
A Constraint Programming Based Energy Aware Resource
Management Middleware for Clouds Processing

MapReduce Jobs with Deadlines
Adam Gregory

Dept. of Systems and Computer Engineering
Carleton University

Ottawa, ON, Canada

adamgregory@sce.carleton.ca

Shikharesh Majumdar
Dept. of Systems and Computer Engineering

Carleton University
Ottawa, ON, Canada

majumdar@sce.carleton.ca

ABSTRACT

This paper concerns guarantees on system performance through

Service Level Agreement (SLA) compliance and focuses on

devising energy aware resource management techniques based on

Dynamic Voltage and Frequency Scaling (DVFS) used by resource

management middleware in clouds that handle MapReduce jobs.

This research formulates the resource management problem as an

optimization problem using Constraint Programming (CP).

Experimental results presented in the paper demonstrate the

effectiveness of the technique.

General Terms
Design; Performance; Measurement; Experimentation.

Keywords
Resource management on clouds; MapReduce with deadlines;

Constraint Programming; Energy management; Big data

1. INTRODUCTION
Cloud computing services that deploy a large amount of computing

resources to satisfy on-demand requests from users around the

world consume significant energy. In 2010, global data centers

accounted for between 1.1% and 1.5% of total energy use

worldwide and this amount is expected to grow as cloud computing

technologies continue to garner increasing interest from researchers

and practitioners in both academia and industry [8]. Since energy

costs account for an estimated 41.6% of large-scale data center

operation costs [4], in order to stay competitive, cloud service

providers must develop energy efficient resource management

strategies which do not sacrifice service quality.

Energy aware resource management techniques are especially

important to cloud data centers which provide services for

incredibly large and complex data sets. These big data systems

handle volume, velocity, variety, and veracity of application data

and require a substantial number of computational resources.

Reducing costs due to energy consumption within data centers

would significantly impact the ability of the cloud service providers

to provide the infrastructure for practitioners in both industry and

academia to perform big data analytics.

This research focuses on performance optimization and analysis of

resource management middleware that has two primary objectives:

ensuring quality of service requirements are satisfied and

minimizing energy consumption. In this paper we propose an

energy-conscious resource management approach for a batch of

requests which require multiple stages of execution and are

characterized by a Service Level Agreement (SLA) that comprises

of an earliest start time, execution time, and (soft) deadline

specified by the user. In systems with such soft deadlines, requests

are sometimes permitted to miss their specified deadlines.

However, minimizing the number of missed deadlines is important

for the overall quality of service. Our approach makes use of

available slack time in the execution window of a request by

applying an energy-saving CPU frequency reduction-based

technique during the execution of some tasks. Thus energy

consumption can be reduced without sacrificing service quality.

The workloads considered in this paper consist of a batch of

MapReduce jobs. MapReduce is a programming model proposed

by Google for processing large amounts of data in a distributed

manner [2]. Jobs in the MapReduce programming model are

characterized by two stages of execution: a map stage, and a reduce

stage. The map stage performs filtering and sorting to generate an

intermediate set of key/value pairs. Each task in the map stage

processes a small portion of the much larger input data. The

generated key/value pairs are then merged in the reduce stage

where an application specific summary operation is performed.

Input, output, and intermediary data is stored on a distributed file

system. A typical MapReduce job consists of a set of map tasks and

a set of reduce tasks which do not generally begin execution until

all map tasks are complete.

Our research formulates the complex energy aware resource

management problem as an optimization problem. Tasks must be

allocated to resources in a process known as matchmaking and

assigned a scheduled start time. We solve this problem in a joint

step using a Constraint Programming (CP) based approach. CP [10]

is a well-known programming paradigm intended to find an optimal

value with respect to minimizing or maximizing a specified

objective function. CP is a form of declarative programming

wherein properties of the solution to be found are specified as

inviolable constraints. Values are assigned to the set of discrete

decision variables such that the objective function is optimized

(maximized or minimized depending on the objective).

The main contributions of this paper include:

 A CP-based resource management technique for minimizing

energy consumption of clouds executing workloads comprised

of a batch of MapReduce jobs subject to SLAs,

 A preliminary performance analysis of this technique that

demonstrates its superiority over existing resource management

approaches and provides insights into system performance.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICPE'16 Companion, March 12-18, 2016, Delft, Netherlands

© 2016 ACM. ISBN 978-1-4503-4147-9/16/03…$15.00

DOI: http://dx.doi.org/10.1145/2859889.2859892

15

The remainder of the paper is structured as follows. Section 2

presents related work. Section 3 describes the energy, workload,

and system models. The proposed technique is described in Section

4. A preliminary performance evaluation is presented in Section 5.

Finally, conclusions and future work are given in Section 6.

2. PRIOR RESEARCH
There has been a significant amount of prior research on reducing

energy consumption in large-scale data centers. In [1] and [15],

researchers propose collocating tasks with complementary resource

requirements and execution time in order to consolidate workload

on fewer servers so that idle servers can be powered down. Wirtz

and Ge [14] studied the effect of dynamically scaling processor

voltage and frequency to scale system performance and energy

consumption based on load. However, these approaches do not

consider tasks characterized by SLAs.

Researchers in [7] and [3] considered the tradeoff between task

deadline compliance and energy consumption and found that

energy consumption could be reduced without significant

degradation to deadline compliance. The workloads investigated in

these studies included only jobs which require a single stage of

execution and did not consider precedence relationships between

tasks.

Verma et al. [12] proposed a heuristic scheduler which uses two

novel resource allocation policies based on Earliest Deadline First

(EDF) for scheduling MapReduce tasks with deadlines. In [9], Lim

et al. devised a technique for determining an optimal schedule for

a batch of MapReduce jobs using Mixed Integer Linear

Programming (MILP) and Constraint Programming (CP) which

minimizes the number of tasks which miss their deadlines. These

studies did not consider energy consumption which is the focus of

attention in this paper.

3. MODELS

3.1 Energy Model
We adopt the energy model from [13]: host power 𝑃 = 𝑃𝑠 + 𝑃𝑑,

where Ps and Pd are static and dynamic power of the host. Static

power is primarily architecture and hardware dependent whereas

dynamic power depends on load. Based on previous research we

assume 𝑃𝑠 ∝ 𝑃𝑑. Thus, the energy required to execute a given

program can be expressed as:

𝑃 = 𝛿 ∗ 𝑉2 ∗ 𝑓 (1)

𝐸 = ∑ 𝑃 ∗ ∆𝑡

∆𝑡

 (2)

Where ∆𝑡 is the duration the program is executed at a given

operating frequency f with processor source voltage V and 𝛿 is a

constant based on hardware characteristics.

The Advanced Configuration and Power Interface (ACPI)

specification provides an open standard that operating systems can

use to manage power [5]. An ACPI-enabled host supports a number

of discrete voltage/frequency configurations and can change its

configuration while computation is ongoing using Dynamic

Voltage and Frequency Scaling (DVFS). We denote fhigh and flow as

the maximum and minimum permitted operating frequencies

respectively. Because frequency scaling is instantaneous, any

desired average operating frequency between fhigh and flow is

possible by varying the proportion of time permitted frequencies

are used. In multicore processors, voltage and frequency of each

core can be scaled independently.

ACPI-enabled hosts have several power modes collectively called

C-states [5]. In this paper we adopt C1 (commonly known as Halt)

when a processor core is unused and permitted to enter a sleep state.

A halted processor core can be returned to the operating state with

negligible overhead. Power consumption in state C1 is assumed to

be a percentage, defined as halt percentage, h, of the power

consumed in operating state C0 when the core is running at the

maximum permitted frequency fhigh.

3.2 Workload Model
Similar to prior research [9], the input workload comprises a batch

of n MapReduce jobs which are represented by the set

J={j1,j2,…,jn}. Each job, j, in J has the following characteristics: a

deadline dj by which the job should be completed, an earliest start

time sj, a set of map tasks 𝑇𝑗
𝑚𝑎𝑝

= {𝑡𝑗,1
𝑚𝑎𝑝

, 𝑡𝑗,2
𝑚𝑎𝑝

, … , 𝑡
𝑗,𝑘𝑗

𝑚𝑎𝑝
𝑚𝑎𝑝

} where

kj
map is the total number of map tasks in job j, a set of reduce tasks

𝑇𝑗
𝑟𝑒𝑑 = {𝑡𝑗,1

𝑟𝑒𝑑 , 𝑡𝑗,2
𝑟𝑒𝑑 , … , 𝑡

𝑗,𝑘𝑗
𝑟𝑒𝑑

𝑟𝑒𝑑 } where kj
red is the total number of

reduce tasks in job j, and a set Tj={Tj
map, Tj

red} which contains all

of the tasks for job j.

Each task in the set Tj has an execution time et. Execution time of

a task is defined as the completion time when executed at fhigh. The

tasks of all jobs are stored in the set T={T1,T2,…,Tn}.

Each, workload investigated has an associated missed deadline

ratio, d, and a laxity factor, l. Missed deadline ratio specifies the

maximum proportion of jobs in the set J permitted by the client to

miss their soft deadlines. Laxity factor specifies the amount of

available slack time in the execution window of jobs in the

workload and is used to generate the deadline of all jobs. Laxity

factor is defined as one plus the ratio of laxity of job j to the sum of

execution times of all tasks in j where job laxity is defined as:

𝐿𝑎𝑥𝑖𝑡𝑦 (𝑗𝑜𝑏 𝑗) = 𝑑𝑗 − ∑ 𝑒𝑡

𝑡∈𝑇𝑗

− 𝑠𝑗 (3)

Workloads with a higher laxity factor allow for a greater degree of

freedom in the scheduling of tasks due to relaxed job deadlines.

3.3 System Model
Each task defined in the input workload is mapped and scheduled

onto one of m cloud resources in the set R = {r1,r2,…,rm}. The

model for each cloud resource ri has: (1) a map task capacity

(number of map slots) cr
map, (2) a reduce task capacity (number of

reduce slots) cr
red, and (3) a processor P. Parameters cr

map and cr
red

specify respectively the maximum number of map and reduce tasks

which can be executed in parallel on the resource at any given point

in time. Each task slot can be modeled as an independent core in

the processor P which has: (1) a discrete set of frequency-voltage

pairs which lists the valid processor operating frequencies and

corresponding supply voltages and (2) a halt percentage, h, which

defines the power consumed while idle as a percentage of the power

consumed while operating at fhigh. These parameters are used to

determine the amount of energy consumed by each resource slot

when executing tasks or idling. In line with other research in this

area [13], this paper assumes a homogenous cloud environment

with the same processor P used to model the energy consumption

of each of the cloud resources in R.

4. PROPOSED TECHNIQUE
This section describes the energy aware DVFS-based resource

management approach. The CP model objective function and

constraints are presented in Table 1.

The CP model has the following decision variables:

 A binary variable xtr, which is set to 1 if task t is assigned to

resource r and set to 0 otherwise. There is an xtr variable for each

combination of tasks in T and resources in R.

16

 An integer variable at, which specifies the scheduled start time

for task t. There is an at variable for each task in T.

 An integer variable ct, which specifies the execution duration for

task t. ct determines the amount of frequency scaling applied to

the execution of task t. There is a ct variable for each task in T.

 A binary variable Nj, which is set to 1 if job j misses its

deadline and set to 0 otherwise. There is an Nj variable for each

job in J.

Table 1. CP Model: Objective Function and Constraints (con)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑃(
𝑒𝑡

𝑐𝑡
𝑡∈𝑇

𝑓ℎ𝑖𝑔ℎ) ∗ 𝑐𝑡 + ℎ ∗ 𝑃(𝑓ℎ𝑖𝑔ℎ)

∗ (∑ (max
𝑡∈𝑇

(𝑎𝑡 + 𝑐𝑡) ∗ (𝑐𝑟
𝑚𝑎𝑝

+ 𝑐𝑟
𝑟𝑒𝑑)

𝑟∈𝑅

− ∑ 𝑥𝑡𝑟 ∗ 𝑐𝑡

𝑡∈𝑇

)) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

∑ 𝑥𝑡𝑟 = 1 ∀ 𝑡 ∈ 𝑇

𝑟∈𝑅

 (con1)

(𝑎𝑡 ≥ 𝑠𝑗 ∀ 𝑡 ∈ 𝑇𝑗
𝑚𝑎𝑝

)∀ 𝑗 ∈ 𝐽 (con2)

(𝑎𝑡` ≥ max
𝑡∈𝑇𝑗

𝑚𝑎𝑝
(𝑎𝑡 + 𝑐𝑡) ∀ 𝑡` ∈ 𝑇𝑗

𝑟𝑒𝑑) ∀ 𝑗 ∈ 𝐽 (con3)

(max
𝑡∈𝑇𝑗

𝑟𝑒𝑑
(𝑎𝑡 + 𝑐𝑡) > 𝑑𝑗 ⟹ 𝑁𝑗 = 1) ∀ 𝑗 ∈ 𝐽 (con4)

(𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒((𝑎𝑡|𝑥𝑡𝑟 = 1), (𝑐𝑡|𝑥𝑡𝑟 = 1), 1, 𝑐𝑟
𝑚𝑎𝑝)∀ 𝑡

∈ 𝑇𝑟
𝑚𝑎𝑝

))∀𝑟 ∈ 𝑅
(con5)

(𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒((𝑎𝑡|𝑥𝑡𝑟 = 1), (𝑐𝑡|𝑥𝑡𝑟 = 1), 1, 𝑐𝑟
𝑟𝑒𝑑)∀ 𝑡

∈ 𝑇𝑟
𝑟𝑒𝑑))∀𝑟 ∈ 𝑅

(con6)

∑ 𝑁𝑗 ≤ |𝐽|

𝑗∈𝐽

∗ 𝑑 (con7)

(𝑥𝑡𝑟 ∈ {0,1}∀ 𝑡 ∈ 𝑇) ∀ 𝑟 ∈ 𝑅 (con8)

𝑁𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝐽 (con9)

(𝑐𝑡 ∈ ℤ | 𝑒𝑡 ≤ 𝑐𝑡 ≤ 𝑒𝑡

𝑓ℎ𝑖𝑔ℎ

𝑓𝑙𝑜𝑤

) ∀ 𝑡 ∈ 𝑇 (con10)

𝑎𝑡 ∈ ℤ ∀𝑡 ∈ 𝑇 (con11)

Explanation of Constraints: the input of the CP model comprises

of a set of jobs J which are executed on a set of resources R. Each

task must be mapped to exactly one cloud resource (con1). Each

task belonging to job j can only begin at or after job j’s earliest start

time, sj (con2). All map tasks in the set Tj
map must be completed

before reduce tasks in the set Tj
red

 can begin execution (con3).

Finally, the capacity limits of each resource in R cannot be violated

at any point in time (con5 and con6).

Constraints (con1) to (con6) adapted from [9] (modified to suit

current research requirements) ensure that these general

matchmaking requirements are satisfied and the resulting output

schedule is valid. con7 guarantees that the output schedule meets

the client specified grade of service by limiting the number of jobs

which are permitted to miss their deadlines to less than the missed

deadline ratio, d. The remaining constraints, (con8) to (con11),

define the domains of the decision variables.

con5 and con6 are expressed using the global constraint

cumulative. The cumulative constraint requires two input

parameters: a collection of tasks and a limit. Each task in the

collection has an associated start time, duration, and resource

requirement. The cumulative constraint ensures that the sum of the

resource requirements of tasks in the collection which have an

overlap in their scheduled execution do not exceed the specified

limit at any point in time. The resource requirement of each task is

set to one because each task executes on exactly one slot.

Explanation of objective function: the objective of the CP

implementation is to generate an output schedule, which includes

the allocation of tasks to resources, scheduled start time of tasks,

and scheduled end time of tasks, that minimizes the energy required

to execute a batch of MapReduce jobs. The calculation of energy

consumption, shown in the CP model formulation objective

function (see top of Table 1), is broken down into two components:

Task Energy and Idle Energy.

Task Energy is the energy consumed by resources to execute tasks

in the workload. The energy required to execute a given task can

be expressed as 𝐸𝑡 = 𝑃(
𝑒𝑡

𝑐𝑡
𝑓ℎ𝑖𝑔ℎ) ∗ 𝑐𝑡 where P(x) is a function that

returns the power when the processor operates at frequency x.

Idle Energy is the component of total energy consumption due to

processor cores in halt state C1 during workload execution. Recall

that power consumption in this state is dependent on halt

percentage, h, and can be expressed as 𝑃𝐶1 = ℎ ∗ 𝑃(𝑓ℎ𝑖𝑔ℎ). The

duration a given resource is in state C1 can be calculated as the

batch completion time multiplied by the number of cores minus the

total execution time of all tasks executed on that resource.

The CP model is expressed in Java using IBM ILOG CPLEX

Concert Technology and solved using the CPLEX CP Optimizer

Java API [6].

5. PERFORMANCE EVALUATION
Performed experiments simulate the scheduling and execution of a

batch workload on a closed system to evaluate the performance

achieved by the energy aware MapReduce resource manager. Each

experiment concluded after all workload tasks were successfully

scheduled and the output schedule was generated. Workload

execution was simulated using the output schedule to determine

batch completion time and energy consumption.

The performance of the proposed energy aware resource manager

(System II) was compared against “Approach 3” (System I) from

[9], a resource management approach for batch workloads subject

to SLAs that include soft deadlines with the primary objective of

minimizing the number of missed deadlines, based on the following

metrics:

 Energy consumption (E): total energy consumed to execute the

batch workload.

 Batch Completion time (C): time at which the last task in the

batch workload finishes execution.

 Number of missed deadlines (N)

Note that due to the size and complexity of the matchmaking and

scheduling problem, the CPLEX CP Optimizer is unable to prove

that a solution is optimal in a reasonable amount of time. Execution

time of the CPLEX CP Optimizer is limited to 1% of the total

execution time of all tasks in the workload. The output schedule is

not guaranteed to be optimal but is the best solution found within

the limited time. Experiments with higher time limits yielded

negligible improvement in system performance.

5.1 Workload Description
Table 2 presents the system and workload parameters used to

compare the performance of System I and System II. This synthetic

workload is similar to those used by other researchers and is

adapted from [9].

The earliest start time, map task execution times, and reduce task

execution times for each job are generated using a discrete uniform

distribution. Job deadlines are calculated as the sum of execution

times of all the tasks in the job (ej
tot) multiplied by laxity factor, l

plus earliest start time. The ceiling function is used to ensure that

17

the resulting deadline is an integer as required by the algorithm

implementation.

Table 2. Workload and System Parameters

 Jobs (sj and dj in
seconds)

Task execution
times (in seconds)

Resources

medium n = 10:
sj ~DU(1,50)

dj = ⌈𝑠𝑗 + 𝑒𝑗
𝑡𝑜𝑡 ∗ 𝑙⌉

kjmap = 10
kjred = 5

etmap ~ DU(1,25)
etred ~ DU(1,75)

m = 15:
crmap = 2
crred = 2

small n = 5:
sj ~DU(1,50)

dj = ⌈𝑠𝑗 + 𝑒𝑗
𝑡𝑜𝑡 ∗ 𝑙⌉

kjmap = 10
kjred = 3

etmap ~ DU(1,15)
etred ~ DU(1,75)

m = 10:
crmap = 2
crred = 2

The resource management process does not depend significantly on

the size of input data. As input data size increases, there is a

corresponding increase in either number of map tasks or map task

execution time. Matchmaking and scheduling of this larger set of

input tasks is performed by the resource manager in the same way.

Performance for various input data sizes can be investigated by

varying either the mean of the discrete uniform distribution which

determines map task execution time or the number of map tasks.

The performance of the energy aware resource manager was

evaluated for small and medium scale workloads. Because the

energy aware resource manager takes advantage of excess slack in

the execution window of jobs to reduce the processor operating

frequency during the execution of some tasks it was believed that

workloads with a small number of tasks may not benefit

substantially from this approach. Investigation of the performance

for small workloads was deemed worthwhile for this reason.

5.2 Processor Description
The processor model used in this research is based on the

frequency/voltage pairs for the Intel Core i7-2760QM presented in

[11]. These operating configurations are shown in Table 3.

Table 3. Intel Core i7-2760QM Operating Configurations

Frequency (MHz) Voltage (V) Power (W)

2400 1.060 𝛿 *2696.64

2000 0.970 𝛿 *1881.8

1600 0.890 𝛿 *1267.36

800 0.760 𝛿 *462.08

The power consumed in each frequency/voltage configuration is

calculated using equation 1 and shown in the Power column of

Table 3. A linear regression of these resulting power values is used
to express power as a function of operating frequency:

𝑃 = 𝛿 ∗ (1.364𝑓 − 741.81) (4)

The correlation coefficient for this linear regression was found to

be 𝑅2 = 0.9699.

The power estimate presented in equation 4 is based on empirical

measurements of processor supply voltage performed by

researchers in [11] and is valid only for frequencies between fhigh

and flow.

5.3 Experimental Results
The experiments were performed on a PC running under Windows

7 Professional with a 3.2GHz Intel Core i5 CPU and 4GB of RAM.

Reduced energy consumption for the energy-aware MapReduce

resource manager can be expected when running the solver on a PC

with a faster CPU and more memory. However, these

improvements have been observed to be negligibly small. Each

experiment was repeated to generate confidence intervals at a 95%

confidence level with intervals within ±5% of the mean.

The experiments use a one-factor-at-a-time approach to observe the

impact of varying system parameters on overall performance.

Laxity factor and missed deadline ratio are varied independently

while other system and workload parameters are held at their

default values. Default values for laxity factor, missed deadline

ratio, and halt percentage are set to 0.6, 0.1, and 5% respectively.

Experiments performed using other combinations of parameters

showed similar trends. The energy consumption of System I and
System II is expressed as energy savings which is calculated as:

𝐸𝑠𝑎𝑣𝑖𝑛𝑔𝑠 = (1 −
𝐸(𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼𝐼)

𝐸(𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼)
) ∗ 100% (5)

5.3.1 Medium Workload
Effect of laxity factor (l): The impact of varying laxity factor, l, on

batch completion time and energy savings for the medium

workload can be seen in Figure 1a and Figure 1b respectively. It

can be seen that increasing laxity factor results in an increase in

energy savings and the batch completion time for System II.

Figure 1a. Impact of Laxity Factor on Batch Completion Time

for Medium Workload

Figure 1b. Impact of Laxity Factor on Energy Savings for

Medium Workload

Energy savings and batch completion time for System II do not

significantly increase for values of laxity factor above 1. As laxity

factor increases, the slack time in the execution window of jobs in

the workload increases. System II takes advantage of this slack by

reducing execution frequency of some tasks to minimize energy

consumption. Additional slack does not further reduce energy

consumption or increase batch completion time for System II once

all tasks in the workload are executing at the minimum frequency.

Effect of missed deadline ratio (d): The impact of varying missed

deadline ratio, d, on batch completion time and energy savings for

the medium workload can be seen in Figure 2a and Figure 2b

respectively. As expected, the results show that as missed deadline

ratio increases, batch completion time and energy savings increase.

18

Figure 2a. Impact of Missed Deadline Ratio on Batch

Completion Time for Medium Workload

Figure 2b. Impact of Missed Deadline Ratio on Energy

Savings for Medium Workload

Although the output schedule for System II results in a later batch

completion time in all cases compared to System I this does not

indicate a reduction in service quality because the total number of

missed deadlines never exceeds the limit specified by the missed

deadline ratio. A summary of the tradeoff between increase in batch

completion time and energy savings is presented in Table 4.

Increase in batch completion time for System II with respect to

System I can be expressed as:

∆𝐶 = 𝐶 (𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼𝐼) − 𝐶(𝑓𝑜𝑟 𝑆𝑦𝑠𝑡𝑒𝑚𝐼) (6)

Table 4. Completion Time and Energy Savings Tradeoff

Increase in Completion Time (s) 110 125 130 145 160

Energy Savings (%) 25 30 33 40 42

System II takes advantage of the relaxation of the grade of service

parameter to save energy by reducing execution frequency of some

tasks thereby delaying completion of the workload.

5.3.2 Small Workload
Effect of laxity factor (l): The impact of varying laxity factor, l, on

batch completion time and energy savings for the small workload

can be seen in Figure 3a and Figure 3b respectively. A similar trend

compared to the medium workload can be observed: increasing

laxity factor causes a corresponding increase in both energy savings

and batch completion time.

It is interesting to note that the knee of the energy savings graph is

observed at laxity factor approximately equal to 0.7 for the small

workload compared to approximately 1.0 in the medium workload.

After this point, further increasing the laxity factor does not

substantially impact either energy savings or batch completion time

of System II. It is believed that at this knee point the majority of

workload tasks are scheduled to execute at the minimum allowed

processor operating frequency and further increasing laxity in job

deadlines has only marginal impact on performance. The lower

knee point suggests that although fewer resources are used, the

resources are more lightly loaded in the small workload

experiments compared to in the medium workload experiments.

Figure 3a. Impact of Laxity Factor on Batch Completion Time

for Small Workload

Additionally, the possible energy savings and relative increase in

batch completion time for System II are smaller in the small

workload than observed in the medium workload. Because the

small workload contains significantly fewer total tasks compared

to the medium workload, there are substantially fewer opportunities

to save energy by reducing the processor frequency during task

execution. Furthermore, because of the lighter workload, idle

energy is a higher proportion of total energy consumption. Since

idle energy is not reduced using this technique, the total possible

energy savings is reduced.

Figure 3b. Impact of Laxity Factor on Energy Savings for

Small Workload

A feasible solution could not be found using either System I or

System II when laxity factor was set to 0.4. For low values of laxity

factor it is possible that the minimum execution time of the longest

task in a job is longer than the jobs permitted execution window. In

this case the job cannot be scheduled without missing its deadline

and, depending on the missed deadline ratio, scheduling the

workload may not be possible.

Effect of missed deadline ratio (d): The impact of varying missed

deadline ratio, d, on batch completion time and energy savings can

be seen in Figure 4a and Figure 4b respectively. A similar trend is

to the medium workload is observed. A full discussion of these

results is not presented due to space considerations.

5.3.3 Number of Missed Deadlines
It should be noted that because the primary objective of System I is

to minimize the number of missed deadlines rather than reduce

energy consumption, fewer jobs will miss their deadlines under

System I than System II. However, in both cases, the number of

missed deadlines will never exceed the grade of service parameter

missed deadline ratio specified by the client. Furthermore, missed

deadline ratio specifies an upper limit to the number of jobs which

are permitted to miss their deadlines. In some cases (specifically

for high values of laxity factor) fewer jobs than permitted will need

to miss their deadlines under System II in order to minimize energy

consumption due to excessive slack in job deadlines.

19

Figure 4a. Impact of Missed Deadline Ratio on Batch

Completion Time for Small Workload

Figure 4b. Impact of Missed Deadline Ratio on Energy

Savings for Small Workload

6. SUMMARY AND CONCLUSIONS
This paper introduces an energy aware resource management

technique for batch workloads of MapReduce jobs subject to SLAs

which include earliest start times, task execution times, and soft

deadlines specified by the user. The technique makes use of

available slack time in the execution window of jobs and applies a

DVFS-based processor frequency reduction to the execution of

some tasks to reduce energy consumption without violating SLAs.

Preliminary performance analysis demonstrates energy savings

between 16% and 45% for varying values of missed deadline ratio,

laxity factor, and workload size using the DVFS-based approach

compared to previous resource management approaches which do

not consider energy. Smaller, but still substantial, energy savings

were observed for workloads with fewer total tasks. The energy

savings were accompanied by small – moderate increases in batch

completion times. Plans for future research include:

 Extensively evaluating performance impact of varying workload

size and processor model including large workloads from [9] and

alternative processor models presented in [11].

 Extending the DVFS-based approach to handle an open stream

of job arrivals subject to SLAs.

 Incorporating MapReduce task execution time prediction

models to evaluate the impact of and devise techniques to handle

error in execution times estimates of MapReduce tasks.

 Enhancing the DVFS-based approach to consider data locality

and data transfer times for performance measurements of an

implementation on a real-world Hadoop Custer.

7. REFERENCES
[1] Cardosa, M., Singh, A., Pucha, H., Chandra, A., "Exploiting

Spatio-temporal Tradeoffs for Energy- Aware MapReduce

in the Cloud," Cloud Computing (CLOUD), 2011 IEEE

International Conference on , vol., no., pp.251,258.

[2] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified

data processing on large clusters. International Symposium

on Operating System Design and Implementation

(December 2004). 137–150.

[3] Íñigo Goiri, Josep Ll. Berral, J. Oriol Fitó, Ferran Julií,

Ramon Nou, Jordi Guitart, Ricard Gavaldí, and Jordi

Torres. 2012. Energy-efficient and multifaceted resource

management for profit-driven virtualized data centers.

Future Gener. Comput. Syst. 28, 5 (May 2012), 718-731

[4] Hamilton, J. “Cooperative expendable micro-slice

servers(cems): low cost, low power servers for internet-

scale services,” in Proc. of the Conf. on Innovative Data

Systems Research, 2009.

[5] Hewlett-Packard Corporation, Intel Corporation, Microsoft

Corporation, Phoenix Technologies Ltd., and Toshiba

Corporation, Advanced Configuration and Power Interface

Specification, Revision 5.0a, December 6, 2011.

[6] IBM. IBM ILOG CPLEX Optimization Studio. Available:

http://www-

03.ibm.com/software/products/us/en/ibmilogcpleoptistud

[7] Kyong Hoon Kim, Buyya, R., Jong Kim, "Power Aware

Scheduling of Bag-of-Tasks Applications with Deadline

Constraints on DVS-enabled Clusters," in Cluster

Computing and the Grid, 2007. CCGRID 2007. vol., no.,

pp.541-548, 14-17 May 2007

[8] Koomey, J. 2011. Growth in data center electricity use 2005

to 2010. Oakland, CA: Analytics Press. August, vol . 1.

[9] Lim, N, Majumdar, S, and Ashwood-Smith, P. 2014.

“Engineering Resource Management Middleware for

Optimizing the Performance of Clouds Processing

MapReduce Jobs with Deadlines”, in Proc. 5Th ACM/SPEC

ICPE Dublin, March 2014.

[10] Rossi, F, van Beek, P, and Walsh, T. 2004. “Chapter 4:

Constraint Programming,” in Handbook of Knowledge

Representation, San Diego, CA: Elsevier Science. 181-211.

[11] Tan, L and Chen, Z. 2015. Slow down or halt: Saving the

optimal energy for scalable HPC systems. in Proc. ICPE,

2015, pp. 241–244.

[12] Verma, A.; Cherkasova, L.; Kumar, V.S.; Campbell, R.H.,

"Deadline-based workload management for MapReduce

environments: Pieces of the performance puzzle," Network

Operations and Management Symposium (NOMS), 2012

IEEE , vol., no., pp.900,905, 16-20 April 2012

[13] Wang, L, von Laszewski, G, Dayal, J, and Wang, F. 2010.

“Towards energy aware scheduling for precedence

constrained parallel tasks in a cluster with dvfs,” in

Proceedings of the 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, ser.

CCGRID ’10. Washington, DC, USA: IEEE Computer

Society, 2010, pp. 368–377.

[14] Wirtz, T and Ge, R. 2011. Improving MapReduce energy

efficiency for computation intensive workloads. Green

Computing Conference and Workshops (IGCC), 2011

International, vol., no,pp.1,8, 25-28.

[15] Yanfei Li, Ying Wang, Bo Yin, Lu Guan, "An energy

efficient resource management method in virtualized cloud

environment," Network Operations and Management

Symposium (APNOMS), 2012 14th Asia-Pacific , vol., no.,

pp.1,8, 25-27 Sept. 2012

20

