
The CloudScale Method for Software Scalability, Elasticity,
and Efficiency Engineering: a Tutorial∗

Sebastian Lehrig Steffen Becker
{sebastian.lehrig|steffen.becker}@informatik.tu-chemnitz.de

Software Engineering Chair
Chemnitz University of Technology, Chemnitz, Germany

ABSTRACT
In cloud computing, software engineers design systems for
virtually unlimited resources that cloud providers account
on a pay-per-use basis. Elasticity management systems pro-
vision these resource autonomously to deal with changing
workloads. Such workloads call for new objective metrics
allowing engineers to quantify quality properties like scala-
bility, elasticity, and efficiency. However, software engineers
currently lack engineering methods that aid them in engi-
neering their software regarding such properties.

Therefore, the CloudScale project developed tools for such
engineering tasks. These tools cover reverse engineering of
architectural models from source code, editors for manual
design/adaption of such models, as well as tools for the anal-
ysis of modeled and operating software regarding scalability,
elasticity, and efficiency. All tools are interconnected via
ScaleDL, a common architectural language, and the Cloud-
Scale Method that leads through the engineering process. In
this tutorial, we execute our method step-by-step such that
every tool and ScaleDL are briefly introduced.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Scalability, Elas-
ticity, Efficiency ; D.2.9 [Software Engineering]: Manage-
ment—Software quality assurance (SQA); D.2.11 [Software
Engineering]: Software Architectures—Architectural anal-
ysis

Keywords
Tutorial; CloudScale; Cloud Computing; Software; Analy-
sis; Scalability; Elasticity; Efficiency; Metrics; Method; En-
gineering

∗The research leading to these results has received fund-
ing from the European Seventh Framework Programme
(FP7/2007-2013) under grant no 317704 (CloudScale).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688818.

1. MOTIVATION
In cloud computing, software engineers develop applica-

tions on top of compute environments being offered by cloud
providers. For these applications, the amount of offered re-
sources is virtually unlimited while elasticity management
systems provision resources autonomously to deal with chang-
ing workloads. Furthermore, providers bill provisioned re-
sources on a per-use basis [1]. As a consequence of these
characteristics, engineers want their applications to use as
few resources as possible in order to save money while still
maintaining the quality requirements of the system. Quality
properties that focus directly on these aspects are scalability,
elasticity, and efficiency [2].

These quality properties need to be quantified for soft-
ware engineering by means of suitable metrics. For instance,
cloud consumers and cloud providers need to negotiate ser-
vice level objectives (SLOs), i.e., metrics and associated
thresholds [5]. Such SLOs have to consider characteris-
tics like changing workloads (“how fast can an application
adapt to a higher workload?”) and pay-per-use pricing (“how
expensive is serving an additional consumer?”). However,
no established engineering methods and tools supporting
metrics for the mentioned quality properties exist. Cur-
rent methods assume knowledge of implementation details
as they focus on the application at run-time [6].

In literature, methods and tools with support for classi-
cal performance-oriented metrics [3] like response time and
throughput are insufficient for situations relevant for cloud
computing applications. First, they do not take changing
workloads into account, e.g., metrics to describe reaction
times to system adaptations are missing. Second, the de-
gree to which systems match resource demands to chang-
ing workloads cannot be quantified. More recent work [6]
proposes initial metrics for such characteristics that assume
knowledge of implementation details like resource handling.
Therefore, these metrics are inapplicable when such knowl-
edge is unavailable, e.g., in early software engineering phases
such as the software design phase. Accordingly, no existing
method/tool has an appropriate support for software en-
gineers that want to analyze scalability, elasticity, and effi-
ciency properties at the design time of software applications.

To cope with this lack, we developed tools for such engi-
neering tasks in the context of the CloudScale project [4].
These tools cover reverse engineering of architectural mod-
els from source code, editors for manual design/adaption of
such models, as well as tools for the analysis of modeled
and operating software regarding scalability, elasticity, and
efficiency. We derived metrics for such properties in our pre-

329



vious work [2]. All tools are interconnected via ScaleDL, a
common architectural language, and the CloudScale Method
that leads through the engineering process.

The contribution of this tutorial paper is an example-
based, step-by-step execution of our method such that ev-
ery tool and ScaleDL are briefly introduced. Our method
and tools eventually help software engineers in engineering
cloud computing applications. Most interesting, we go be-
yond classical performance metrics like response time and
highlight challenges in cloud computing settings where en-
gineers have to plan for changing workloads and dynamic
resource allocation.

This paper is organized as follows. In Sec. 2, we intro-
duce our running example. Afterwards, we use this example
to walkthrough our CloudScale Method in Sec. 3. Sec. 4
concludes the paper and gives an outlook on future work.

2. EXAMPLE SCENARIO
A software engineer of a company offers a book store as

a Software-as-a-Service (SaaS) solution. The shop has been
used for 15 years. An increase in load is now expected as
a consequence of a new business strategy of selling novel
cloud scalability books. The manager wants the engineer to
ensure that the system – after modernization – can sustain
this increased load.

Based on the general business strategy of the company, the
engineer suggests the manager a modern cloud computing
solution. However, the manager has heard of others that
were disappointed by migrating to the cloud. The manager
is concerned about short term issues such as unacceptable
response times. In addition, he wants to know what the new
system’s operation will cost in the long term (considering the
expected increase in users).

The engineer has heard that CloudScale [4] has some use-
ful tools to analyze systems regarding such issues. Therefore,
he plans to apply these tools and to provide the manager
with detailed analysis results, allowing the manager to get
rid of unpleasant surprises.

The engineer starts with the following. There is already
an existing book store implementation which is implemented
in the classical three layer architectural style (we show a
screenshot of the client UI). This implementation has cur-
rently certain service level objectives (SLOs; e.g., 2 seconds
response time limit). He plans to move this implementa-
tion to Amazon EC2 as one of the popular cloud comput-
ing infrastructures. However, he does not know whether
features like autoscaling will eventually provide the needed
user capacity (because he does not know whether his SaaS
layer scales). As he also has no experience in building cloud
computing systems, he is also unable to tell without either
implementing the system and doing costly tests or without
applying an engineering method like CloudScale’s.

In the next section, we examine each step the engineer
conducted to achieve his goals in detail. After the execution
of these steps, the engineer is able to build a guaranteed scal-
able, elastic, and efficient system while answering all other
questions of the manager. Source code and models of the
book store and for all steps are available at our web page1.
(Note: Our so-called“Cloud Book Store”is based on a legacy
implementation of the TPC-W benchmark.)

1http://www.cloudscale-project.eu/results/
showcase/; Last accessed at 2014/11/29

3. USING THE CLOUDSCALE METHOD
The engineer learns about the CloudScale method2. He

also learns that this method is configurable to support mul-
tiple use cases. His use case is a modernization task. For this
task, the following sequence of activities is recommended:

1. extract a model of the existing application,

2. refine the extracted model with resource demands,

3. analyze the model,

4. spot HowNotTos & resolve with HowTos,

5. reanalyze, and

6. implement, test, and operate when OK.

The following subsections now lead the engineer through
applying these steps; potentially guided by a dedicated Cloud-
Scale tool. All of these tools are included within the Cloud-
Scale Environment3.

3.1 Extractor: Extract Model from Code
The Extractor is a tool for reverse-engineering (partial)

ScaleDL models from Java source code. ScaleDL allows
to specify inter-connected components and their behavior,
hardware resources, user behavior, and special annotations
needed for scalability, elasticity, and efficiency analyses. Ex-
tractor supports the first part of ScaleDL (inter-connected
components and their behavior).

Based on its clustering algorithm, the Extractor summa-
rizes Java classes in such components and their interfaces
(ScaleDL Repository model). For example, the book store
source code involves ∼50 classes that Extractor summarizes
to ∼20 software components. Extractor particularly links
such components via connectors (ScaleDL System model).
Thanks to such models, engineers can get a good overview
of existing software, even if documentation is unavailable.

The engineer follows our screencast for extraction4. In
our experience, such extractions take only a few minutes,
even for larger systems (> 1 million LOC). For extract-
ing ScaleDL models that provide a good overview, engineers
commonly have to try several extractions with varying pa-
rameters for the clustering algorithm. These parameters are
explained in our screen cast as well.

3.2 ScaleDL Editors: Refine & Calibrate
Because the Extractor only provides a partly specified

ScaleDL model, the engineer has to refine the previously
extracted model.

First, he needs to annotate resource demands using our
ScaleDL editors. Therefore, the engineer takes an example
behavior specification of a component, measures the needed
resource demands for that behavior, and puts them into the
model. Our Analyzer series of screen casts explains resource
demand measurement in detail (see same page as the Ex-
tractor screen cast).

2http://www.cloudscale-project.eu/results/method/;
Last accessed at 2014/11/29
3http://www.cloudscale-project.eu/results/
environment/; Last accessed at 2014/11/29
4http://www.cloudscale-project.eu/results/
screencasts/; Last accessed at 2014/11/29

330

http://www.cloudscale-project.eu/results/showcase/
http://www.cloudscale-project.eu/results/showcase/
http://www.cloudscale-project.eu/results/method/
http://www.cloudscale-project.eu/results/environment/
http://www.cloudscale-project.eu/results/environment/
http://www.cloudscale-project.eu/results/screencasts/
http://www.cloudscale-project.eu/results/screencasts/


The engineer repeats resource demand measurement for
all quality-relevant component behaviors. In our experience,
this process takes a maximum of 2 weeks for half a million
lines of code; for the complete cloud book store it took 1
week for an inexperienced engineer.

Second, the engineer adds usage scenarios to the model.
For getting the information he needs for these models, he
asks the manager for the expected load evolution. He models
this evolution using the ScaleDL Usage Evolution editor.
The editor comes with a self-explanatory wizard.

3.3 Analyzer: Analyze
Once finished with ScaleDL’s Usage Evolution model, the

engineer runs CloudScale’s analysis tool – the Analyzer. On
our screen casts page, we demonstrate how and which results
can be obtained using the Analyzer. For example, we show
predicted response times and connect them to previously
stated SLOs.

In our running example, the engineer may observe scala-
bility issues: the system capacity (in terms of the maximum
number of users the system can cope with) is insufficient.
He may also observe too many SLO violations in Analyzer’s
results.

3.4 Spotter: Spot HowNotTos & Resolve with
HowTos

Because the engineer observed too many SLO violations,
he wants to investigate the root causes for these using Cloud-
Scale’s Spotter. Spotter detects scalability, elasticity, and ef-
ficiency anti-patterns utilizing information from the source
code, extracted models, and/or the system in operation.
Such anti-patterns are provided in CloudScale’s catalogue of
HowNotTos5. Our screen casts about CloudScale’s Spotter
exemplify the detection of the one lane bridge anti-pattern.
This anti-pattern is also detected by our engineer.

Therefore, the engineer looks up the Simplified SPOSAD
HowTo (in the CloudScale catalogue for best practices6).
Based on this HowTo, he resolve the found issue resulting
in a new implementation and model.

3.5 Analyzer: Reanalyze
The architect reanalyzes the new model created based on

the Simplified SPOSAD HowTo. He particularly investi-
gates the differences to the previous analysis.

The analysis results indicate a success, which means that
the engineer now can also pay attention to other metrics
generated, e.g., operational costs (checking this long-term
concern was asked for by the manager). In our recent works,
we describe supported metrics [2] and their integration into
CloudScale’s Analyzer [7].

3.6 Implement, Test & Operate
After the engineer achieved satisfying analysis results, he

implements the planned system according to the modified
model. In our scenario, the implementation is fine, testing
does not show any issues any more, and operation really
costs what has been predicted. The manager and the engi-
neer are happy now.

5http://cloudscale.xlab.si/wiki/index.php/
HowNotTos:_Anti-Patterns; Last accessed at 2014/11/29
6http://cloudscale.xlab.si/wiki/index.php/HowTos;
Last accessed at 2014/11/29

4. CONCLUSIONS
In this tutorial paper, we apply the CloudScale method

step-by-step on a running example. For each step, we point
to relevant resources allowing to reproduce our descriptions.
In particular, the running example is available at our web
page7.

This tutorial helps software engineers to learn our method
and to get familiar to our tools and languages for engineer-
ing cloud computing applications. Our engineering method
goes beyond classical performance metrics like response time
and supports challenges in cloud computing settings where
engineers have to plan for changing workloads and dynamic
resource allocation.

In our future work, we will polish our tools and reduce
some remaining manual effort in using them. Where fea-
sible, we will extend our screen casts such that every step
will finally be exemplified in detail. Regarding HowTos and
HowNotTos, we plan to extend our catalogues as we now
have the infrastructure in place. We also recently moved
core parts of our tools to GitHub to make it easier for oth-
ers to contribute8. The CloudScale project ends September
2015 – until then, we plan to finalize these tasks.

5. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[2] M. Becker, S. Lehrig, and S. Becker. Systematically
deriving quality metrics for cloud computing systems.
In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, ICPE ’15,
New York, NY, USA, 2015. ACM. Accepted for
publication.

[3] G. Bolch, S. Greiner, K. S. Trivedi, and H. de Meer.
Queueing Networks and Markov Chains: Modeling and
Performance Evaluation With Computer Science
Applications. 1998.

[4] G. Brataas, E. Stav, S. Lehrig, S. Becker, G. Kopcak,
and D. Huljenic. CloudScale: Scalability Management
for Cloud Systems. In 4th Int. Conf. on Performance
Engineering. ACM, Apr. 2013.

[5] T. Erl, Z. Mahmood, and R. Puttini. Cloud Computing:
Concepts, Technology & Architecture. Prentice Hall,
2013.

[6] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity:
What it is, and What it is Not. In Proceedings of the
10th International Conference on Autonomic
Computing (ICAC 2013), San Jose, CA, June 24–28,
2013.

[7] S. Lehrig and M. Becker. Approaching the Cloud:
Using Palladio for Scalability, Elasticity, and Efficiency
Analyses. Technical Report 2014/05, Proceedings of the
Symposium on Software Performance 2014, University
of Stuttgart, Faculty of Computer Science, Electrical
Engineering, and Information Technology, Nov. 2014.

7http://www.cloudscale-project.eu/results/
showcase/; Last accessed at 2014/11/29
8https://github.com/CloudScale-Project; Last accessed
at 2014/11/29

331

http://cloudscale.xlab.si/wiki/index.php/HowNotTos:_Anti-Patterns
http://cloudscale.xlab.si/wiki/index.php/HowNotTos:_Anti-Patterns
http://cloudscale.xlab.si/wiki/index.php/HowTos
http://www.cloudscale-project.eu/results/showcase/
http://www.cloudscale-project.eu/results/showcase/
https://github.com/CloudScale-Project

	Motivation
	Example Scenario
	Using the CloudScale Method
	Extractor: Extract Model from Code
	ScaleDL Editors: Refine & Calibrate
	Analyzer: Analyze
	Spotter: Spot HowNotTos & Resolve with HowTos
	Analyzer: Reanalyze
	Implement, Test & Operate

	Conclusions
	References



