PMB
and that of the application remains almost unchanged on
the source as well as the target platform. Thus, PMB helps

45



Figure 1: Illustration of Performance Mimicking
Benchmark.

in estimating the demand of the application on the target
platform.

Our paper is different from existing work in the sense that
we aim for the benchmark to attain a representative estimate
of service demand of the application rather than the same
resource demand as the application. Since exact similarity
is not required, there is potential for the benchmark to be
re-used to represent multiple applications. We believe these
PMBs can also help in reducing the time to market by pro-
viding a baseline performance estimate of the application
on a given target platform. This paper makes the following
specific contributions:

• We propose a method for creating benchmarks that re-
quire only application level profiling rather than kernel-
level tracing or execution environment instrumenta-
tion.

• The benchmarks are designed to provide a represen-
tative value of service demand of the application on a
deployment platform and can help in obtaining early
performance estimate in the software life-cycle.

• We validate our approach by carrying out performance
profiling of a number of applications across three archi-
tectural platforms. The maximum error in prediction
of service demand is found to be under 13%.

2. RELATED WORK
Basic two most commonly used methods for performance

prediction are simulation and analytical modeling [3],[8].
These methods have been tried out earlier for enterprise
applications but usage of these techniques for doing cross-
platform performance prediction is limited due to the effort
involved and complexity in identifying the model param-
eters. As an initial attempt, we have tried using standard
SPEC CPU ratings for the target and source machines along
with the service demand on a source platform to predict per-
formance of an application of interest. But this technique
fails to provide good accuracy across different architectures
as shown in our earlier work [4].

The idea of running a simple benchmark that clones the
application in terms of a set of performance metrics is pro-
posed by Joshi et al [6] in the domain of embedded sys-
tems and in the virtualized environment by Zheng et al [12].
Performance prediction for scientific applications based on

similarity with a previously profiled set of benchmarks is
proposed in [5], [10]. However, enterprise applications dif-
fer dramatically from scientific ones in their use of disk and
network IO and CPU instruction mix. There are several ap-
proaches using Palladio Component Model for performance
prediction of component-based applications. Krogman et al
[9] extract behavior model of the application using reverse
engineering and rely on bytecode benchmarking for predict-
ing performance on target platforms. Authors in [2] have
used the model successfully for multi-tier J2EE applications.

Tak et al propose an approach where a lightweight pro-
gram (“PseudoApp”) [11] is written that mimics essential
application program characteristics, but is much easier to
deploy on the target platform. The PseudoApp is built by
capturing system calls of the original application and re-
producing them on the target , and a basic integer looping
technique is used to capture the CPU usage between system
calls. For complex transactions involving a large number of
string processing routines this approach may fail to provide
good accuracy.

3. GENERATING PERFORMANCE
MIMICKING BENCHMARK

In this section, we describe the methodology for deriving a
performance mimicking benchmark (PMB) for a real-world
enterprise application. Aim of PMB is to emulate appli-
cation in terms of resource utilization at the application
server. Since it is difficult to mimic application function-
ality without access to the source code, we mimic method
calls at the technology layers (like application container or
databases system) and to the operating system. The PMB
is implemented as a web application and deployed using the
same container as the actual application. Further, PMB
uses the same software stack of the application server and
the database server (e.g., JBoss and Postgres). We hypoth-
esize that a PMB built for a sample application achieves the
same ratio of service demands between source and target
platforms. If the resource demands of the sample applica-
tion and PMB are APPsource and PMBsource on the source
platform, then by obtaining resource demand of PMB on
the target environment as PMBtarget, the resource demand
of the application can be estimated as follows:

APPtarget =
APPsource × PMBtarget

PMBsource

In the following sections, the main steps involved in generat-
ing PMB and actions that the PMB performs are discussed.

3.1 Main Steps
In order to generate PMB, a sample application is first

profiled through a standard profiler (e.g., YourKit, JVisu-
alVM etc) to obtain the lower level method calls made by
the application. Further, individual transactions of the ap-
plication are analyzed through a packet analyzer. The in-
formation gathered using the profiler as well as the packet
analyzer is incorporated in an input file and PMBs are gen-
erated using the input file. The overall process of building
PMB is outlined in Figure 2. The other important aspect
of PMB is a PMB skeleton. Based on the technology stack
being used, the types of lower level calls would be different
and hence, the CPU consumption due to method invocations
could be different. As a preliminary step in the process of
automatically building PMB, currently it is assumed that a

46



Figure 2: Process of Building PMBs

repository of basic skeletons of PMBs catering to different
technologies are available. For example, under Java frame-
works, there are PMB skeletons for Spring MVC, Apache
Axis, Hibernate and Struts etc. Based on the profiler infor-
mation, an application mapper module is used to select the
appropriate skeleton. Thus, we expect different PMBs to be
built for different technology stack. Using a PMB skeleton
and application specific information incorporated in the in-
put file, the actual PMB is built. In the following sections
we further elaborate on different aspects of a PMB.

3.2 Mimicking Send/Receive Calls
PMB attempts to mimic all network calls made by the

application. A web application can interact wit many ex-
ternal services - among these services, we consider interac-
tions with database server for retrieving and storing rele-
vant information and with web clients accessing the appli-
cation. The mimicking benchmark sends and receives the
same number of bytes to and from web clients. The size of
requests and replies is determined during application profil-
ing using a network packet analyzer tool that runs on the
same server where application server is running. This in-
formation is gathered by accessing different transactions of
the application through a web client and by tracking all the
packets between the application server and the web client.

Next aspect of PMB is to mimic the send and receive
calls between the actual application and its database server.
The database response time and result set size varies with
the type of query. The application is profiled with various
combinations of the parameters and the average result set
size is gathered. The PMB is written using such a query
request that receives an average result set size. To avoid
access to application database, a dummy database is created
on the same machine as the application’s database server in
the source environment. The PMB makes requests to and
receives responses from this dummy database server.

The dummy DB consists of a number of tables with mul-
tiple fields of different sizes. Based on the size of the records
retrieved in the actual application, PMB makes SQL queries
dealing with that many fields as to match the actual record
size. Further, PMB requires to know the number of distinct
beans used in the application. This is used for matching
the behavior of PMB with the actual application. However,

CPU service demand does not change due to higher or lower
query response time. Hence, currently this factor is ignored.

3.3 Making Similar Method Calls
It is assumed that the PMB uses the same technology

stacks as the application. Further, it uses similar higher level
components as the application and deployed in the same
container as the actual application. For example, if the ap-
plication is a J2EE application and its components are En-
terprise JavaBeans (EJB), Plain Old Java Objects (POJO)
and web components (i.e., Servlets, JavaServerPages (JSP),
then PMBs are written using similar components. A stan-
dard profiler is used to obtain a list of important methods
to be mimicked. A method is marked as important to mimic
based on two factors: (1) Invocation count - this is the total
number of times (vi) that a specific method is invoked by all
its callers during the execution of a transaction or a higher
level method call. (2) “Own” execution time - this is the
amount of time (si ) a method takes excluding all the sub-
calls it makes. Then, the total CPU demand of the method
i is vi × si.

Assuming that at the application server the methods are
mostly CPU intensive, the total CPU demand is propor-
tional to the sum of demands for all such methods. Our
methodology of building PMB makes use of this specific ob-
servation.

PMBsource =
∑
i

si × vi

3.4 Mimicking Data Flow Sequences
This aspect of benchmark helps in mimicking the behav-

ior of individual transactions of the application. For every
transaction we capture the information on how the request
and response data are flowing through different tiers. For an
OLTP application, three tiers are identified as: client tier,
application/web tier and database tier. The requests from
client passes through these tiers in a certain sequence be-
fore the response is received by the client. Even though a
simple flow could be web tier followed by database tier and
database tier to web tier and back to client tier, in some
requests database tier may not be used (e.g., forwarding re-
quests from one jsp page to another) or in some requests, it
may pass through web tier and database tier a number of
times before the actual response is sent back to the client
(e.g, first retrieving a state list followed by branch list within
a state). Hence, two such sample data flows are (1) client to
web, web to db, db to web and web to client and (2) client
to web, web to db, db to web, web to db, db to web, then
web to client etc. This data flow information is also gath-
ered using a standard application profiler by tracing through
method calls of a transaction and is available as part of the
input file.

3.5 Generating PMBs
The previous sections describe how three different types

of information are gathered regarding the application. All
these information regarding the application are specified in
an input file and, PMBs are generated using the input file. A
sample input file is specified here. For each transaction, we
require a separate input file. A transaction can be defined
as set of logical operations that starts from user requests to
receiving the entire response from the server.

The first part of the input file specifies the transaction

47



name and the number of http web requests the transaction
makes. The next part specifies the data flow within the
transaction and for each pair of tiers such as between the
client and web tier the amount of bytes transferred.

name o f t ransac t i ons = view ca ta l og ;
n o o f r e q u e s t s = 1 ;
d e s c o f d a t a f l o w = cl web db web c l ;
no o f by t e s c l web = 70 ;
no of bytes web db = 56 ;
no of bytes db web = 154 ;
no o f by t e s web c l = 230 ;
t y p e o f s q l s = S e l e c t ;

com . i b a t i s . dao . impl . invoke 1
com . i b a t i s . ResultMap . ge tResu l t s 2
com . mysql . jdbc . InputStream . read 8
org . apache . j sp . c a t a l o g j s p 1
org . apache . s t r u t s . doStartTag 2
org . apache . s t r u t s . WriteTag 2

Example 1: Sample Input File

Such network byte information is gathered in Section 3.2.
Based on the data flow, there may be many such statements
regarding the number of bytes transferred. The next state-
ment says the type of SQL statement whether it is insert,
delete, update or select query. The last section provides
a detailed method list and their invocations. PMB incor-
porates equivalent method calls corresponding to them and
currently this step is done manually.

PMBs built using the above mentioned steps ensure that
during execution of a PMB, CPU performs a mix of impor-
tant operations that is similar to the sample application’s
mix on a source platform. Further, PMBs can be used to
derive the service demand of the application on the target
platform as well.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness of perfor-

mance mimicking benchmarks in predicting service demands
for different target platforms. We have done the evalua-
tion on four web applications written in Java: DellDVD—
an online DVD store, JPet— an online Petstore which is
a standard J2EE benchmark, NGCel— an in-house report-
ing application on next-generation cellular phone usage and
SPECjEnterprise2010 – an industry standard SPEC bench-
mark. These applications allow PMB to be tested for dif-
ferent scenarios such as rendering display with or without
jsp pages, using strut framework, using J2EE container etc.
The technology stack of the PMBs currently consists of ei-
ther Apache Tomcat container or glassfish J2EE application
server with MySQL as the database server. For this paper,
we restrict our discussion to only CPU resource demand of
application tier and we have not considered local disk read-
/writes at the web/application tier. Further, finding the
effect of configuration changes in database tier is not con-
sidered in this paper.

We evaluate these applications on three different server
configurations as given in Table 1 above.

4.1 NGCel Results
In this section, we show the results for NGCel application.

We observe that application service demands vary with con-
currency in all the applications. Hence, NGCel transactions

Table 1: Server Categories for Sample Applications
Server Type Features
Intel 8 Core CPU 2.48 GHz Xeon with

1MB L2 cache, 8 GB Physical RAM
AMD Quad Core AMD Opteron CPU 2.19

GHz with 2MB L2 cache, 4 GB
RAM

Solaris 4 Core UltraSparc CPU 1.5 GHz
with 32MB cache, 16 GB RAM

are run with different number of users and CPU utilization
and throughput values are obtained. Then utilization law is
used to estimate the service demands. For this application,
the source platform is taken as Intel server. Based on the ra-
tio of service demands of NGCel to PMB on Intel platform,
and service demand of PMB on a target platform, demand
is predicted on AMD and Solaris. We also compute error%
for three different transactions of NGCel in Table 2. We
observe that error percentage is less than 10% in all situ-
ations. For DellDVD application also, the maximum error
in service demand prediction by PMB is found to be 13%.
We illustrate the error computation using service demand
of Best Month transaction in Table 2. The ratio of service
demands of NGCel and its PMB on Intel server for 400 users
is obtained as = 1.39/1.18 = 1.177. This is used to predict
demand on AMD server as =1.17 x demand of PMB = 1.17
x 1.91=2.25 ms. But the actual service demand on AMD
server is 2.2 ms. Hence,

Error% =
(|2.2− 2.25|)× 100

2.2
= 2.26

4.2 Comparison with AppLite Benchmarks
The goal of this section is to compare the accuracy of pre-

diction by PMB with that of equivalent technique available
in the literature. While PseudoApp [11] application claims
to provide similar resource consumption as the application,
it is done on Xen platform using kernel tracing tool. Our
source and target platforms are primarily Linux and we in-
tend to restrict ourselves to only application level profiling.
Hence, we develop an AppLite benchmark that mimics the
send and receive calls of the actual application by sending
to and receiving same amount of bytes from a simple socket
server. Further CPU utilization of the actual application is
matched by AppLite by doing some integer arithmetic oper-
ations. The parameters of arithmetic operation are adjusted
according to the transaction being profiled. This matching
of service demand is done only on one platform e.g., Intel as
a Source while the same AppLite is run on other platforms
(AMD and Solaris as Targets) to predict service demand of
the sample application.

Figure 4.2(a) compares the error% for PMB and AppLite
in case of JPet application for 400 users. The error% in pre-
diction of AppLite on AMD platform varies between 11%
and 38%. However, by using PMB, the average error% in
prediction is around 6%. Further, on Solaris platform, the
average error% of AppLite is 40% while with PMB it is
around 5%. The prediction error percentage variation across
AMD and Solaris can be due to difference in architecture and
various system parameters. However, the PMB is found to
be more accurate because it is designed to capture major
method calls that result in significant CPU consumption.

48



Table 2: Actual, predicted values of service demand (in ms) and error% in prediction for various transactions
of NGCel at different concurrencies (shown in bracket) with Intel machine as source, and AMD and Solaris
as target platforms

NGCel APP PMB PMB PMB APP Predicted Error% APP Predicted Error%
Transaction Intel Intel AMD Solaris AMD AMD AMD Solaris Solaris Solaris

Most used (400) 1.98 1.89 3.14 4.29 3.6 3.3 8.5 4.92 4.51 9.54
Most used (500) 2.00 1.83 3.23 4.44 3.68 3.52 4.4 5.02 4.85 3.78

Best Month (400) 1.39 1.18 1.91 2.01 2.2 2.25 2.26 2.17 2.37 9.19
Best Month (500) 1.44 1.23 2.03 2.05 2.3 2.39 4.2 2.26 2.42 7.03
Home Page (400) 1.81 1.58 2.25 3.76 2.55 2.58 1.15 4.41 4.31 2.13
Home Page (500) 1.78 1.56 2.26 4.1 2.6 2.58 0.72 4.91 4.68 4.7

 0

 10

 20

 30

 40

 50

 60

View Product View Category

E
rr

or
 %

 in
 P

re
di

ct
io

n

Transactions of JPet

PMB on Intel
AppLite on Intel
PMB on Solaris

AppLite on Solaris

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

Most Used Best Plan
E

rr
or

 %
 in

 P
re

di
ct

io
n

Transactions of NGCel

PMB on AMD
AppLite on AMD 

PMB on Solaris
AppLite on Solaris

(b)

Figure 3: Comparison of PMB with AppLite

Further, it attempts to mimic processing of result sets. It
is also seen that AppLite performs poorly for transactions
where network I/O has a large contribution to CPU con-
sumption. The reason behind this is that the ratio of service
demands of AppLite between two platforms increases with
the higher network load.

In Figure 4.2(b), the error percentages in prediction of
service demands for PMB and AppLite are compared for
NGCel application with 500 users. Though in this case the
maximum error in prediction is around 27% for AppLite,
PMB has the highest error of 7%. Thus, we achieve much
better accuracy using PMB.

4.3 SPECjEnterprise2010 Results
In order to validate our approach with real-like applica-

tions, we develop PMB for SPECjEnterprise2010 which is
an industry standard benchmark developed by the Stan-
dard Performance Evaluation Corp (SPEC). The SPECjEn-
terprise2010 application provides a business scenario for an
automobile manufacturer [1]. Though the application sup-
ports the Supplier domain for the SCM, the Manufacturing
domain and the Orders domain for the CRM, PMB is built
only for the Orders domain since this is the only domain that
is accessible through web interface. PMB runs on glassfish
application server with MySQL as database server and is de-
signed to support Sell and Purchase transactions. In Figure
4, we show the error percentage in predicting service demand
of SPECjEnterprise2010 using that of PMB on AMD and
Solaris platform. In this case, Intel platform is the source
platform. We observe that independent of concurrency, the
error% is less than 12%. We also obtain similar prediction

 0

 5

 10

 15

 20

 25

Sell Purchase

E
rr

or
 %

 in
 P

re
di

ct
io

n

Transactions of SPECj

400 users on AMD
500 users on AMD

400 users on Solaris
500 users on Solaris

Figure 4: Error % of PMB for SPECjEnterprise2010

on the Solaris platform and verify that the error% is less
than 5%.

4.4 Predicting Performance Metrics
Our proposed methodology is complimentary to perfor-

mance modeling technique and the predicted service de-
mands can be utilized as input to a modeling technique to
finally predict performance metrics such as throughput, re-
sponse time and CPU utilization. Since PMBs are used to
predict service demands for discrete user levels, we choose a
modified version of mean value algorithm [7] that uses ex-
act MVA but allows load dependent service demands. The
algorithm accepts an array of service demands at distinct
load values. For this experiment, the SPECjEnterprise2010

49



Figure 5: Performance prediction using MVA for
SPECj

benchmark is executed on a AMD platform for 300, 400 and
500 users. We observe that for all user levels up-to 700 users,
the average error in throughput and response time is found
to be less than 5%. Figure 5 compares throughput, response
time (in secs) and CPU utilization (scale of 0−1) at the ap-
plication server as predicted by this MVA algorithm for two
scenarios (1) when actual service demands of SPECjEnter-
prise2010 benchmark is used and (2) when PMB is used to
predict service demands. We can verify that PMB is able
to provide same level of accuracy in actual performance pre-
diction as the original application.

4.5 Result Analysis
Some important observations are as follows: (1) for a given

transaction, service demand of the PMB is usually less than
that of the actual application. This is because the PMB does
not represent the business logic of the application, only its
significant lower level method calls. (2) The magnitude of er-
ror varies from one transaction to another transaction. How-
ever, the PMB is able to achieve less than 10% error on an
average. (3) The AppLite benchmark performs worse than
PMB in almost all situations. For the Solaris platform, the
AppLite prediction error is as high as 54% for some transac-
tions. This is because the service demand of an application
performing different types of CPU operations varies differ-
ently from source to target platforms than an application
performing only integer operations.

5. CONCLUSIONS
In this paper, we presented a methodology for generat-

ing simple performance mimicking benchmarks which are
used for cross-platform performance prediction of multi-tier
applications. Our approach requires only application level
profiling. The PMBs invoke similar method calls as the ap-
plication at the technology layer and also mimic the net-
work calls. Thus, the PMBs incur similar CPU consump-

tion as the application on a given platform. The ability of
PMBs to predict service demand accurately has been demon-
strated for simple Java web application, strut-based frame-
work and J2EE application. We expect the benchmarks to
be more generic and reusable, and we only would require an
appropriate input file to be generated based on the profil-
ing information corresponding to a specific application. We
are in the process of building a repository of parameterized
benchmarks for various technology stacks in the J2EE do-
main and include other technology stacks such as .NET and
PHP etc. Finally, to address migration of all the tiers in a
multi-tier application, the proposed approach requires to be
complemented with a strategy for predicting performance of
database tier from source to target platform.

6. REFERENCES
[1] Standard Performance Evaluation Corporation.

https://www.spec.org/jEnterprise2010/.

[2] A. Brunnert, C. Vogele, and H. Krcmar. Automatic
Performance Model Generation for Java Enterprise
Edition (EE) Applications. In European Workshop,
EPEW, 2013.

[3] A. Deshpande and V. Apte. Perfcenter: a performance
modeling tool for application hosting centers. In
Proceedings of the 7th Int. Workshop on Software and
Performance, WOSP, pages 79–90, 2009.

[4] S. Duttagupta, R. Virk, and A. Khanapurkar.
Performance Extrapolation Across Servers. In
Computer Measurement Groups Conference, 2013.

[5] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges,
L. K. John, and K. De Bosschere. Performance
prediction based on inherent program similarity. In
Proc. of Conference on Parallel architectures and
compilation techniques, pages 114–122. ACM, 2006.

[6] A. Joshi, L. Eeckhout, R. Bell, and L. John.
Performance cloning: A technique for disseminating
proprietary applications as benchmarks. In Proceedings
of IEEE conf on Workload Characterization, 2006.

[7] A. Kattepur and M. Nambiar. Performance modeling
of multi-tiered applications with varying service
demands. In APDCM, IEEE IPDPS Workshops, 2015.

[8] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-based Systems Using Queuing
Petri Nets. IEEE Trans. on Software Engineering,
pages 486–502, 2006.

[9] K. Krogmann, M. Kuperberg, and R. Reussner. Using
genetic search for reverse engineering of parametric
behavior models for performance prediction. Software
Engineering, IEEE Transactions on, 36(6):865–877,
2010.

[10] S. Sharkawi, D. Desota, R. Panda, R. Indukuru,
S. Stevens, V. Taylor, and X. Wu. Performance
projection of HPC applications using SPEC CFP2006
benchmarks. In Proc. of IPDPS, 2009.

[11] B. C. Tak, C. Tang, H. Huang, and L. Wang.
Pseudoapp:performance prediction for application
migration to cloud. In IFIP Symposium on Integrated
Network Management, pages 303–310, 2013.

[12] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R.
Santos, and Y. Turner. Justrunit: Experiment-based
management of virtualized data centers. In Proc. of
USENIX Annual technical conference, 2009.

50




