
Challenges with Applying Performance Testing Methods 
for Systems Deployed on Shared Environments with 

Indeterminate Competing Workloads: 
Position Paper  

 André B. Bondi 
Red Bank, New Jersey USA 

bondia@acm.org  
  
 

ABSTRACT 
There is a tendency to move production environments from 
corporate-owned data centers to cloud-based services. Users who 
do not maintain a private production environment might not wish 
to maintain a private performance test environment either. The 
application of performance engineering methods to the 
development and delivery of software systems is complicated 
when the form and or parameters of the target deployment 
environment cannot be controlled or determined. The difficulty of 
diagnosing the causes of performance issues during testing or 
production may be increased by the presence of highly variable 
workloads on the target platform that compete with the 
application of interest for resources in ways that might be hard to 
determine. In particular, performance tests might be conducted in 
virtualized environments that introduce factors influencing 
customer-affecting metrics (such as transaction response time) 
and observed resource usage. Observed resource usage metrics in 
virtualized environments can have different meanings from those 
in a native environment. Virtual machines may suffer delays in 
execution. We explore factors that exacerbate these 
complications. We argue that these complexities reinforce the 
case for rigorously using software performance engineering 
methods rather than diminishing it. We also explore possible 
performance testing methods for mitigating the risk associated 
with these complexities. 

General Terms 
Performance; Measurement; Virtualized Environment. 

Keywords 
Software performance engineering; Performance measurement and testing; 
Cloud performance. 

1. INTRODUCTION 
Recent press reports highlight the tendency of corporations to 
shift the applications in their own data centers to a cloud-based 
shared environment [17]. We suppose that they will conduct 
performance tests in a similar environment, assuming that they do 
comprehensive performance testing at all. The analysis of 

performance test results in a shared environment that the testers 
cannot control may be muddied by interference from activities of 
an unknown or undisclosed nature. The response times 
experienced by users of an application will be impacted by the 
demand for processing power and other resources by the 
application of interest and, in addition, by the unknown and 
seemingly random demands and contention for those resource by 
other applications.  

Murphy [13] has raised the concern that the performance 
engineering practices developed over the years for physical 
environments might not be applied by cloud practitioners, or that 
they might not translate well to a cloud environment. The focus in 
[13] is the performance engineering practices that would precede 
performance testing, as well as on measurement concerns. The 
outputs of performance monitoring of the cloud might not be the 
same as those in more traditional environment, and they might not 
have the same meaning. For example, the properties of the 
resource usage and delay metrics of VMware’s virtual 
environment are discussed in [4]. Murphy argues that the added 
complexity of a cloud environment increases the need to apply 
performance engineering practices at all stages of the software life 
cycle. In particular, he identifies the need to ensure that the 
benefit of the cloud is exploited by building applications so that 
they can be horizontally scaled to exploit the potential for 
parallelism. Doing so enhances the load scalability of a system.  

Applying performance engineering practices throughout the 
software life cycle should reduce the performance risk inherent in 
software projects [3], [5]. The potential impact of performance 
risk was vividly illustrated by the difficult rollout of the US 
government’s health insurance web site, healthcare.gov, in 
October 2013. 

The performance testing practices that have evolved for a purely 
physical environment may have to be adapted for a cloud 
environment. To mitigate the effect of background variability on 
the measured performance and resource usage of the system under 
test in an uncontrolled, shared environment, we propose that 
identical load tests of an application or service be repeated at 
different times, for an extended period each time. The times 
could be chosen to reflect known traffic variation or to reflect 
different configurations. Kosmann et al [9] used repeated 
experiments at constant loads to see whether they could detect 
whether the cloud provider would dynamically alter the 
configuration in response to the changing workload.  Repetition 
could also be used to evaluate the effect of mechanisms to ensure 
fairness for multiple tenants, such as those proposed by Shue et al 
[16]. This approach is analogous to those used for agricultural 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this work owned by others 
than the author(s) must be honored. Abstracting with credit is permitted. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. Request permissions from Permissions@acm.org. 
ICPE'16 Companion, March 12–18, 2016, Delft, The Netherlands. 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-4147-9/16/03…$15.00. 
DOI: http://dx.doi.org/10.1145/2859889.2859895 

41



experiments or clinical trials [1]. There, fields or patients are 
assigned distinct treatments in a systematic manner. Multiple 
patients are treated and multiple fields cultivated to allow for 
variability in the effects. The results of the treatments are 
subjected to regression analysis, an analysis of variance, or some 
other ad hoc quantitative analysis. In an analysis of variance, 
variation is decomposed into explained variation, i.e. variation 
due to treatment differences, and unexplained variation, i.e. 
variation due to random effects. In the case of a cloud 
environment, random effects are due at least in part to random 
activity that is outside the control of the experimenter.  

In [5], we argued that performance modeling methods could be 
used to structure performance tests to verify that performance 
requirements could be met and to verify and establish the bounds 
of system scalability. In a physical environment, performance 
tests at various offered loads can be used to determine whether 
hardware utilizations increase linearly with the offered load of a 
given type, and whether response time requirements can be met. 
Since throughput and response time respectively reflect the user 
demand and the user experience, these performance metrics will 
be of interest in both physical and cloud environments. For a 
physical environment, we have argued that, for ease of analysis, it 
is essential to conduct performance tests in a clean, dedicated test 
environment in which nothing else is going on, and that 
deviations from basic modeling assumptions and predictions were 
indicative of performance problems within the system under test. 
The challenge in a cloud environment is that the absence of a 
dedicated performance test environment will make it difficult to 
follow this advice, while complicating the design and analysis of 
performance tests. Shue et al [16] have proposed to mitigate the 
effect of resource contention by multiple tenants with 
heterogeneous resource usage patterns in a cloud environment 
through the use of fairness algorithms analogous to the rules used 
for time slicing in operating systems or to mediate packet dispatch 
in computer networks. They have described the effects that 
various types of tenants have on each others’ resource usage 
through controlled experiments, but they have not attempted to 
describe a methodology for assessing performance and resource 
usage in the presence of competing workloads. It would be 
interesting to conduct replicated experiments with and without the 
fairness algorithms in place to see the effect on user response time 
and other performance metrics. 

Making inferences about the results of performance tests 
conducted in an environment that is shared with systems and 
traffic over which the testers have no control is much more 
difficult. The tendency to move production to cloud or other 
externally hosted virtualized environments means that dedicated 
production and performance testing environments may not be 
available. At CMG2015, the author gave a talk [6] that was a 
highly abbreviated version of the tutorial he is delivering at the 
present conference [7]. At question time, more than one attendee 
asked how one should conduct performance tests in a shared 
environment so as to be able to make inferences about a system’s 
performance and scalability. It seemed that the competing 
workloads on the target platform were unknown and possibly 
outside the testers’ control. Time and lack of direct experience or 
preparation did not permit a detailed answer. Instead, the author 
pointed out that the lack of control over the environment has the 
potential to vary over time, e.g., by season or by time of day. The 
effects of this could be explored and mitigated for the purpose of 
performance evaluation by running the performance tests under 

like loads at different times of day, as has been done by Kosmann 
et al [9] to compare performance of a benchmark on different 
cloud architectures. This enables the estimation of means and 
variances, and hence of error bounds on performance metrics and 
resource usage metrics. The system under test would be subjected 
to constant transaction rates for prolonged periods, as one would 
in a dedicated controlled environment. A careful experimental 
design would be needed to do this effectively. We explore this 
and related questions in the remainder of this paper. 

2. CHALLENGES IN TESTING FOR 
PERFORMANCE EVALUATION, 
PROBLEM DETECTION, AND DIAGNOSIS 
When performance testing is done in a dedicated environment 
over which the testing team has complete control, the consequent 
reduction in ambient variability makes it possible to be confident 
in the results of performance tests without the need to repeat them 
to obtain confidence bounds on the measured values. This may 
not be the case when performance testing is done on shared 
platforms over which one does not have control. Techniques for 
quantifying and predicting the performance impact of competing 
workloads in mainframe environments when resource demands 
and throughputs are known have been available since the 1970s 
(see for example [15] and [12]). Their applicability is limited to 
systems in steady state. If the input parameters are not known, 
they can be varied for the purpose of sensitivity analysis so that a 
range of possible impacts can be determined. In shared 
environments whose use one cannot easily control, and in which 
the origins of the contending workloads might not be known or 
disclosed, evaluating the performance of a system or application 
poses a number of challenges, whether it is under a performance 
test or in production. 

Our challenge is to determine whether performance degradation is 
caused by a property of the system of interest, by configuration 
issues in the system’s virtual environment, or by resource 
contention from applications running in other guest machines on 
the same platform. Separating these issues is challenging because 
the resource usage metrics in a virtual environment could be 
dependent on the virtual machines’ internal clocks, while 
contending virtual machines could impede each other’s progress. 
An additional consequence of this confounding of factors is that it 
makes it difficult to know whether variations in a designated 
customer-affecting metric such as average response time are 
sufficient grounds to trigger software rejuvenation [2]. The 
problem is compounded by the possibility of considerable 
variability within and among the workloads and resource demands 
of other resident guests.  

2.1 Compensating for Unknown Competing 
Applications on the Same Platform 
In a shared environment with unknown competing workloads, the 
evaluation of performance metrics under different controlled load 
levels is analogous to making inferences about the yields of a crop 
planted in fields in different locations. Comparing the 
performance with two or more sets of distinct configuration 
settings is analogous to comparing the yields of two or more 
strains of the crop by planting them in grouped fields in different 
locations and subjecting the measured yields to an analysis of 
variance [1]. Similarly, if the background traffic in the target 
environment varies predictably by time of day, one can run load 
tests on the target platform under different configurations at like 

42



times of day to determine whether one configuration or another 
yields better performance. Running load tests of a single 
configuration under like loads at different times of the day 
enables one to see which performance characteristics are 
dependent or independent of background activity. With this 
approach, one is attempting to separate out the random effect of 
“dirt in the test tubes.” The load level and configuration settings 
are additional factors whose effect can be separated out using an 
analysis of variance as well. Examples of factors that we can 
control and about whose impact we wish to learn include 
configuration settings, hardware choices, choices of algorithms, 
software modifications, scheduling rules, and the choice of a 
virtual isolation mechanism as proposed by Shue et al [16]. 

In a virtualized environment, the performance measures and 
resource usage measures of a system under constant load might 
not be constant over time between load ramp up and ramp down, 
as would be the case in a well-behaved system being tested on a 
dedicated platform.  Possible reasons for this include resource 
contention by other virtual machines, lack of access to physical 
resources by processes in a virtual machine because of stealing by 
other virtual machines (known as stealing), autonomic shifting of 
a virtual machine to another host, or periodicity of processing due 
to fairness algorithms that mediate access to hardware resources 
(as proposed in [16]). We note in passing that periodicity of 
access in the presence of randomly varying background loads 
could indicate that the fairness algorithm is working as intended, 
especially if the algorithm behaves in a periodic manner. 

2.2 Identification of Deadlocks and Software 
Bottlenecks 
Identifying software bottlenecks and deadlocks is challenging in a 
cloud environment because one of the symptoms is reduced CPU 
usage. The distinction is difficult because CPU usage by the 
application of interest could be reduced by competition from other 
applications or from other virtual machines. Deadlocks trigger 
sudden drops in CPU utilization followed by an increase when the 
deadlock is resolved. A software bottleneck is sometimes 
recognized when the CPU utilization cannot be increased despite 
an increase in the offered load.  In some virtualized environments, 
one of the symptoms of a virtual machine being deprived of CPU 
by another is the portion of steal time, i.e., the time a virtual 
machine that has processes that are ready to run is blocked 
waiting for one or more physical CPUs. If deadlock occurs under 
a constant offered load, CPU usage drops. Since deadlocked 
processes will not use a virtual CPU either, the steal time should 
also drop to zero. If there is a software bottleneck, we should not 
expect the steal time to increase with the load offered to the 
virtual machine of interest either, even though the response time 
will rise with the offered load. 

2.3 Placement of Load Generators 
To avoid confounding the resource consumption of the system 
under test in a physical environment with the resource 
consumption of load generators, the latter should always be on a 
separate platform. Kosmann et al [9] mention that their load 
generators (Emulated Browser or EBs) were running in a separate 
cloud environment from that of the system under test. That 
environment itself could have been hosting some other system 
under load or under test. Thus, it is not impossible that the load 
they drove to their system under test could have been affected by 
the presence of other activity in its environment. This could slow 
down the processing of the next input data to be transmitted by an 

EB. The other application on the EB’s host could also slow down 
the delivery of the response. Since each EB only generates a new 
request to the system under test when its previous request has 
been completed, the request rate can be reduced by competing 
activity in both the load generation environment and, as they 
point out, in the target environment. Thus, every effort should be 
made to deploy load generators on dedicated hosts. 

3. RELATIONSHIP TO ARCHITECTURAL 
AND OTHER ASPECTS OF SPE 
3.1 Engineering Process, Architecture, and 
Scalability 
The apparent expandability of resources in a cloud environment 
does not mean that software performance engineering practices 
can be safely omitted during the software lifecycle [13]. Indeed, 
the greater complexity of diagnosing performance issues through 
measurement and performance testing in a cloud environment 
only reinforces the need for performance requirements 
specification, architecture reviews, and performance test planning. 
For the cloud environment, performance requirements should 
include specifications of metrics describing how the system 
responds to changes in the offered or background load, in terms of 
scaling, elasticity, and efficiency [11].  

Without taking these steps, one cannot reduce the risk of 
performance issues that would arise even in the absence of the 
other workloads. It follows that rigorous performance-oriented 
architecture reviews and scalability assessments are all the more 
necessary to reduce the risk of performance and scalability issues 
that are inherently caused by architectural failings. Some of these 
might be detected through the use of automated tools such as 
CloudScale [10].  

3.2 Instrumentation Challenges 
When writing performance requirements and planning 
performance tests, one must bear cloud-related instrumentation 
challenges in mind:  

1. The performance engineering process must include the 
identification and understanding of resource usage 
metrics that are peculiar to a virtualized environment, 
such as the per cent of the time that a guest machine is 
ready for execution as well as the proportion of time 
that processors are executing on behalf of that machine.  

2. Because the observations of native instrumentation of 
hardware resource utilizations might not be available, 
and because the instrumentation of resource usage in the 
virtual machines might not have the same meaning as 
the native instrumentation, it will be necessary to 
heavily instrument application platforms such as 
database systems and application servers to uncover 
bottlenecks there, and examine their outputs from the 
start [14], rather than drilling down after (virtual) 
hardware resource usage patterns have indicated a 
problem.  

3. Consequently, architectural and design choices and 
choices of platforms should be influenced not only by 
their functional characteristics, but also by the kind of 
performance instrumentation available for them. 

4. The evaluation of resource usage measurements must be 
accompanied by the analysis of pertinent logs in 
application platforms such as databases, web servers, 

43



and application servers. These logs must be equipped 
with accurate time stamps. 

4. Configuration Issue: Virtual Processors 
Configuration issues with a guest can be masked by concerns about 
performance generally. For example, in VMware, if a guest is configured 
with N virtual processors, it will not execute until that number of 
processors is available on the host [4]. A rigorous performance 
architecture review and a desk analysis that involves basic performance 
modeling can help us determine a suitable choice of N that is large enough 
to offer parallel execution of threads but small enough to reduce the risk of 
being starved of hardware CPU access. It should be as small as possible to 
prevent starvation due to excessive request rates by other guest machines 
requiring only one processor. Interestingly, there is an analogy with the 
problem of scheduling the allocation of magnetic tape drives to competing 
processes that require different numbers of them at different times [8]. If 
six drives are present, a deadlock might ensue if process A requires four of 
them and then two, while process B might require three of them and then 
four. Of course, there is a key difference between the magnetic tape 
allocation problem and the present one: the former occurs on a much 
longer time scale, with very infrequent requests for acquisition and release 
of discrete resources, while in a virtualized environment, it is the other 
way round. A performance model of the system in a dedicated 
environment may be needed to ascertain varying patterns in the demand 
for CPU usage and the like. Otherwise, to ascertain usage patterns and 
estimate relative device loadings, whether physical or otherwise, it may be 
necessary to run performance tests at a times when a guest is not 
competing with other guests for resources. 

5. CONCLUSION 
The movement of production and testing from privately 
controlled corporate environments to shared environments such as 
data centers and the cloud poses challenges to the interpretation 
and instrumentation of performance test results. Repeated 
experiments with identical configuration settings of the system 
under test are needed to compensate for the much higher 
variability that a shared environment imposes compared with that 
of a dedicated test system which has been cleared of background 
activity. At the same time, uncertainty about the interaction 
between the system under test and the host environment and 
uncertainty about the meanings of resource usage measurements 
in virtualized environments complicate the interpretation of test 
results and necessitate a thorough and rigorous review of the 
software architecture of the application and of the virtual 
environment in which it runs. 

6. ACKNOWLEDGMENTS 
The author has benefited from discussions with Alberto Avritzer 
and Raj Tanikella, and from the comments of one of the referees. 

7. REFERENCES 
[1] Anderson, V. I., and R. A. McLean. 1974. Design of 

Experiments: A Realistic Approach. Marcel Dekker, 1974. 
[2] Avritzer, A., A. B. Bondi, and E. Weyuker. 2005. Ensuring 

stable performance for systems that degrade. Proceedings of 
the 5th International Workshop on Software and 
Performance, 42–51. 

[3] Bass, L., Nord, R. L., Wood, W., Zubrow, D. 2007. Risk 
themes discovered through architecture evaluations. WICSA 
2007, Mumbai, January 2007. 14 

[4] Bell, P. 2015. Understanding VMware capacity. Proc 
CMG2015, San Antonio, TX, Paper 333. 

[5] Bondi, A. B. 2014. Foundations of Software and System 
Performance Engineering: Process, Performance Modeling, 
Requirements, Testing, Scalability, and Practice. Addison-
Wesley, Upper Saddle River, NJ. 

[6] Bondi, A. B. 2015. Integrating Software and Systems 
Performance Engineering Processes into Software 
Development Processes. CMG2015 (abstract only). 
http://edas.info/p19899#S1569514067 

[7] Bondi, A. B. 2016. Incorporating Software Performance 
Engineering Methods Practice into the Software 
Development Life Cycle. Tutorial presentation, ICPE2016, 
Delft, the Netherlands. 

[8] Habermann, A. N. 1976. Introduction to Operating System 
Design. SRA.  

[9] Kossmann, D., Kraska, T., and Loesing, S. 2010. An 
Evaluation of Alternative Architectures for Transaction 
Processing in the Cloud. In Proceedings of the 2010 ACM 
SIGMOD International Conference on Management of Data, 
(SIGMOD '10) Indianapolis, Indiana,  
579—590 

[10] Lehrig, S. and Becker, S. 2015. The CloudScale Method for 
Software Scalability, Elasticity, and Efficiency Engineering: 
A Tutorial. Proc. 6th ACM/SPEC International Conference 
on Performance Engineering (ICPE2015), Austin, Texas, 
329—331. 

[11] Lehrig, S. and Becker, S. 2015. Beyond Simulation: 
Composing Scalability, Elasticity, and Efficiency Analyses 
from Preexisting Analysis Results. Proc. Workshop on 
Challenges in Performance Methods for Software 
Development, WOSP-C 2015, Austin, Texas, 29-34. 

[12] Lazowska, E. D., J. Zahorjan, G. S. Graham, and K. C. 
Sevcik. 1984. Quantitative System Performance. Prentice 
Hall. Available free online at 
www.cs.washington.edu/homes/lazowska/qsp/.1 

[13] Murphy, J. 2011. Performance Engineering for Cloud 
Computing. Computer Performance Engineering: Lecture 
Notes in Computer Science, vol. 6977, 1-9. Springer, 
Berlin/Heidelberg. 

[14] Paliwal, S. 2014. Performance Challenges in Cloud 
Computing. https://www.cmg.org/wp-
content/uploads/2014/03/1-Paliwal-Performance-Challenges-
in-Cloud-Computing.pdf 

[15] Reiser, M., and Kobayashi, H. 1975. Queueing networks 
with multiple closed chains: Theory and computational 
algorithms. IBM J. of R. & D., 19(3), 283–294. 

[16] Shue, D., M.J. Freedman, A. Shaikh. 2012. Performance 
Isolation and Fairness for Multi-Tenant Cloud Storage. Proc. 
10th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI 12), Hollywood, CA.349—362. 

[17] Weinberger, M. 2015. “The guy who pushed Netflix into the 
future says we're still underestimating Amazon.” Interview 
with Adrian Cockcroft. Business Insider, finance.yahoo.com, 
November 18, 2015. http://finance.yahoo.com/news/guy-
pushed-netflix-future-says-
182431978.html;_ylt=AwrC1C31_E1WgmkAQHjQtDMD;_
ylu=X3oDMTByOHZyb21tBGNvbG8DYmYxBHBvcwMx
BHZ0aWQDBHNlYwNzcg-- 
 

 

44




