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ABSTRACT 

This paper concerns guarantees on system performance through 

Service Level Agreement (SLA) compliance and focuses on 

devising energy aware resource management techniques based on 

Dynamic Voltage and Frequency Scaling (DVFS) used by resource 

management middleware in clouds that handle MapReduce jobs. 

This research formulates the resource management problem as an 

optimization problem using Constraint Programming (CP). 

Experimental results presented in the paper demonstrate the 

effectiveness of the technique. 

General Terms 
Design; Performance; Measurement; Experimentation. 

Keywords 
Resource management on clouds; MapReduce with deadlines; 

Constraint Programming; Energy management; Big data 

1. INTRODUCTION 
Cloud computing services that deploy a large amount of computing 

resources to satisfy on-demand requests from users around the 

world consume significant energy. In 2010, global data centers 

accounted for between 1.1% and 1.5% of total energy use 

worldwide and this amount is expected to grow as cloud computing 

technologies continue to garner increasing interest from researchers 

and practitioners in both academia and industry [8]. Since energy 

costs account for an estimated 41.6% of large-scale data center 

operation costs [4], in order to stay competitive, cloud service 

providers must develop energy efficient resource management 

strategies which do not sacrifice service quality. 

Energy aware resource management techniques are especially 

important to cloud data centers which provide services for 

incredibly large and complex data sets. These big data systems 

handle volume, velocity, variety, and veracity of application data 

and require a substantial number of computational resources. 

Reducing costs due to energy consumption within data centers 

would significantly impact the ability of the cloud service providers 

to provide the infrastructure for practitioners in both industry and 

academia to perform big data analytics.  

This research focuses on performance optimization and analysis of 

resource management middleware that has two primary objectives: 

ensuring quality of service requirements are satisfied and 

minimizing energy consumption. In this paper we propose an 

energy-conscious resource management approach for a batch of 

requests which require multiple stages of execution and are 

characterized by a Service Level Agreement (SLA) that comprises 

of an earliest start time, execution time, and (soft) deadline 

specified by the user. In systems with such soft deadlines, requests 

are sometimes permitted to miss their specified deadlines. 

However, minimizing the number of missed deadlines is important 

for the overall quality of service. Our approach makes use of 

available slack time in the execution window of a request by 

applying an energy-saving CPU frequency reduction-based 

technique during the execution of some tasks. Thus energy 

consumption can be reduced without sacrificing service quality. 

The workloads considered in this paper consist of a batch of 

MapReduce jobs. MapReduce is a programming model proposed 

by Google for processing large amounts of data in a distributed 

manner [2]. Jobs in the MapReduce programming model are 

characterized by two stages of execution: a map stage, and a reduce 

stage. The map stage performs filtering and sorting to generate an 

intermediate set of key/value pairs. Each task in the map stage 

processes a small portion of the much larger input data. The 

generated key/value pairs are then merged in the reduce stage 

where an application specific summary operation is performed. 

Input, output, and intermediary data is stored on a distributed file 

system. A typical MapReduce job consists of a set of map tasks and 

a set of reduce tasks which do not generally begin execution until 

all map tasks are complete. 

Our research formulates the complex energy aware resource 

management problem as an optimization problem. Tasks must be 

allocated to resources in a process known as matchmaking and 

assigned a scheduled start time. We solve this problem in a joint 

step using a Constraint Programming (CP) based approach. CP [10] 

is a well-known programming paradigm intended to find an optimal 

value with respect to minimizing or maximizing a specified 

objective function. CP is a form of declarative programming 

wherein properties of the solution to be found are specified as 

inviolable constraints. Values are assigned to the set of discrete 

decision variables such that the objective function is optimized 

(maximized or minimized depending on the objective). 

The main contributions of this paper include:  

 A CP-based resource management technique for minimizing 

energy consumption of clouds executing workloads comprised 

of a batch of MapReduce jobs subject to SLAs,  

 A preliminary performance analysis of this technique that 

demonstrates its superiority over existing resource management 

approaches and provides insights into system performance. 
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The remainder of the paper is structured as follows. Section 2 

presents related work. Section 3 describes the energy, workload, 

and system models. The proposed technique is described in Section 

4. A preliminary performance evaluation is presented in Section 5. 

Finally, conclusions and future work are given in Section 6. 

2. PRIOR RESEARCH 
There has been a significant amount of prior research on reducing 

energy consumption in large-scale data centers. In [1] and [15], 

researchers propose collocating tasks with complementary resource 

requirements and execution time in order to consolidate workload 

on fewer servers so that idle servers can be powered down. Wirtz 

and Ge [14] studied the effect of dynamically scaling processor 

voltage and frequency to scale system performance and energy 

consumption based on load. However, these approaches do not 

consider tasks characterized by SLAs. 

Researchers in [7] and [3] considered the tradeoff between task 

deadline compliance and energy consumption and found that 

energy consumption could be reduced without significant 

degradation to deadline compliance. The workloads investigated in 

these studies included only jobs which require a single stage of 

execution and did not consider precedence relationships between 

tasks. 

Verma et al. [12] proposed a heuristic scheduler which uses two 

novel resource allocation policies based on Earliest Deadline First 

(EDF) for scheduling MapReduce tasks with deadlines. In [9], Lim 

et al. devised a technique for determining an optimal schedule for 

a batch of MapReduce jobs using Mixed Integer Linear 

Programming (MILP) and Constraint Programming (CP) which 

minimizes the number of tasks which miss their deadlines. These 

studies did not consider energy consumption which is the focus of 

attention in this paper. 

3. MODELS 

3.1 Energy Model 
We adopt the energy model from [13]: host power 𝑃 = 𝑃𝑠 + 𝑃𝑑, 

where Ps and Pd are static and dynamic power of the host. Static 

power is primarily architecture and hardware dependent whereas 

dynamic power depends on load. Based on previous research we 

assume 𝑃𝑠 ∝ 𝑃𝑑. Thus, the energy required to execute a given 

program can be expressed as: 

𝑃 = 𝛿 ∗ 𝑉2 ∗ 𝑓 (1) 

𝐸 = ∑ 𝑃 ∗ ∆𝑡

∆𝑡

 (2) 

Where ∆𝑡 is the duration the program is executed at a given 

operating frequency f with processor source voltage V and 𝛿 is a 

constant based on hardware characteristics.  

The Advanced Configuration and Power Interface (ACPI) 

specification provides an open standard that operating systems can 

use to manage power [5]. An ACPI-enabled host supports a number 

of discrete voltage/frequency configurations and can change its 

configuration while computation is ongoing using Dynamic 

Voltage and Frequency Scaling (DVFS). We denote fhigh and flow as 

the maximum and minimum permitted operating frequencies 

respectively. Because frequency scaling is instantaneous, any 

desired average operating frequency between fhigh and flow is 

possible by varying the proportion of time permitted frequencies 

are used. In multicore processors, voltage and frequency of each 

core can be scaled independently.  

ACPI-enabled hosts have several power modes collectively called 

C-states [5]. In this paper we adopt C1 (commonly known as Halt) 

when a processor core is unused and permitted to enter a sleep state. 

A halted processor core can be returned to the operating state with 

negligible overhead. Power consumption in state C1 is assumed to 

be a percentage, defined as halt percentage, h, of the power 

consumed in operating state C0 when the core is running at the 

maximum permitted frequency fhigh. 

3.2 Workload Model 
Similar to prior research [9], the input workload comprises a batch 

of n MapReduce jobs which are represented by the set 

J={j1,j2,…,jn}. Each job, j, in J has the following characteristics: a 

deadline dj by which the job should be completed, an earliest start 

time sj, a set of map tasks 𝑇𝑗
𝑚𝑎𝑝

= {𝑡𝑗,1
𝑚𝑎𝑝

, 𝑡𝑗,2
𝑚𝑎𝑝

, … , 𝑡
𝑗,𝑘𝑗

𝑚𝑎𝑝
𝑚𝑎𝑝

} where 

kj
map is the total number of map tasks in job j, a set of reduce tasks 

𝑇𝑗
𝑟𝑒𝑑 = {𝑡𝑗,1

𝑟𝑒𝑑 , 𝑡𝑗,2
𝑟𝑒𝑑 , … , 𝑡

𝑗,𝑘𝑗
𝑟𝑒𝑑

𝑟𝑒𝑑 } where kj
red is the total number of 

reduce tasks in job j, and a set Tj={Tj
map, Tj

red} which contains all 

of the tasks for job j. 

Each task in the set Tj has an execution time et. Execution time of 

a task is defined as the completion time when executed at fhigh. The 

tasks of all jobs are stored in the set T={T1,T2,…,Tn}. 

Each, workload investigated has an associated missed deadline 

ratio, d, and a laxity factor, l. Missed deadline ratio specifies the 

maximum proportion of jobs in the set J permitted by the client to 

miss their soft deadlines. Laxity factor specifies the amount of 

available slack time in the execution window of jobs in the 

workload and is used to generate the deadline of all jobs. Laxity 

factor is defined as one plus the ratio of laxity of job j to the sum of 

execution times of all tasks in j where job laxity is defined as: 

𝐿𝑎𝑥𝑖𝑡𝑦 (𝑗𝑜𝑏 𝑗) = 𝑑𝑗 − ∑ 𝑒𝑡

𝑡∈𝑇𝑗

− 𝑠𝑗 (3) 

Workloads with a higher laxity factor allow for a greater degree of 

freedom in the scheduling of tasks due to relaxed job deadlines. 

3.3 System Model 
Each task defined in the input workload is mapped and scheduled 

onto one of m cloud resources in the set R = {r1,r2,…,rm}. The 

model for each cloud resource ri has: (1) a map task capacity 

(number of map slots) cr
map, (2) a reduce task capacity (number of 

reduce slots) cr
red, and (3) a processor P. Parameters cr

map and cr
red 

specify respectively the maximum number of map and reduce tasks 

which can be executed in parallel on the resource at any given point 

in time. Each task slot can be modeled as an independent core in 

the processor P which has: (1) a discrete set of frequency-voltage 

pairs which lists the valid processor operating frequencies and 

corresponding supply voltages and (2) a halt percentage, h, which 

defines the power consumed while idle as a percentage of the power 

consumed while operating at fhigh. These parameters are used to 

determine the amount of energy consumed by each resource slot 

when executing tasks or idling. In line with other research in this 

area [13], this paper assumes a homogenous cloud environment 

with the same processor P used to model the energy consumption 

of each of the cloud resources in R. 

4. PROPOSED TECHNIQUE 
This section describes the energy aware DVFS-based resource 

management approach.  The CP model objective function and 

constraints are presented in Table 1.  

The CP model has the following decision variables: 

 A binary variable xtr, which is set to 1 if task t is assigned to 

resource r and set to 0 otherwise. There is an xtr variable for each 

combination of tasks in T and resources in R. 
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 An integer variable at, which specifies the scheduled start time 

for task t. There is an at variable for each task in T. 

 An integer variable ct, which specifies the execution duration for 

task t. ct determines the amount of frequency scaling applied to 

the execution of task t. There is a ct variable for each task in T. 

 A binary variable Nj, which is set to 1 if job j misses its 

deadline and set to 0 otherwise. There is an Nj variable for each 

job in J. 

Table 1. CP Model: Objective Function and Constraints (con) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑃(
𝑒𝑡

𝑐𝑡
𝑡∈𝑇

𝑓ℎ𝑖𝑔ℎ) ∗ 𝑐𝑡 +  ℎ ∗ 𝑃(𝑓ℎ𝑖𝑔ℎ)

∗ (∑ (max
𝑡∈𝑇

(𝑎𝑡 + 𝑐𝑡) ∗ (𝑐𝑟
𝑚𝑎𝑝

+ 𝑐𝑟
𝑟𝑒𝑑)

𝑟∈𝑅

− ∑ 𝑥𝑡𝑟 ∗ 𝑐𝑡

𝑡∈𝑇

)) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑥𝑡𝑟 = 1 ∀ 𝑡 ∈ 𝑇

𝑟∈𝑅

 (con1) 

(𝑎𝑡 ≥  𝑠𝑗  ∀ 𝑡 ∈ 𝑇𝑗
𝑚𝑎𝑝

)∀ 𝑗 ∈ 𝐽  (con2) 

(𝑎𝑡` ≥  max
𝑡∈𝑇𝑗

𝑚𝑎𝑝
(𝑎𝑡 + 𝑐𝑡) ∀ 𝑡` ∈ 𝑇𝑗

𝑟𝑒𝑑) ∀ 𝑗 ∈ 𝐽 (con3) 

( max
𝑡∈𝑇𝑗

𝑟𝑒𝑑
(𝑎𝑡 + 𝑐𝑡) >  𝑑𝑗  ⟹ 𝑁𝑗 = 1) ∀ 𝑗 ∈ 𝐽 (con4) 

(𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒((𝑎𝑡|𝑥𝑡𝑟 = 1), (𝑐𝑡|𝑥𝑡𝑟 = 1), 1, 𝑐𝑟
𝑚𝑎𝑝)∀ 𝑡

∈ 𝑇𝑟
𝑚𝑎𝑝

))∀𝑟 ∈ 𝑅 
(con5) 

(𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒((𝑎𝑡|𝑥𝑡𝑟 = 1), (𝑐𝑡|𝑥𝑡𝑟 = 1), 1, 𝑐𝑟
𝑟𝑒𝑑)∀ 𝑡 

∈ 𝑇𝑟
𝑟𝑒𝑑))∀𝑟 ∈ 𝑅 

(con6) 

∑ 𝑁𝑗 ≤  |𝐽|

𝑗∈𝐽

∗ 𝑑 (con7) 

(𝑥𝑡𝑟 ∈ {0,1}∀ 𝑡 ∈ 𝑇) ∀ 𝑟 ∈ 𝑅 (con8) 

𝑁𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝐽 (con9) 

(𝑐𝑡 ∈ ℤ | 𝑒𝑡 ≤ 𝑐𝑡 ≤ 𝑒𝑡

𝑓ℎ𝑖𝑔ℎ

𝑓𝑙𝑜𝑤

) ∀ 𝑡 ∈ 𝑇 (con10) 

𝑎𝑡 ∈ ℤ  ∀𝑡 ∈ 𝑇 (con11) 

Explanation of Constraints: the input of the CP model comprises 

of a set of jobs J which are executed on a set of resources R. Each 

task must be mapped to exactly one cloud resource (con1). Each 

task belonging to job j can only begin at or after job j’s earliest start 

time, sj (con2). All map tasks in the set Tj
map must be completed 

before reduce tasks in the set Tj
red

 can begin execution (con3). 

Finally, the capacity limits of each resource in R cannot be violated 

at any point in time (con5 and con6).  

Constraints (con1) to (con6) adapted from [9] (modified to suit 

current research requirements) ensure that these general 

matchmaking requirements are satisfied and the resulting output 

schedule is valid. con7 guarantees that the output schedule meets 

the client specified grade of service by limiting the number of jobs 

which are permitted to miss their deadlines to less than the missed 

deadline ratio, d. The remaining constraints, (con8) to (con11), 

define the domains of the decision variables. 

con5 and con6 are expressed using the global constraint 

cumulative. The cumulative constraint requires two input 

parameters: a collection of tasks and a limit. Each task in the 

collection has an associated start time, duration, and resource 

requirement. The cumulative constraint ensures that the sum of the 

resource requirements of tasks in the collection which have an 

overlap in their scheduled execution do not exceed the specified 

limit at any point in time. The resource requirement of each task is 

set to one because each task executes on exactly one slot. 

Explanation of objective function: the objective of the CP 

implementation is to generate an output schedule, which includes 

the allocation of tasks to resources, scheduled start time of tasks, 

and scheduled end time of tasks, that minimizes the energy required 

to execute a batch of MapReduce jobs. The calculation of energy 

consumption, shown in the CP model formulation objective 

function (see top of Table 1), is broken down into two components: 

Task Energy and Idle Energy. 

Task Energy is the energy consumed by resources to execute tasks 

in the workload. The energy required to execute a given task can 

be expressed as 𝐸𝑡 = 𝑃(
𝑒𝑡

𝑐𝑡
𝑓ℎ𝑖𝑔ℎ) ∗ 𝑐𝑡 where P(x) is a function that 

returns the power when the processor operates at frequency x. 

Idle Energy is the component of total energy consumption due to 

processor cores in halt state C1 during workload execution. Recall 

that power consumption in this state is dependent on halt 

percentage, h, and can be expressed as 𝑃𝐶1 = ℎ ∗ 𝑃(𝑓ℎ𝑖𝑔ℎ). The 

duration a given resource is in state C1 can be calculated as the 

batch completion time multiplied by the number of cores minus the 

total execution time of all tasks executed on that resource. 

The CP model is expressed in Java using IBM ILOG CPLEX 

Concert Technology and solved using the CPLEX CP Optimizer 

Java API [6]. 

5. PERFORMANCE EVALUATION 
Performed experiments simulate the scheduling and execution of a 

batch workload on a closed system to evaluate the performance 

achieved by the energy aware MapReduce resource manager. Each 

experiment concluded after all workload tasks were successfully 

scheduled and the output schedule was generated. Workload 

execution was simulated using the output schedule to determine 

batch completion time and energy consumption.  

The performance of the proposed energy aware resource manager 

(System II) was compared against “Approach 3” (System I) from 

[9], a resource management approach for batch workloads subject 

to SLAs that include soft deadlines with the primary objective of 

minimizing the number of missed deadlines, based on the following 

metrics: 

 Energy consumption (E): total energy consumed to execute the 

batch workload. 

 Batch Completion time (C): time at which the last task in the 

batch workload finishes execution. 

 Number of missed deadlines (N) 

Note that due to the size and complexity of the matchmaking and 

scheduling problem, the CPLEX CP Optimizer is unable to prove 

that a solution is optimal in a reasonable amount of time. Execution 

time of the CPLEX CP Optimizer is limited to 1% of the total 

execution time of all tasks in the workload. The output schedule is 

not guaranteed to be optimal but is the best solution found within 

the limited time. Experiments with higher time limits yielded 

negligible improvement in system performance. 

5.1 Workload Description 
Table 2 presents the system and workload parameters used to 

compare the performance of System I and System II. This synthetic 

workload is similar to those used by other researchers and is 

adapted from [9]. 

The earliest start time, map task execution times, and reduce task 

execution times for each job are generated using a discrete uniform 

distribution. Job deadlines are calculated as the sum of execution 

times of all the tasks in the job (ej
tot) multiplied by laxity factor, l 

plus earliest start time. The ceiling function is used to ensure that 
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the resulting deadline is an integer as required by the algorithm 

implementation. 

Table 2. Workload and System Parameters 

 Jobs (sj and dj in 
seconds) 

Task execution 
times (in seconds) 

Resources 

medium n = 10: 
sj ~DU(1,50) 

dj = ⌈𝑠𝑗 + 𝑒𝑗
𝑡𝑜𝑡 ∗ 𝑙⌉ 

kjmap = 10 
kjred = 5 

etmap ~ DU(1,25) 
etred ~ DU(1,75) 

m = 15: 
crmap = 2 
crred = 2 

small n = 5: 
sj ~DU(1,50) 

dj = ⌈𝑠𝑗 + 𝑒𝑗
𝑡𝑜𝑡 ∗ 𝑙⌉ 

kjmap = 10 
kjred = 3 

etmap ~ DU(1,15) 
etred ~ DU(1,75) 

m = 10: 
crmap = 2 
crred = 2 

The resource management process does not depend significantly on 

the size of input data. As input data size increases, there is a 

corresponding increase in either number of map tasks or map task 

execution time. Matchmaking and scheduling of this larger set of 

input tasks is performed by the resource manager in the same way. 

Performance for various input data sizes can be investigated by 

varying either the mean of the discrete uniform distribution which 

determines map task execution time or the number of map tasks.  

The performance of the energy aware resource manager was 

evaluated for small and medium scale workloads. Because the 

energy aware resource manager takes advantage of excess slack in 

the execution window of jobs to reduce the processor operating 

frequency during the execution of some tasks it was believed that 

workloads with a small number of tasks may not benefit 

substantially from this approach. Investigation of the performance 

for small workloads was deemed worthwhile for this reason. 

5.2 Processor Description 
The processor model used in this research is based on the 

frequency/voltage pairs for the Intel Core i7-2760QM presented in 

[11]. These operating configurations are shown in Table 3. 

Table 3. Intel Core i7-2760QM Operating Configurations 

Frequency (MHz) Voltage (V) Power (W) 

2400 1.060 𝛿 *2696.64 

2000 0.970 𝛿 *1881.8 

1600 0.890 𝛿 *1267.36 

800 0.760 𝛿 *462.08 

The power consumed in each frequency/voltage configuration is 

calculated using equation 1 and shown in the Power column of 

Table 3. A linear regression of these resulting power values is used 
to express power as a function of operating frequency: 

𝑃 = 𝛿 ∗ (1.364𝑓 − 741.81) (4) 

The correlation coefficient for this linear regression was found to 

be 𝑅2 = 0.9699. 

The power estimate presented in equation 4 is based on empirical 

measurements of processor supply voltage performed by 

researchers in [11] and is valid only for frequencies between fhigh 

and flow. 

5.3 Experimental Results 
The experiments were performed on a PC running under Windows 

7 Professional with a 3.2GHz Intel Core i5 CPU and 4GB of RAM. 

Reduced energy consumption for the energy-aware MapReduce 

resource manager can be expected when running the solver on a PC 

with a faster CPU and more memory. However, these 

improvements have been observed to be negligibly small. Each 

experiment was repeated to generate confidence intervals at a 95% 

confidence level with intervals within ±5% of the mean. 

The experiments use a one-factor-at-a-time approach to observe the 

impact of varying system parameters on overall performance. 

Laxity factor and missed deadline ratio are varied independently 

while other system and workload parameters are held at their 

default values. Default values for laxity factor, missed deadline 

ratio, and halt percentage are set to 0.6, 0.1, and 5% respectively. 

Experiments performed using other combinations of parameters 

showed similar trends. The energy consumption of System I and 
System II is expressed as energy savings which is calculated as: 

𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = (1 −
𝐸(𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼𝐼)

𝐸(𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼)
) ∗  100% (5) 

5.3.1 Medium Workload 
Effect of laxity factor (l): The impact of varying laxity factor, l, on 

batch completion time and energy savings for the medium 

workload can be seen in Figure 1a and Figure 1b respectively. It 

can be seen that increasing laxity factor results in an increase in 

energy savings and the batch completion time for System II. 

 

Figure 1a. Impact of Laxity Factor on Batch Completion Time 

for Medium Workload 

 

Figure 1b. Impact of Laxity Factor on Energy Savings for 

Medium Workload 

Energy savings and batch completion time for System II do not 

significantly increase for values of laxity factor above 1. As laxity 

factor increases, the slack time in the execution window of jobs in 

the workload increases. System II takes advantage of this slack by 

reducing execution frequency of some tasks to minimize energy 

consumption. Additional slack does not further reduce energy 

consumption or increase batch completion time for System II once 

all tasks in the workload are executing at the minimum frequency. 

Effect of missed deadline ratio (d): The impact of varying missed 

deadline ratio, d, on batch completion time and energy savings for 

the medium workload can be seen in Figure 2a and Figure 2b 

respectively. As expected, the results show that as missed deadline 

ratio increases, batch completion time and energy savings increase. 
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Figure 2a. Impact of Missed Deadline Ratio on Batch 

Completion Time for Medium Workload 

 

Figure 2b. Impact of Missed Deadline Ratio on Energy 

Savings for Medium Workload 

Although the output schedule for System II results in a later batch 

completion time in all cases compared to System I this does not 

indicate a reduction in service quality because the total number of 

missed deadlines never exceeds the limit specified by the missed 

deadline ratio. A summary of the tradeoff between increase in batch 

completion time and energy savings is presented in Table 4. 

Increase in batch completion time for System II with respect to 

System I can be expressed as: 

∆𝐶 = 𝐶 (𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼𝐼) − 𝐶(𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼) (6) 

Table 4. Completion Time and Energy Savings Tradeoff 

Increase in Completion Time (s) 110 125 130 145 160 

Energy Savings (%) 25 30 33 40 42 

System II takes advantage of the relaxation of the grade of service 

parameter to save energy by reducing execution frequency of some 

tasks thereby delaying completion of the workload. 

5.3.2 Small Workload 
Effect of laxity factor (l): The impact of varying laxity factor, l, on 

batch completion time and energy savings for the small workload 

can be seen in Figure 3a and Figure 3b respectively. A similar trend 

compared to the medium workload can be observed: increasing 

laxity factor causes a corresponding increase in both energy savings 

and batch completion time. 

It is interesting to note that the knee of the energy savings graph is 

observed at laxity factor approximately equal to 0.7 for the small 

workload compared to approximately 1.0 in the medium workload. 

After this point, further increasing the laxity factor does not 

substantially impact either energy savings or batch completion time 

of System II. It is believed that at this knee point the majority of 

workload tasks are scheduled to execute at the minimum allowed 

processor operating frequency and further increasing laxity in job 

deadlines has only marginal impact on performance. The lower 

knee point suggests that although fewer resources are used, the 

resources are more lightly loaded in the small workload 

experiments compared to in the medium workload experiments.  

 

Figure 3a. Impact of Laxity Factor on Batch Completion Time 

for Small Workload 

Additionally, the possible energy savings and relative increase in 

batch completion time for System II are smaller in the small 

workload than observed in the medium workload. Because the 

small workload contains significantly fewer total tasks compared 

to the medium workload, there are substantially fewer opportunities 

to save energy by reducing the processor frequency during task 

execution. Furthermore, because of the lighter workload, idle 

energy is a higher proportion of total energy consumption. Since 

idle energy is not reduced using this technique, the total possible 

energy savings is reduced. 

 

Figure 3b. Impact of Laxity Factor on Energy Savings for 

Small Workload 

A feasible solution could not be found using either System I or 

System II when laxity factor was set to 0.4. For low values of laxity 

factor it is possible that the minimum execution time of the longest 

task in a job is longer than the jobs permitted execution window. In 

this case the job cannot be scheduled without missing its deadline 

and, depending on the missed deadline ratio, scheduling the 

workload may not be possible. 

Effect of missed deadline ratio (d): The impact of varying missed 

deadline ratio, d, on batch completion time and energy savings can 

be seen in Figure 4a and Figure 4b respectively. A similar trend is 

to the medium workload is observed. A full discussion of these 

results is not presented due to space considerations. 

5.3.3 Number of Missed Deadlines 
It should be noted that because the primary objective of System I is 

to minimize the number of missed deadlines rather than reduce 

energy consumption, fewer jobs will miss their deadlines under 

System I than System II. However, in both cases, the number of 

missed deadlines will never exceed the grade of service parameter 

missed deadline ratio specified by the client. Furthermore, missed 

deadline ratio specifies an upper limit to the number of jobs which 

are permitted to miss their deadlines. In some cases (specifically 

for high values of laxity factor) fewer jobs than permitted will need 

to miss their deadlines under System II in order to minimize energy 

consumption due to excessive slack in job deadlines. 
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Figure 4a. Impact of Missed Deadline Ratio on Batch 

Completion Time for Small Workload 

 

Figure 4b. Impact of Missed Deadline Ratio on Energy 

Savings for Small Workload 

6. SUMMARY AND CONCLUSIONS 
This paper introduces an energy aware resource management 

technique for batch workloads of MapReduce jobs subject to SLAs 

which include earliest start times, task execution times, and soft 

deadlines specified by the user. The technique makes use of 

available slack time in the execution window of jobs and applies a 

DVFS-based processor frequency reduction to the execution of 

some tasks to reduce energy consumption without violating SLAs. 

Preliminary performance analysis demonstrates energy savings 

between 16% and 45% for varying values of missed deadline ratio, 

laxity factor, and workload size using the DVFS-based approach 

compared to previous resource management approaches which do 

not consider energy. Smaller, but still substantial, energy savings 

were observed for workloads with fewer total tasks. The energy 

savings were accompanied by small – moderate increases in batch 

completion times. Plans for future research include: 

 Extensively evaluating performance impact of varying workload 

size and processor model including large workloads from [9] and 

alternative processor models presented in [11]. 

 Extending the DVFS-based approach to handle an open stream 

of job arrivals subject to SLAs. 

 Incorporating MapReduce task execution time prediction 

models to evaluate the impact of and devise techniques to handle 

error in execution times estimates of MapReduce tasks. 

 Enhancing the DVFS-based approach to consider data locality 

and data transfer times for performance measurements of an 

implementation on a real-world Hadoop Custer. 
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