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ABSTRACT
Control theory has recently started to be applied to soft-
ware engineering domain, mostly for managing the behavior
of adaptive software systems under external disturbances.
In general terms, the main advantage of control theory is
that it can be formally proven that controllers achieve their
goals (with certain characteristics), whereas the price to pay
is that controllers and system-to-be-controlled have to be
modeled by equations. The investigation of how suited are
control theory techniques to address performance problems
is, however, still at the beginning. In this paper we devise
the main challenges behind the adoption of control theory
in the context of Software Performance Engineering applied
to adaptive software systems.

CCS Concepts
•Software and its engineering → Extra-functional prop-
erties; Software performance; •Control methods →
Computational control theory; •Software system struc-
tures → Software system models; Model-driven software
engineering;
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1. INTRODUCTION
In the last few years, the massive introduction of software

to different sectors of human society has led to complex
ecosystems of systems. On the one hand, the large num-
ber of software systems and services interconnected through
Internet has introduced a high degree of dependency and
complexity among systems that takes the maintenance task
beyond human intervention. On the other hand, customers
expect particular qualities from software, e.g. the fulfillment
of specific performance requirements, but since it is plunged
in an unpredictable environment the requirements can also
change at runtime. To tackle these issues, modern software
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systems are designed to be highly self-adaptive, i.e. capable
of observing changes in their environment and modify their
behavior accordingly to reach their goals.

Control theory tackles the challenge of adapting (physi-
cal) plants since decades in many real world domains (e.g.,
robotics, Cloud computing) [12, 4, 1, 11, 13], and in the last
few years it has started to be applied to adaptable software
[29, 30, 14, 15, 31, 16]. While adaptation of an application’s
functional aspects (i.e., semantic correctness) often requires
human intervention, its non-functional aspects (such as re-
liability, performance, energy consumption, and cost) repre-
sent an important and challenging opportunity for applying
self-adaptive techniques [7]. Adaptation actions and poli-
cies are triggered (in a proactive or reactive way) to allow
a software system to offer acceptable levels of Quality of
Service (QoS), while preserving semantic correctness with
respect to functional requirements. For example, customers
may require continuous assurance of agreed performance in-
dices (such as response time) that can be used to trigger
adaptations guaranteeing requirements even in the face of
unforeseen environmental fluctuations [9].

Despite the undisputed benefit of formally guaranteed con-
trol, the application of control theory to software is fairly
limited [31]. This paper points out the most challenging re-
search issues for adopting control engineering techniques in
the context of software performance engineering for adaptive
systems.

The paper is structured as follows. Section 2 gives an
overview on adaptable software systems with embedded con-
trollers, both from the control and software engineering view-
points. Section 3 describes a set of common steps for design-
ing controllers for adaptive software systems. Based on such
steps, Section 4 points out the most important challenges in
applying control theory to software performance engineer-
ing. Section 5 sketches some related work, and finally Sec-
tion 6 concludes the paper.

2. CONTROLLING ADAPTIVE SOFTWARE
Figure 1 shows a general scheme of an adaptive system

driven by a controller. Basically, it consists of a system-to-
be-controlled, which has to adapt its behavior in order to
meet predefined goal(s), despite an uncontrollable environ-
ment produces disturbances, that are unpredictable events
that affect the system behavior. The adaptation is per-
formed by a Controller that manipulates available knobs of
the system, for sake of adaptation, on the basis of system
properties monitoring.
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Figure 1: An adaptive system with controller.

2.1 Control Engineering perspective
Control systems are backed by a control theory that un-

dergoes the mathematical tools supporting the definition of
controllers with formally proven quality properties [4, 26].

The design of a controller is based on a mathematical
model of the controlled system behavior. Such model is usu-
ally a dynamic model defined by differential or difference
equations. The system is usually identified with the soft-
ware application under control, but it can also contain some
information about the execution environment and platform.
The dynamic model formalizes the relationships between the
time, the system states (through a transfer function that
maps the input of a system to its output in the frequency
domain [18]), the control variables (i.e., the knobs), and the
controlled variable (i.e., the monitored system output we
want to effect). The controller input is the error between
the goal(s) and the value(s) monitored from the plant, whose
multiplicities should coincide. The controller output is an
enforced knob configuration, i.e., such that it is closer to the
goals than the previous one.

A broad variety of disturbance types have been studied
to characterize physical phenomena as well as to represent
errors or uncertainties about the system [26]. The main
purpose of control theory is to minimize the effect of such
disturbances on the controlled output variables.

A proper dynamic model of the controlled system and the
relevant environmental phenomena allows the application of
a broad variety of (more or less automatic) techniques for
the design of controllers engaging several important qualities
[26, 4].

2.2 Software Engineering perspective
From a software engineering perspective, the distinction

between the environment and the adaptive system is made
based on the extent of control [21, 36]. Typically, the envi-
ronment is monitored for changes by an adaptive software
system. The system represents the domain specific appli-
cation functionality. The controller adapts the system ac-
cording to some logic that deals with the system goal(s). To
keep the goal(s) from being violated, the controller contin-
uously monitors the environment and the system, starting
the adaptation process when needed 1.

1Additional controller can be added on top of an adaptive
system to, for example, manage the adaptation logic of an

Core components of an adaptive software system can be
totally separated or highly intersected in terms of imple-
mentation, and they can also be centralized or decentral-
ized. A known approach to build a control system is the
Monitor-Analyze-Plan-Execute (MAPE) feedback loop [21].
The loop relies on a Knowledge component that stores run-
time models maintained by the control system to support
the MAPE functions. The control system can consist of one
or more feedback loops, while MAPE functions can be im-
plemented by different components or integrated in a single
component.

2.3 Glossary
Differences in the terminologies used in control and soft-

ware engineering have practically limited the potential ap-
plication of control engineering techniques to software engi-
neering problems [7]. In this section we introduce a short
glossary of the main terms used in this paper, and we em-
phasize their meanings in control and software engineering.

• A goal is a reference value (or range) for a certain
property of the system. From the software engineering
perspective, it coincides with a QoS requirement, e.g.,
on the response time of the system. From the control
engineering perspective, it is a reference value for a
controlled variable, namely setpoint.

• A knob is an instrument for modifying some system
properties. From the control engineering perspective,
using a knob means to manipulate a control variable.
From the software engineering perspective, it means
performing an adaptation action, e.g. allocating a cer-
tain number of virtual machines.

• A model in the software engineering domain is gener-
ally defined as “an abstraction of reality” [6]; different
models may be used in different development phases
(requirements, architecture design, deployment) and
for different purposes (communication, analysis, code
generation). In the control engineering domain, in-
stead, a model usually takes an analytical form as a
set of differential equations [18, 33]. Such difference
is not only syntactical, but also semantic, and it may
limit the applicability of control engineering techniques
to software engineering. The purpose of modeling in
this domain is always to devise a controller that adapts
the system to keep a setpoint, i.e. goal.

• A controlled system in the control engineering domain
is the aggregate of the plant and the controller [17],
whereas in the software engineering domain the same
term usually only refers to the system-to-be-controlled.

3. DESIGNING ADAPTIVE SOFTWARE
Most of current control theory approaches target running

software, with the aim of leading minimal changes to the
latter. While controlling existing software is a most wanted
capability to empower it with self-adaptive functionalities,
just as much important is to define development processes
accounting for the controllability of the software system.
Controllability can be informally defined as the capability
of a software system to meet target goals under external
disturbances. This is because controllability has an impact

underlying control system or to control the cooperation of
multiple control systems.
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on many stages of software life-cycle: (i) in requirements
analysis, where suitable stakeholder needs can be matched
to control goals, (ii) in design, where controllers may be-
come first class elements exactly like dynamic behavior of
the software is, (iii) in quality assurance, where the active
role of the controllers introduces new challenges that will be
discussed in the remainder of this paper.

On the basis of current practices, a set of steps can be
identified for designing controllers for adaptive software sys-
tems [18], and they are summarized in the following.

1. Define the goals. Quantifiable and measurable sys-
tem goals (i.e., requirements) are defined.

2. Identify the disturbances. Non-controllable system
variables coming from the external environment are
identified.

3. Build the software model. Once completed the
previous steps, a software behavioral model has to be
built, usually represented in terms of equations.

4. Define the knobs. What can be modified on the
system and the domain of the involved changes have
to be defined.

5. Design the controller. Given the model of the sys-
tem, a controller has to be synthesized, and this step
can be accomplished with several approaches. An ex-
ample is to choose a controller structure, for example a
Proportional Integral and Derivative (PID) controller
[3], and to select the parameters for the chosen struc-
ture.

6. Prove properties of the closed-loop system.
Once the model and the controller are both defined,
the next step is to analyze the closed-loop system and
to prove its intrinsic properties, namely SASO proper-
ties [18]:

• Stability: A controlled system is asymptotically
stable if, under reasonable assumptions on the
initial state, the system will tend to an equilib-
rium point (i.e., for any given input, the output
converges to a specific value) within a convenient
accuracy.

• Accuracy: The magnitude of the control error
at the system steady-state has to be kept con-
veniently short.

• Settling time: The time to converge to the set-
point (or the closest feasible equilibrium) has to
be kept conveniently short.

• Overshoot: The system is required to converge
to the setpoint despite both the effect of distur-
bances and possible inaccuracies in the dynamic
model.

If the desired SASO properties are not satisfied, then
either a different controller has to be synthesized or
new knobs have to be devised and added into the sys-
tem. This iterative process continues until the desired
properties are met.

7. Implement and integrate the controller. Once
the controller is designed and proven, it has to be im-
plemented and integrated in the system.

8. Controller testing and validation. Finally, the
controlled system has to be tested and validated to-
wards the goal(s).

4. CHALLENGES
One major advantage of control theory comes from the

analytical guarantees it can provide on the system behav-
ior, due to its mathematical grounding [18, 15]. In order
to exploit such an advantage in the software performance
context, performance-specific aspects have to be treated in
the design process of adaptive software. In this section we
devise the main challenges under the application of the steps
in Section 3 in a software performance context.

4.1 Define the goals
Performance requirements are typically defined on usual

indices: response times, throughputs, and utilizations. The
goals of a controlled adaptive software system obviously
come from such requirements. The use of control theory to
achieve performance goals heavily depends on the granular-
ity to which the latter are considered. A performance goal
defined on a single component/device is more controllable
than one defined on a subsystem or on the whole system.
This is due to the fact that, in the former case, a controller
can perform local adaptation (without considering the rest
of the system), whereas in the latter case a controller has to
achieve the goal despite different (and possibly conflicting)
behaviors of many system entities.

Moreover, performance goals are not always simple to ad-
dress, because the ideal range for performance indices could
be very narrow. For example, a throughput goal with re-
spect to a minimal threshold has to be targeted while con-
trolling that the system throughput does not achieve too
high values that may lead to system saturation.

Nowadays, an ever increasing amount of software applica-
tions run on mobile devices with limited resources. Hence,
in this context energy and temperature are keen concerns to
deal with. For example, a mobile software system that per-
forms a high amount of computation requires a high amount
of energy, thus leading CPU(s) towards high temperature
and energy consumption. Defining and achieving energy
consumption and temperature goals may help to mitigate
such effects.

4.2 Identify the disturbances
Disturbances are a source of uncertainty. In fact, as they

can change at runtime, the dynamic model of the system has
to capture such changes, evaluate the need for an adapta-
tion, and possibly perform the latter in order to face them.
In the software performance domain, two main sources of
disturbances can be identified: (i) workload and (ii) op-
erational profile. Usually, these types of parameters are
represented by probability distribution functions. A signif-
icant advantage of applying control theory to software per-
formance is that it allows to deal with such disturbances
even when they assume the form of irregular curves. This is
particularly useful when workload and/or operational pro-
file come from empirical observations of a running system
(see the definition in the context of software engineering in
Section 2.3).

4.3 Build the software model
In order to obtain mathematical models of software sys-

tems, numerous methods from system identification can be
used [27]. Broadly, these methods try to obtain an accu-
rate model from input-output data recorded on a running
system. Software is particularly prone to this approach be-
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cause running a piece of software is typically much cheaper
and can be done more often or faster than for a physical
system. This means large amounts of data for identification
purposes can be available, possibly from previous releases of
the software system under development.

However, unlike physical systems, software behavior is
hard to model by means of dynamic systems of equations,
because the algorithmic nature of a program often leads to
the introduction of complex non-linearities in the models,
thus reducing their suitability for control theory application.

Although most of the analytical models used to describe
software performance are not straightforwardly mappable
to a dynamic system of equations, they can be exploited to
fill the semantic gap between software models/artifacts and
equations, as firstly proposed in [14].

The benefit of using established analytical models as pivot
for generating dynamic systems of equations is twofold: (i)
it simplifies the construction of the dynamic model by pro-
viding a more concise and precise quantitative view on the
system; (ii) it broadens the applicability of the controller
design methodology to every system that can be formalized
through the intermediate model. In other words, defining a
general control design methodology for Queuing Networks
(QNs) would allow the construction of controllers for a vari-
ety of systems whose performance concerns can be captured
through a QN model.

4.4 Define the knobs
Knobs are fundamental for adaptive systems, because they

allow the system to perform adaptation policies for facing
disturbances. For example, a possible goal for a QN model
is to keep queue length under a certain threshold. When
this value increases, a knob should be available to allow a
service center to increase its rate, and viceversa. However, it
is worth to notice that the types of knobs depend on the an-
alytical model (e.g., a Markov Chain rather than a Queuing
Network).

Here below we identify some knobs with a specific refer-
ence to QN models, and for each knob we provide an example
of corresponding adaptation action on the software system:

• Changing the rate of a service center. As an example,
the same request can be served at different rates be-
cause different alternative implementations of the same
service are deployed on the same node.

• Changing service center multiplicity. As an example,
additional virtual machines and/or disk mirrors can be
allocated/deallocated.

• Changing job routing among similar service centers
that process jobs in parallel, with the aim of balancing
their loads. As an example, this could correspond to
increasing the hit-rate of a cache with respect to the
access to main memory.

• Decreasing the demand to a set of resources and in-
creasing the one to another set of resources. This ac-
tion could represent, for example, a software compo-
nent splitting and consequent re-deploying on a differ-
ent site.

• Moving communication demand (e.g., network) to com-
putation demand (e.g., CPU). As an example, zipping
messages introduces additional computation for com-
pression but reduces communication due to shorter
messages.

More complex adaptation patterns might be devised as
additional knobs. Performance antipatterns can be helpful
in this direction. A performance anti-pattern is in fact a
common solution to a recurring performance problem.

In knowledge-based control (e.g., MAPE feedback loop),
the knowledge is typically represented as adaptation poli-
cies/strategies. Such knowledge can be learned by employ-
ing an appropriate learning mechanism such as reinforce-
ment learning [35]. However, identifying when a learned
knowledge should replace an existing one, i.e., turning point
detection, is a relevant challenge in this context. With
this respect, introducing performance anti-patterns aware-
ness might help in such identification. In fact, if a perfor-
mance anti-pattern is detected, probably the current knob
is not suitable anymore, hence an adaptation is needed to
solve the detected performance problem. Once such adapta-
tion has been performed, if the performance anti-pattern has
been removed then the system might learn that such adapta-
tion could be performed for removing the same anti-pattern
in the future.

4.5 Design the controller
Control engineering generally works by applying a spe-

cific control technique (e.g., linear control, quadratic control,
model-driven control, etc.) to an instance of a problem. In
contrast, software engineering prefers to use methodologies
or off-the-shelf components that are applicable in a wide
range of cases. Therefore, in order to make control tech-
niques useful to software engineers without requiring special
skills, a solution consists in finding types of controllers that
apply to classes of applications. As an analogy, this is simi-
lar to the way design patterns have emerged to aid software
engineers in taking design decisions.

Currently, there are no tools that support the design of
controllers as part of the application. Hence, if we stay at
the“software engineering side”, then we must implement one
or more components for a designed controller(s). If we move
to the “control engineering side”, then we have some sup-
port to the design of controllers, but we have to redefine the
model as it was described, for example, in [2], where Queu-
ing Network constructs have been redefined in Modelica to
embed controllers in QN models.

Control anti-patterns are analogous to performance anti-
patterns when control theory is used in the design of software
systems that fulfill their performance requirements. Coming
up with a list of common control anti-patterns (and sug-
gested remedies) would allow software engineers to more
effectively use control engineering techniques. For exam-
ple, having two uncoordinated controllers targeting the same
goal with different knobs may lead to undesirable behavior
of the software system, such as oscillations. Unless partic-
ular provisions are taken in the control scheme design (e.g.,
the two controllers act on very different time scales), this
would lead to the adoption of a specific control pattern such
as cascade control [34].

As combining software engineering and control theory is
still in an early phase, extensive research would need to be
performed, either top-down or bottom-up. Top-down would
consist in first devising controllers and then testing what
applications would most benefit from them, as done in [16].
Bottom-up would consist in first finding applications that
require to be adaptive, then applying control techniques
to each of them, while trying to generalize the best found
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methodology, as done in [23]. However, not for all combina-
tions of model, knobs, goals, and disturbances, it is possible
to build controller with formally-proven guarantees.

4.6 Prove, implement and test/validation
Nothing is really specific in proving, implementing and

testing/validating a controller in the context of software per-
formance engineering, once the previous steps have been ac-
curately executed.

5. RELATED WORK
Control theory [12, 18] is capturing an increasing inter-

est from the software engineering community that looks at
adaptation as a mean to meet QoS requirements despite un-
predictable changes of the execution environment [31]. Ex-
amples of this trend can be seen in research on control of
web servers [22, 28], data centers and clusters management
[13, 24], operating systems [25], and across the system stack
[20].

In the domain of model-based performance control of adap-
tive software, some effort has been spent to raise adaptation
techniques driven by performance (or more in general QoS)
requirements at the software architecture level [32], where
adaptive verification techniques have also been studied [8, 9].
Adaptation approaches for specific architectural paradigms,
domains, and problems, have been introduced, such as, re-
spectively, Service-Oriented-Architectures [10], mechatronic
systems [5], and .NET thread pools [19]. An interesting
work has been introduced in [37] for automatically extract
adaptive performance models from running applications. An
overview of techniques that apply control theory to software
engineering can be found in [31, 36]. However, none of such
techniques applies it for controlling performance models, like
recently done in [2].

6. CONCLUSION
In this paper we have worked towards the identification

of the main research challenges on the way to apply control
theory techniques to software performance engineering do-
main. In particular, we have provided examples of specific
aspects of software performance that require control theory
to be tailored to the domain. We believe that this field is
still very unexplored and, despite the intrinsic limits of ap-
plication of control theory, it can represent a sharp solution
for a range of software performance problems, especially the
ones related to adaptive software systems.
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