
Towards a DevOps Approach for Software Quality
Engineering

Juan F. Pérez, Weikun Wang, Giuliano Casale
Department of Computing
Imperial College London

London, UK
{j.perez-bernal,weikun.wang11,g.casale}@imperial.ac.uk

ABSTRACT
DevOps is a novel trend in software engineering that aims
at bridging the gap between development and operations,
putting in particular the developer in greater control of de-
ployment and application runtime. Here we consider the
problem of designing a tool capable of providing feedback to
the developer on the performance, reliability, and in general
quality characteristics of the application at runtime. This
raises a number of questions related to what measurement
information should be carried back from runtime to design-
time and what degrees of freedom should be provided to the
developer in the evaluation of performance data. To answer
these questions, we describe the design of a filling-the-gap
(FG) tool, a software system capable of automatically ana-
lyzing performance data either directly or through statistical
inference. A natural application of the FG tool is the con-
tinuous training of stochastic performance models, such as
layered queueing networks, that can inform developers on
how to refactor the software architecture.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; D.2.9 [Software Engineering]: Management—Soft-
ware quality assurance; D.2.2 [Software Engineering]: De-
sign Tools and Techniques—Computer-aided software engi-
neering

Keywords
Software Performance Engineering; Quality of Service; Mon-
itoring; Design-time Application Models

1. INTRODUCTION
Recent years have seen the rise of the DevOps approach

for software development [13], which aims at closing the gap
between development and operations, providing timely feed-
back to the application developer to speed-up the develop-
ment cycle. In particular, a number of decisions made dur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WOSP-C’15, January 31, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3340-5/15/01 ...$15.00.
http://dx.doi.org/10.1145/2693561.2693564.

ing development may have a large impact on the application
performance, but the actual effect of such decisions is only
measurable once the application is deployed and monitoring
data is available. The problem is therefore how software per-
formance methods can help bridging the gap between run-
time performance data and the higher level of abstraction
required by the developer to be able to reason on the qual-
ity of an application design and possibly identify refactoring
actions.

In this paper we describe the design of a tool, referred to
as the filling-the-gap (FG) tool, to enhance and automate
the delivery of application performance information to the
developer. The FG tool has two main objectives. The first
objective is to provide the data to parameterize applica-
tion design-time Quality-of-Service (QoS) models, improv-
ing their accuracy, by relying on the monitoring information
collected at runtime. To this end, the FG tool implements
a set of statistical routines to estimate the QoS models’ pa-
rameters, which, given the flexibility of being executed of-
fline, can be computationally intensive and make use of the
extensive datasets collected at runtime, with the aim of pro-
ducing more accurate results. The procedure of executing
the estimation routines aiming at improving the accuracy of
the QoS models is referred to as FG Analysis.

The second objective of the FG tool is to provide the de-
veloper with a report of the application behavior at runtime.
Relevant information includes, among others, the applica-
tion compliance with Service-Level Objectives (SLO)s, the
effective QoS offered, and the deployment cost. Based on
these results, the developer can make informed decisions re-
garding the application architecture and deployment, with
the aim of improving the QoS or reducing the incurred cost.

Recent approaches in software performance engineering
are related to the FG tool. The Palladio Component Model [2]
offers the capability of integrating application component
models with resource and usage models, which can be used
for QoS analysis by means of transformations to perfor-
mance models, such as Layered Queueing Networks (LQN)
[5]. Also, Descartes [3] provides a modeling language that
focuses on online performance prediction. On the other
hand, monitoring frameworks, such as Kieker [15], enable
the application-level performance monitoring, including fil-
ters that allow the selection of data for further analysis.

The FG tool presented in this paper relies on a moni-
toring framework capable of providing both application and
system-level monitoring metrics. As in other tools, such as
Kieker, this information can be used for further analysis of
the application behavior at runtime. The FG tool, however,

5

Monitoring
Platform

Monitoring
History DB

FG Runtime

FG Design
Time

Deployment
Module

QoS Design
Time Model

Figure 1: FG tool architecture

differs from existing approaches in that it can reason on
design-time models, namely extended LQN models, to de-
liver more accurate inferences of the model parameters from
runtime monitoring data. Thus, rather than simply moni-
toring, the FG tool is envisioned as a machine-learning com-
ponent that is aware of the application software architecture,
and can use this to improve parameter learning. The objec-
tive is thus to automatically collect the appropriate moni-
toring information, and execute the estimation routines re-
quired to keep the model up-to-date, allowing the developer
to have a more accurate view of the application performance,
not only through the direct analysis of the monitoring infor-
mation, but also through application of statistical inference
to learn from monitoring data the parameters of the design-
time application models. This enables the developer to test
potential application refactorings using design-time models
that are appropriately parametrized with up-to-date run-
time data.

The remainder of this paper is organized as follows. In
Section 2 we introduce the architecture of the FG Tool. This
is followed in Section 3 by a review of methods that may be
used for performance inference in the FG tool. In sections 4
and 5 we identify the control knobs that the FG Tool should
expose for configuration and analysis. Finally, Section 6
discusses conclusions and future work.

2. ARCHITECTURE
We consider 3 main components for the FG tool: the FG

Design-Time component, the FG Runtime component, and
the Monitoring History Database. We now describe these
components and their interactions.

2.1 Components
As illustrated in Figure 1, the FG Runtime component

is executed with the application, and we assume a moni-
toring platform is in place to collect data relevant for the
application. The FG Runtime component connects to the
monitoring platform to collect the data necessary for FG
analysis, thus this component needs to be configured with
the queries necessary to obtain all the data relevant for FG
analysis. How these data requirements are determined is il-
lustrated in Section 4. The FG Runtime component saves
the received data, maybe after some pre-processing into the
Monitoring History DB. This DB is the second component
of the FG tool, storing all the monitoring data relevant for
FG analysis. Since this data can grow large very easily, both
sampling and pre-processing can be implemented in the FG

Developer - QoS
Enginneer

FG Design Time History DBFG Analyzer

1. Deploy
1.1 Monitoring Data Request

Monitoring Data

1.2 Run FG Analysis

FG Analysis Results

2. Request Report

2.1 Monitoring Data Request

Monitoring Data

Report

Figure 2: Filling the Gap workflow

Runtime component to limit the amount of monitoring data
stored in the Monitoring History DB.

The third component of the FG tool is the FG Design-
Time component, which executes the estimation routines
to update the parameters of the application QoS models.
To this end, it accesses the Monitoring History DB to re-
trieve the relevant data, process it, and provide it as input
to the implemented estimation methods, as those described
in Section 3. The result of this analysis is passed to the
QoS Design-Time models by means of common XML files,
timestamped so that the developer can select the parameters
obtained in different conditions. For instance, the developer
can implement a modification to the application architec-
ture, expecting a QoS gain. When the application is de-
ployed, the FG tool will save and analyze the monitoring
data, providing a new set of parameter values for the QoS
models, which are specific for this deployment. The devel-
oper can use this information to test if the QoS expected
with a given design was in fact achieved.

2.2 Workflow
Having defined the FG components and their roles, we

now present the workflow for FG analysis. The operation of
the FG component can be divided in three main stages, as
follows:

1. Deployment and Configuration: this step is performed
by the user, interacting with the FG Design-time com-
ponent, to launch and configure the FG tool.

2. Analysis: this step is performed by the FG Design-
Time component, to execute the FG analysis.

3. Reporting: in this step the user interacts with the FG
Design-time component to obtain information about
the behavior of the application at runtime, including
results from the FG analysis.

These steps are depicted in Figure 2, which illustrates the
FG tool workflow. As mentioned in the previous section,
the user interacts with the FG Design-Time component to
launch and configure the FG analysis (e.g., the frequency
with which it must be executed). This information is used
by the FG Design-Time component to perform the FG Anal-
ysis, for which it must first query the Monitoring History DB
to obtain the necessary information. The user can also inter-
act with the FG Design-Time component to obtain reports
about the application effective QoS, as well as about the
results of the FG analysis.

6

3. ESTIMATION TECHNIQUES FOR FG
One of the ultimate objectives of the FG tool is to provide

accurate estimates for the parameters of the design-time ap-
plication QoS models. These QoS models can be queueing
networks, layered queueing networks, or other abstractions
that support QoS analysis based on a description of the ap-
plication main characteristics. In fact, these QoS models
should be able to handle what-if analyses performed at de-
sign time, as well as to support optimization routines, e.g.,
for optimal resource provisioning. Typically, these models
are initially parametrized using expert-knowledge or data
collected in small deployments. The FG tool aims at obtain-
ing estimates based on monitoring data collected at runtime,
once the application has been deployed, improving the de-
veloper knowledge of the application offered QoS.

For the FG tool, we are particularly interested in layered
queueing network models [5], which capture the contention
experienced when multiple users attempt to access the avail-
able hardware and software resources, and the interaction
between them. Further, we focus on closed models as these
are well-suited for software systems, which can be seen as
being composed of layers, the interactions of which are typ-
ically caused by admission control or finite threading lim-
its [14]. However, the methodology can be easily extended
to open models. To parameterize these models it is necessary
to estimate the inter-request submission times, modeled as
think times, as well as the resource consumption exerted by
each request. Inter-request times are easy to obtain, since
this information (or data from which this can be extracted)
is typically tracked by application- or container-level logs.

Resource consumptions, also called demands, are how-
ever harder to obtain as these are not explicitly tracked
by logs, and the deep monitoring instrumentation typically
required pose unacceptably large overheads, especially at
high resolutions. Since application requests can complete in
a few milliseconds, individual monitoring becomes too ex-
pensive to perform in a production system. To cope with
this issue, our approach is to take coarse-grained measure-
ments and apply statistical inference to obtain mean re-
source demand estimates. Existing mean demand estima-
tion approaches mainly rely on regression against utilization
data [6, 8, 10, 17]. However, utilization measurements are
not always available, for example, in Platform-as-a-Service
(PaaS) deployments where the resource layer is hidden to the
application and thus protected from external monitoring.

To overcome these issues we have recently proposed two
methods for demand estimation that avoid the use of uti-
lization measurements, and are therefore suitable for appli-
cations deployed on both IaaS and PaaS. The first one is
the Gibbs sampler in [16], referred to as GQL, is based on
measurements of the outstanding number of requests at each
resource, which is equivalent to the queue length in queueing
models. These measurements can be obtained from applica-
tion and container logs, by looking only at requests’ arrival
and departure timestamps. The second method [12], re-
ferred to as MINPS, is based on response-time data, which
can be obtained by active probing or by simple injection of
timers in the application code.

In addition to these methods, the FG tool implements
existing demand estimation methods, particularly to take
advantage of utilization measurements available on IaaS de-
ployments. The tool supports the following three exist-
ing demand estimation methods: the utilization-based opti-

Table 1: Information required by the QoS model

Info set Item Struct. Estim.

Resources (CPUs, disks) X

Resource Resource multiplicity
(number of cores)

X

Resource scheduling pol-
icy

X

Request classes (URIs) X

User population X

Workload Sequence of resources
used by each request
class

X

Resource consumption of
each request class

X

Users’ think time X

Environment

Environmental stages X

Average duration of each
stage

X

Transition probabilities
between stages

X

Efficiency factor in each
stage

X

mization (UBO) method from [9], the utilization-based re-
gression (UBR) method from [17], and the FCFS regression
method from [7].

4. FG CONFIGURATION
In this section we provide additional details regarding the

configuration of the FG Analysis.

4.1 User input
For ease of use, the FG tool should require a limited input

from the user. This information will be

• Frequency (F): this parameter is used to determine with
which frequency the FG analysis must be run. It is
expected to be run sporadically, since the FG analysis
relies on computationally-intensive estimation routines,
and these routines provide better results if more moni-
toring information is available. During the test stage, the
FG analysis could be run daily to rapidly gain knowledge
about the application behavior, but once in production
the FG analysis is expected to be run on a monthly basis.

• Horizon of analysis (H): this parameter defines the length
of the observation interval used for FG analysis. If this is
set equal to x hours, it means that only the data collected
during the last x hours is considered for FG analysis.

• Monitoring Intensity (MI): this parameter is used to de-
termine how intensive the data collection must be, set-
ting the value of a single parameter in the range (0, 100].
The value x of this parameter indicates that x% of the
total available samples are collected randomly. A value
of 100 would therefore imply the collection of all avail-
able samples, increasing the data-collection overhead,
but limiting the time necessary to obtain a significant
number of samples. Therefore, large values are suggested
for test deployments, while small values are best suited
for production.

7

Table 2: Monitoring Data required for the FG analysis

Parameter Data Required
Level Platform

Data Collector
App. VM IaaS PaaS

Population Total Number of requests X X X App. DC

Resource
Consumption

Utilization X X Sigar/Collect

Throughput X X X App. DC

Queue Length X X X App. DC

Response Times X X X App. DC

Queue Length (arrival) X X X App. DC

Think time

Throughput X X X App. DC

Total Number of Requests X X X App. DC

Mean Number Requests X X X App. DC

Stage duration,
transition probs.
and efficiency

Start-up duration X X Start-up DC

Availability (Up/Down) X X Availability DC

CPU Steal X X Collectl

• Maximum Collection Window (MCW): some of the esti-
mation methods for FG analysis require a complete trace,
that is, a record with all the events (e.g. all the calls to an
application method) in a time interval. As this requires
the activation of a significant number of data collectors,
which may incur in undesired overhead, the MCW pa-
rameter allows the user to fix the maximum length of
the collection period where complete traces are being col-
lected. This means that the data collectors required for
complete data traces will be activated during a period of
maximum length MCW, and then deactivated for a pe-
riod long enough to comply with the MI parameter. For
testing, the MCW parameter can be set to a large value,
posing little or no constraints to the data collection. For
production, the MCW can be set to a small value, in the
order of minutes, which together with a small MI guar-
antee little overhead to collect the data required by the
FG component.

4.2 FG setup
This is an automatic step that determines which routines

need to be run in the FG Analysis, and what monitoring
information must be collected for this purpose. Since the
main objective of the FG Analysis is to parameterize the
design-time QoS model, this model determines the specific
requirements in terms of monitoring information. Here we
focus on a QoS model based on Layered Queueing Net-
works [5, 14], which can be evaluated with tools such as
LQNS or LINE [11]. We consider the extended LQN model
underlying LINE, which adds to the standard LQN a random
environment to describe changes in the application beyond
the control of the application manager [4]. A random envi-
ronment can model for instance temporary VM failures or
high-contention in virtualized deployments. For this model
we determine the three main sets of information required as
listed in Table 1. We also indicate if each of the items cor-
responds to structural information, or if it can be estimated
using monitoring data.

From the last column in Table 1 we identify six parameter
sets that can be estimated, and must therefore be provided
by the FG analysis using the monitoring data collected at
runtime. We now consider the information sources needed
for each of these parameters. The data monitors/collectors
mentioned are assumed to be provided by a monitoring sys-

tem, for example the MODAClouds monitoring platform
[1]. Table 2 summarizes the following description, indicat-
ing whether a metric is available at IaaS or PaaS level, and
which data collector is able to collect this information.

Population: to estimate the total user population we
need to record the number of active requests executing each
of the main application methods. We therefore setup a mon-
itor for the execution of each of these methods.

Resource consumption: to estimate the resource (CPU)
consumption there are a number of alternative methods,
based on different sets of information, as discussed in Section
3. We consider three main options:

• Utilization and throughput: a number of methods use
these two quantities to estimate the CPU consumption
for each request class. The utilization information is
only available in IaaS deployments, and will therefore
be collected only in those cases. Thus, for IaaS deploy-
ments, we setup a VM-level utilization collector. For
the throughput, we need to track the number of calls to
each application method in the QoS model. We therefore
setup an application-level data collector to register the
calls to each of these methods.

• Queue lengths: one of the methods presented in Section
3 relies on the queue lengths at each resource, which is
equivalent to the number of threads executing each ap-
plication method in each resource. To collect this data
we rely on an application monitor for each method, that
register the calls to each method and its corresponding
response time. From this information, it is possible to re-
construct the number of threads executing each method
as a function of time, from which the time-average queue
lengths can be readily obtained.

• Response times and queue lengths at arrival time: Sec-
tion 3 also describes an estimation method based on the
response times attained by a thread executing an appli-
cation method, and on the number of threads executing
the same method, as observed by the thread just before
it starts execution. As in the previous case, this informa-
tion can be collected by setting an application monitor
for each application method that register the time of each
call to the method and the response time experienced by
the calling thread.

Think time: the mean think time is an unobserved quan-

8

tity that can be obtained by indirect measurements. Specif-
ically, using Little’s law, we can estimate the mean waiting
time as the ratio between the mean number of inactive users
and the overall request throughput. For the overall request
throughput we setup a monitor for each of the main appli-
cation methods, to register the successful execution of each
of these methods. Summing up the number of executions
of these methods over a time interval provides an estimate
of the overall throughput. On the other hand, the mean
number of inactive users can be obtained as the difference
between the total population and the mean number of active
users. These two quantities can be obtained using the mon-
itors described above to obtain the total population. Notice
that for open models, we can replace the estimation of pop-
ulations and think times by that of the request arrival rate,
which can be obtained similarly to the throughput.

Stage duration: the extended LQN model we consider
includes four random-environment stages, namely start-up,
failure, low and high contention. These stages describe the
state of the resources on which the application is deployed.
To estimate the mean duration of a sojourn in each of these
stages we require different monitoring information.

Start-up: for the duration of this stage we need to setup
a VM-level collector to register the start-up times of the
VMs on which the application is deployed.

Failure: in this case we setup an availability monitor on
the VM state, which registers an up or down state. From
this information it is possible to re-construct the length
of the up and down periods, and to estimate the mean
duration of the failure stage.

Low/High contention: for these two phases we first need
the length of the up period, collected in the previous
item. Next, we need to identify periods where the un-
derlying resource is being heavily used by other applica-
tions. To this end, we set up VM-level monitors on the
CPU Steal Time, which is the percentage of time that
the hypervisor assigns the CPU cycles to a process dif-
ferent from the application VM. This information can be
later processed to differentiate periods of low and high
contention, and to extract the mean durations of these
periods. Notice that these measurements are available
for IaaS platforms, but not on PaaS deployments. The
case of PaaS will be considered as part of future work.

Stage transition probabilities: the estimation of the
stage transition probabilities can be done with the same
monitors deployed for the stage duration. From the in-
formation collected by those monitors we can determine,
for instance, the fraction of times that the completion of
a visit to the failure stage is followed by a visit to the high-
contention stage, versus a visit to the low-contention stage.
These fractions are the maximum-likelihood estimators of
the stage transition probabilities, and are therefore enough
to estimate them.

Stage efficiency factor: the efficiency factor is used to
determine how the resource processing rate changes in each
stage, compared to a baseline. In our case with four envi-
ronmental stages, we take the low-contention stage as the
baseline, and therefore its efficiency factor is 1. For the
start-up and failure stages, the efficiency factor is 0, since
the resources cannot process any request in these stages.
The estimation is then limited to the high-contention stage,
where its efficiency factor HC < 1 reflects that the appli-

cation VM receives less CPU cycles compared to the low-
contention stage. The estimation in this case is performed
using the CPU Steal Time, for which a monitor has already
been deployed to estimate the stage duration.

5. FG ANALYSIS
In this section we describe how the FG analysis is exe-

cuted. The information required to configure the FG De-
sign time component are the user-defined parameters (see
Section 4): F, H, MI, and MCW.

• According to the MCW and MI parameters set by the
user, the FG Design-Time component modifies the de-
ployed data collectors, to activate them during certain
time intervals to collect complete traces. After a period
of collection, it deactivates the collectors if necessary to
comply with the user requirements.

• According to the F and H parameters, the FG Design-
Time component executes the routines for FG analysis,
querying the Monitoring History DB to obtain the infor-
mation required during the horizon H, pre-processing it,
and executing the corresponding analysis routine.

The routines available for FG Analysis vary depending on
the parameters to be estimated. Table 3 lists the routines
for each parameter, depending on the data required, and the
type of data pre-processing required, if any. The routines
can be classified in three main groups:

RNT: this is a single routine in charge of estimating the re-
quest numbers and throughputs. The estimation of these
parameters is performed by a single routine because it
entails counting the number of active requests, execut-
ing the main application methods, along the observation
horizon. From these counts, both the request numbers
and their throughputs can be estimated. A time-window
pre-processing is required to divide the observation hori-
zon into smaller intervals, or time-windows, to obtain
observations of the throughput.

ENV: this is a single routine that puts together all the in-
formation available regarding the environmental stages
to determine the mean duration of the visits to each
stage, the stage transition probabilities, and the stages’
efficiency factor. No pre-processing is assumed in this
case as the raw observations are required for estimation.

Resource consumption: this is a group of routines fo-
cused on estimating the request resource consumption.
In this case, a number of routines are available, of which
we consider three here. The GQL and the MINPS are
the estimation methods described in Section 3. As stated
before, the GQL method relies on samples of the queue
lengths, while MINPS requires observations of response
times and queue lengths at arrival times. We also con-
sider UBR, the regression-based technique proposed in
[17] that requires utilization and throughput samples;
UBO, the optimization-based method proposed in [9]
that, in addition, uses average response times; and the
FCFS regression method from [7] that makes use of re-
sponse times and queue length samples. To simplify the
usage of the different estimation methods, we have de-
fined a common data format that includes fields for CPU
utilization, request arrival timestamps, response times,
throughput, and mean response times. In particular, for
the throughput and mean response times, a time-window

9

Table 3: Estimation routines and input data for FG analysis

Parameter Data Required
Preprocessing

Routine
Data Format Time-windows

Population Total Number of requests X RNT

Resource
Consumption

Utilization X X UBR

Throughput X X UBO1

Queue length X X GQL

Response Times X X MINPS

Queue length (arrival) X X FCFS

Think time

Throughput X RNT

Total Number of requests X RNT

Mean Number Requests X RNT

Stage duration and
transition probs.
and efficiency

Start-up duration ENV

Availability (Up/Down) ENV

CPU Steal ENV

processing is required as the observation horizon needs
to be partitioned in smaller time-windows, for each of
which a single observation is obtained.

The results of the FG Analysis, i.e., the values of the es-
timated parameters, are stored in timestamped XML files
that can be used to parameterize the design-time models.

6. CONCLUSION
In this paper, we have introduced a tool to fill the gap

between development and operations. Our focus has been
on designing the tool, identifying architecture and user re-
quirements. We believe that the main contribution of this
paper is to highlight, given the large number of performance
parameters that could be exposed in the feedback loop from
the runtime to the developer, which would be the most rel-
evant from a software performance engineering perspective.
Currently, we are working towards releasing an initial ver-
sion of the tool, which will be made available in Spring 2015
on www.modaclouds.eu.

7. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
FP7/2007-2013 under grant agreement no. 318484 (MODA-
Clouds), and from an AWS in Education Research Grant.

8. REFERENCES
[1] M. Balduini, E. di Nitto, M. Miglierina, V. Munteanu,

G. Casale, J. F. Pérez, and W. Wang. MODAClouds
D6.3.1 - Monitoring platform - initial release, 2013.

[2] S. Becker, H. Koziolek, and R. Reussner. Model-based
performance prediction with the palladio component
model. In Proc. of the 6th WOSP, pages 54–65, 2007.

[3] F. Brosig, N. Huber, and S. Kounev.
Architecture-level software performance abstractions
for online performance prediction. Science of
Computer Programming, 90:71–92, 2014.

[4] G. Casale, M. Tribastone, and P. G. Harrison.
Blending randomness in closed queueing network
models. Performance Evaluation, 82(0):15 – 38, 2014.

1This method also requires average response times.

[5] G. Franks, T. Al-Omari, M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of
layered queueing networks. IEEE Trans. Soft. Eng.,
35:148–161, 2009.

[6] A. Kalbasi, D. Krishnamurthy, J. Rolia, and
S. Dawson. Dec: Service demand estimation with
confidence. IEEE Trans. Soft. Eng., 38:561–578, 2012.

[7] S. Kraft, S. Pacheco-Sanchez, G. Casale, and
S. Dawson. Estimating service resource consumption
from response time measurements. In Proc. of the 4th
VALUETOOLS, 2009.

[8] D. Kumar, L. Zhang, and A. Tantawi. Enhanced
inferencing: estimation of a workload dependent
performance model. In Proc. of the 4th
VALUETOOLS, 2009.

[9] Z. Liu, L. Wynter, C. H. Xia, and F. Zhang.
Parameter inference of queueing models for IT
systems using end-to-end measurements. Performance
Evaluation, 63(1):36–60, 2006.

[10] D. Menascé. Computing missing service demand
parameters for performance models. In CMG 2008,
pages 241–248, 2008.

[11] J. F. Pérez and G. Casale. Assessing sla compliance
from palladio component models. In Proc. of the 2nd
Workshop on Management of resources and services in
Cloud and Sky computing (MICAS), 2013.

[12] J. F. Pérez, S. Pacheco-Sanchez, and G. Casale. An
offline demand estimation method for multi-threaded
applications. In MASCOTS, pages 21–30, 2013.

[13] J. Roche. Adopting devops practices in quality
assurance. Commun. ACM, 56(11):38–43, 2013.

[14] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Trans. on Soft. Eng., 21(8):689–700, 1995.

[15] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring
and dynamic software analysis. In Proc. of the 3rd
ICPE, 2012.

[16] W. Wang and G. Casale. Bayesian service demand
estimation using gibbs sampling. In MASCOTS, 2013.

[17] Q. Zhang, L. Cherkasova, and E. Smirni. A
regression-based analytic model for dynamic resource
provisioning of multi-tier applications. In Proc. of the
4th ICAC, 2007.

10

