
Software Performance Engineering Then and Now: A
Position Paper

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640 USA

www.spe-ed.com

ABSTRACT
Software Performance Engineering (SPE) is about develop-
ing software systems that meet performance requirements.
It is a proactive approach that uses quantitative techniques
to predict the performance of software early in design to
identify viable options and eliminate unsatisfactory ones be-
fore implementation begins. Despite its effectiveness, per-
formance problems continue to occur. This position paper
examines the evolution of SPE. It often helps to re-examine
history to see if it yields insights into the future. It concludes
with some thoughts about future directions.

General Terms
Software Performance Engineering, Performance Modeling,
Performance Requirements

1. INTRODUCTION
Software Performance Engineering (SPE) [3] is about de-
veloping software systems that meet performance require-
ments. It is a proactive approach that uses quantitative
techniques to predict the performance of software early in
design to identify viable options and eliminate unsatisfac-
tory ones before implementation begins. Software perfor-
mance models enable the evaluation of trade-offs in software
functions, hardware size, quality of results, and resource re-
quirements. This is the heart of the methodology; it also in-
corporates principles and patterns for designing responsive
systems, methods for conducting evaluations, testing for ver-
ification and validation that performance requirements will
be met, strategies for dealing with uncertainty, etc. SPE
is neither a new nor a revolutionary approach. It applies
proven techniques to predict the performance of emerging
software and systems and respond to problems while they
can be fixed with a minimum of time and expense.
Despite its effectiveness, performance problems continue to
occur. The most notable in recent times was the role out of
the healthcare.gov web site and the dramatic performance
failures that resulted. They expected thousands of people
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WOSP-C’15, January 31 2015, Austin, TX, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3340-5/15/01 ...$15.00.
http://dx.doi.org/10.1145/2693561.2693567.

to sign up on the first day, but the performance limitations
meant fewer than 10 actually succeeded. That is just one of
many documented disasters, but it rose to the level of US
Congressional inquiry.
This position paper examines the evolution of SPE. It often
helps to re-examine history to see if it yields insights into
the future. Therefore we examine the origin of SPE, its
development and characteristics over time, its current state
of the art and state of the practice, and what has changed.
It concludes with some thoughts about future directions.

2. SPE ORIGINS
Addressing performance throughout software development is
not a revolutionary proposition; developers routinely sought
performance in the early years of computing [2]. The space
and time required by programs had to be carefully man-
aged so that those programs would fit on very small ma-
chines. The hardware grew, but rather than eliminating
performance problems, it made larger, more complex soft-
ware feasible, and programs became systems of programs.
Performance modeling and assessment of these early systems
was labor-intensive and thus expensive. Analysts used hand-
crafted simulation models. Consequently creating and solv-
ing models was time-consuming, and keeping models up to
date with the current state of evolving software systems was
also problematic. Thus, modeling and evaluation were cost-
effective for only those systems, such as flight-control sys-
tems and other mission-critical embedded systems that had
strict performance requirements. Systems without critical
performance requirements adopted the“fix-it-later”method.
The premises of fix-it-later were:

• Performance problems are rare

• Hardware is fast and inexpensive

• It is too expensive to build responsive systems

• You can tune software later, if necessary

• Efficiency implies “tricky code” which causes mainte-
nance problems

In the late 1970s all of these premises became false. Re-
sulting performance failures were dramatic with the rapid
increases in on-line users and thus the visibility of perfor-
mance problems. The new reality of the fix-it-later premise
became:

Even though hardware was relatively fast and inexpensive,
it was not free. When many new systems required

1

additional, unpredicted hardware expenditures, busi-
nesses were dissatisfied.

SPE, the availability of modeling tools, techniques, and
experts actually increased productivity over fix-it-later
by preventing problems that delay delivery and by pre-
venting tricky-code maintenance problems.

Tuning can always improve performance, but not as much
as appropriate design can, and tuning changes may re-
quire significant implementation efforts that often de-
lay the delivery of urgently-needed software. Tuning
improvements are usually modest compared to the dra-
matic improvements achievable with re-design.

In the early days of computing, hand-crafted code was re-
quired for efficiency. Responsiveness is not the same
as efficient use of computer resources. So responsive-
ness could be achieved by using resources (e.g., caching
information likely to be requested) for responsiveness
(e.g., when it is requested). It was not necessary to
introduce “tricky code” to achieve efficiency.

The SPE approach gained momentum and leading edge com-
panies developing new, large-scale systems adopted SPE.
This was especially true of companies implementing“bleeding-
edge” technology that had not been tried before. There was
no handbook for how to prevent performance problems, and
the resulting performance was visible to a larger and larger
number of users.

3. SPE DEVELOPMENT
From my perspective as an SPE researcher, educator, and
consultant, there was a surge of interest and application of
SPE in the 1980s and 90s and into the early 2000s. Classes
were full, and many companies adopted the proactive SPE
techniques. When progressive organizations began a new
large-scale project with new technology with which they had
no experience, SPE was one of the first technologies they
explored. Occasionally organizations that were not early
adopters created new systems, experienced performance prob-
lems with their first release, and brought in SPE experts to
help them identify and fix problems.

4. NOW
Many organizations continue to use SPE as they always
have. Others have experienced performance problems and
have adopted SPE to correct them. There is still a strong
research component investigating improved SPE modeling
and other techniques. In general, though, there are fewer
organizations using SPE for new development.
Despite the availability of new development methods espe-
cially Model Driven Engineering (MDE), SPE, and other
improvements, a majority of government and other systems
fail to meet requirements on initial delivery. Consider the
data in Figure 1. It is a compilation of data from two sep-
arate investigations one in 1979 and one in 1995. I have
not found more recent published study data, however I have
informally shown this data to many involved in government
system contracting and development and they believe there
is not much difference today.
The number of experts with the ability to manage perfor-
mance during development is dwindling (as evidenced by

Figure 1: Success Data for Government Projects

attendance at performance specialist conferences and mem-
bership in related organizations). Figure 2 shows the atten-
dance over time at Computer Measurement Group (CMG)
conferences. Note that this data is approximate and experi-
ential but the trends are accurate. Performance testers are
still in demand, but more often they are called in after per-
formance failures rather than brought in during development
when changes are easier and problems can be prevented.

CMG Attendance

0

500

1000

1500

2000

2500

75 77 80 86 87 88 89 Peak Now

US

UK

Australia

Italy

Germany

Austria

Canada

Brazil

Figure 2: CMG Attendance

Today, organizations still have significant performance prob-
lems, but either most are not newsworthy or users cope with
poor performance as if it is expected. Perhaps there are
fewer totally new systems with new technology being cre-
ated in IT. There is less interest in the proactive approach
to managing performance. Most performance efforts these
days are focused on measurement and testing.
There are also fewer individuals with expertise in SPE. The
previous generation is retiring and they are not being re-
placed by new people with the same skills. In fact, there are
fewer universities in the US that have courses with depth of
coverage in performance modeling and other SPE skills.

5. FUTURE DIRECTIONS
What should the path forward look like? Are we now at a
phase where the premises for fix-it-later are valid again?
There is still a need for proactive SPE on new system de-
velopment. Embedded and control systems have become
pervasive and they are not like the old ones that had narrow
special purposes and were self contained. Now the control
systems have touch screen user interfaces, talk to the inter-

2

net, and control devices that for years have had only me-
chanical controls. The software is far more complex, and it
is being implemented on traditional operating systems such
as Windows Embedded.
Some challenges include:

• Better educational coverage is needed. In addition to
performance fundamentals, performance modeling and
tools in engineering and computer science, business
schools need coverage of performance management for
projects, case studies, business cases, etc.

• New practitioners seem to be “reinventing the wheel”,
even basic performance measurement and testing tech-
niques. Some of the fundamental performance texts
are out of print.

• Many performance tools are no longer available.

• Many new software development efforts are outsourced;
if contractors are not required to use SPE methods,
they are not likely to do so.

Ken Kolence, the first recipient of CMGs A.A. Michelson
lifetime achievement award for his work in software physics,
long ago told me it would be necessary to have a “shrink
wrap” solution for SPE adoption. He said it is too diffi-
cult to sell a philosophy. Robert Goldberg, co-founder of
BGS the company behind one of the first successful perfor-
mance modeling tools (BEST/1) advised that selling SPE
adoption requires finding someone in the organization who
is motivated to “buy insurance that their project will not
fail,” such as a financial officer, user organizations, etc.
It is clear that we need more and better tools to make it eas-
ier to apply SPE techniques and require less performance ex-
pertise than in the past. This has been a focus of my recent
research. Organizations also need to know that proactive
performance management is possible and the preferable way
to develop new systems.

One last topic for consideration: Insularity revisited. In
1986, Domenico Ferrari [1] proposed that performance eval-
uation was too isolated. We had separate courses in perfor-
mance, separate conferences and publications that were not
integrated with the other areas of computer science that
needed it. He proposed that it would be better to incorpo-
rate performance topics in other courses concerned with de-
sign and implementation, conferences and publications. To-
day some of the more successful university programs in per-
formance are insular. It seems that a critical mass of effort is
needed to make significant advances. Those with only a few
members who attempt to integrate their work with others
seem less successful. Integration into other courses is prob-
lematic when professors do not have sufficient background
in performance engineering so this becomes a “chicken and
egg” problem. Or was Ferrari right, and the insularity is
what caused the decline in performance evaluation in many
universities and in practice?

6. REFERENCES
[1] D. Ferrari. Considerations on the insularity of

performance evaluation. IEEE Transactions on
Software Engineering, 14:21–32, June 1986.

[2] C. Smith. Performance Engineering of Software
Systems. Addison-Wesley, 1990.

[3] C. Smith and L. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable
Software. Addison-Wesley, 2002.

3

