
Reducing Task Completion Time in Mobile Offloading
Systems through Online Adaptive Local Restart

Qiushi Wang
Department of Mathematics and Computer

Science
Freie Universität Berlin

Takustr.9, Berlin, Germany
qiushi.wang@fu-berlin.de

Katinka Wolter
Department of Mathematics and Computer

Science
Freie Universität Berlin

Takustr.9, Berlin, Germany
katinka.wolter@fu-berlin.de

ABSTRACT
Offloading is an advanced technique to improve the perfor-
mance of mobile devices. In a mobile offloading system,
heavy computations are migrated from resource constrained
mobile devices to powerful cloud servers through a wireless
network connection. The unreliable wireless network often
disturbs system operation. Task completion can be delayed
or interrupted by congestion or packet loss in the network.
To deal with this problem the offloaded jobs can be locally
restarted and completed in the mobile device itself.

In this paper, we propose a dynamic scheme to determine
whether and when to locally restart a task. First, we design
an experiment to explore the impact of packet loss and delay
in unreliable networks on the completion time of an offload-
ing task. Then, we mathematically derive the prerequisites
for local restart and selection of the optimal timeout. The
analysis result confirms that local restart is beneficial when
the distribution of task completion time has high variance.
Further, a dynamic local restart scheme is proposed for mo-
bile applications. This scheme keeps track of the variance of
the probability density function of the distribution of task
completion time. This is done using a dynamic histogram,
which collects and updates data at run time. The efficiency
of the local restart scheme is confirmed by experimental re-
sults. The experiment shows that local restart at the right
time achieves better performance than always offloading.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance; D.2.8
[Software Engineering]: Metrics—performance measures

General Terms
Performance, Reliability

Keywords
Mobile Offloading; Restart; Unreliable Network; Dynamic
Histogram

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688041.

1. INTRODUCTION
In recent years, a large number of applications have been

developed for mobile devices. Obviously, many of these
colourful applications have added convenience to our lives.
For example, tourists will never worry about getting lost in
an unfamiliar city, various navigation applications can pro-
vide the precise route information about any destination a
tourist may want to visit. However, although the inven-
tion of more advanced mobile devices has improved their
computational capability, the implementation of compute
intensive applications is still limited by the constraint of the
mobile device hardware, for example the long time operation
of microchips cannot be sustained by low capacity batteries.
Moreover, this constraint is not merely a temporary techno-
logical deficiency but is intrinsic to mobility [32]. The trend
in development of mobile device architectures and batteries
shows the difficulty to overcome this constraint in the near
future. Therefore, the concept of offloading to the Cloud is
employed to handle performance problems [14]. By migrat-
ing heavy computation to resourceful cloud servers, mobile
devices can overcome the limitation of deficient resources.
Repeated offloading can be necessary in image recognition,
where an image search can be split into several section, that
need repeated offloading. Another scenario where offloading
can be applied is online game, for instance, playing chess
with a computer opponent who is in Cloud.

The smooth offloading of computation from mobile de-
vices to cloud servers depends on a fast and stable net-
work connection, which guarantees seamless communication.
With wireless networks such as WiFi, 3G or LTE, this seems
in principle possible. Unfortunately, the quality of a network
is not constant across space and time. Consequently, the
execution of the offloading task may suffer from long delays
or even failures in the network. In addition, using wireless
connectivity demands high energy[6]. The limited battery
capacity cannot support the mobile device to wait an un-
predictable time for the network to recover, which may take
very long.

As introduced in [44], if the offloading task needs an un-
known time to migrate computation through the unreliable
network connection, re-executing and completing the com-
putations locally by the mobile device can save both time
and energy. This re-execution mechanism is a type of restart.
When the offloading task fails, the mobile device may retry
offloading or restart the task using the resources in the local
mobile device instead of those in the Cloud. In this paper
we only consider local execution after a restart. The key

3

problem behind restart is when to launch it. There clearly
exists a tradeoff between the cost of local or remote retry
and waiting for the offloading to succeed. In [44], a static
method is proposed to find the optimal timeout when to
restart locally by analysing the system performance using
stochastic models. It has been shown through simulation
that the optimal timeout changes when the quality of the
network deteriorates. In this paper we confirm those previ-
ous simulation results by analysing experimental data and
dynamically adapt the optimal restart time at run time in
order to account for the variation of the network quality.

We have to solve several problems: First, the quality of
the network must be assessed, second, the variation of the
network quality must be monitored based on which then an
estimate of the optimal restart timeout is computed. We
assume that the system performance is positively correlated
with the network quality, and use the task completion time
as a metric to evaluate system performance. Although the
energy consumption is also very important to evaluate per-
formance, as introduced in [6, 11, 26], we are not able to
easily determine energy usage and fall back to task comple-
tion time. We state that for our purposes there is a suffi-
ciently strong correlation between energy consumption and
task run time. To monitor the variation in network qual-
ity we dynamically build a histogram of the task completion
time which provides a good and timely estimate of its dis-
tribution. We propose a method to periodically update the
histogram.

The main contributions of this paper are 1) we experi-
mentally confirm the impact of network quality on mobile
offloading decisions, 2) we mathematically derive conditions
for applying local restart and the optimal timeout based on a
greedy method, and 3) we propose a dynamic online scheme
to determine whether and when to launch a local restart.

The remainder of this paper is organized as follows: In
Section 2 we briefly recapitulate the background on related
concepts of mobile offloading, the restart algorithm and dy-
namic histogram generation. In Section 3 we introduce an
experiment to study the impact of packet loss and delay on
the task completion time. The experimental results confirm
the need for local restart. Next, in Section 4 we describe
the mathematical derivation of a condition which is used to
determine whether and when to launch a local restart. The
dynamic local restart scheme itself is introduced in Section
5. Its efficiency is illustrated using experiments. Finally,
conclusions are in Section 6.

2. BACKGROUND AND RELATED WORK
Mobile offloading as a concept has been around for more

than a decade. Thin clients using a remote infrastructure for
compute-intensive tasks have already been seen as a method
for addressing the challenges of distribution and mobility as
in pervasive computing [33]. Powerful distributed systems
as in Cloud computing aim at turning computing as utility
into reality [8]. Recently, mobile offloading has been devel-
oped as to merge Cloud computing and mobile computing.
Research in offloading methods can be divided into three
main directions [14]: client-server communication, virtual
machine migration and mobile agents.

We will now discuss related work in all three areas.

1. Client-server communication: communication can be
supported by pre-installation of the application in both

the mobile client and the server. In this case one
can benefit from existing stable protocols for process
communication between mobile and surrogate devices.
This is the basis for the systems in [15, 4, 23, 19, 12,
20].

2. Virtual machine migration: offloading can be imple-
mented as the migration of the complete virtual mach-
ing executing the application. The most fascinating
property of this method is that no code is changed for
offloading of a program. The memory image of a mo-
bile client is copied and transferred to the destination
server without interrupting or stopping any execution
on the client. Although this method has clear advan-
tages as it avoids having two versions of a program, it
requires a high volume of transferred data [7, 11, 18,
34].

3. Mobile agents: Scavenger [21] introduces a framework
that partitions and distributes heavy jobs to mobile
surrogates in the vicinity rather than to cloud servers.
Offloading to more than one surrogate is the merit of
this framework.

Few of the above approaches tackle the problem of when
to offload and which communication partner to choose. In
[2] the authors design a Markov decision process to find the
optimal aging control policies, which decide when to connect
to the server and which network link to use.

All offloading systems mentioned so far may suffer under
poor network condition and the application of well-designed
fault-tolerance methods is in place. Restart is a simple and
popular recovery scheme to mitigate network failures. It
can be very effective for certain types of failures and its
performance has been widely studied. Markov chain mod-
els and Laplace transforms have been developed to analyse
the performance of restart for improving the expected task
completion time [3, 27, 35, 22, 5]. These analyses strongly
support the efficiency of restart if the best restart timeout
is known. Their implementation in an online algorithm for
practical application is not straight forward. A fast method
based on iteration theory to identify the optimal restart time
is presented in [25]. The algorithm is improved in [41, 40,
42]. It is tailored for Internet applications in [30].

The restart algorithm mentioned above relies on the prob-
ability density function pdf of the task completion time. In
pratice, a density function is approximated by the corre-
sponding histogram. Since the distribution of the comple-
tion time in a real-time system keeps changing with the oper-
ation, a dynamic method to adapt the histogram is required.
In [13] the bucket width is adjusted when the number of sam-
ples in some buckets satisfy a given criterion. Histogram
data can be stored in a structure called Q-digest which is
a binary tree [36]. This allows to quickly find quantiles of
the data set using a post-order traversal on the tree. In
[16] the data stream is compressed by wavelet transform
into a sketch. The quantile query is answered by estimating
the original data with the sketch. All these methods can
be used to set up the histogram for the restart algorithm.
We do not evaluate the different algorithms in this paper.
We use a width-fixed histogram and propose a cost-effective
method to update the histogram at run time.

4

3. OFFLOADING OVER AN UNRELIABLE
NETWORK

In order to observe and analyse the impact of an unre-
liable network connection on the mobile offloading system
we design an experiment. Using the experiment we show
that the performance changes in the system under changing
network quality. We assume that the task completion time
consists of the remote execution time and the data trans-
mission time. Generally, the execution time is assumed con-
stant for a given task and device and delays are added by
data transfer. In particular, we assume that the task com-
pletion time on the mobile device and on the cloud server
can be different, but both will be more or less constant for
identical tasks at different times. The offloading completion
time varies greatly because data transmission times are not
the same. The impact of heavy load on the system is not
considered in this paper. From experimental results these
assumptions seem reasonable.

In the remainder of this section we first introduce our
mobile offloading system and the sample application which
we use here for demonstration purposes. Then we experi-
mentally demonstrate how system performance varies over
the day due to changing load in our wireless network over
the day. The task completion time is described by fitting
a distribution to selected subsets of the data. This shows
that the variance in the task completion time distribution
increases significantly for certain subsets of the data.

3.1 Experiment Configuration
Offloading can be beneficial if two conditions hold. First,

the task must consist of heavy computation requirement
and, second, a small amount of data must be transmitted
between the mobile device and the server. An application
which meets both requirements is Optical Character Recog-
nition (OCR), but there are many more. OCR is a method
to recognise the characters on a binary image with optional
polygonal text regions. Generally, the recognition algorithm
consists of three steps: 1) The layout of the image is anal-
ysed to find some baselines of the text region. 2) The text
region is chopped into components based on the gaps in the
baselines. 3) Each component is recognised as several char-
acters by comparing its shape with a trained database. For
details of OCR the interested reader is referred to [37].

All three steps of OCR require heavy computation. A
series of complicated edits to the image like rotation, seg-
mentation and comparison has to be done. Performing those
tasks on the mobile device consumes a lot of energy. For the
powerful remote server energy-usage is not a critical metric.
In addition, most text images can be stored in small files of
at most a few kilobytes. So the amount of data to transmit
from the mobile device to the remote server is small. But
still the time needed for the transmission depends on the
quality of the network connection.

For the experiments a mobile phone (Samsung GT-S7568,
Android 4.0) and a server (4 cores: Intel Xeon CPU E5649
2.53GHz) have been used. The mobile phone is placed in a
dormitory room and connects to the Internet through Wifi
(54Mbps provided by a local Telecom operator). The server
is in the lab of the university campus and connects to the
Internet through a LAN port of 100M. We have used the
Linux command ”traceroute” to track the route from the
mobile phone to the server. Normally, the route passes 12
hops to reach the destination, and the total round-trip time

Figure 1: The image to be recognised

is around 82ms. The offloading engine as introduced in [44]
includes an Android Application (App) for the mobile client
and a website project for the server. In our experiment,
the Tesseract OCR Engine [1] is implemented in both parts
of the offloading engine. An image (1160×391px, 8.1 KiB)
with a rectangle text region, as shown in Fig. 1, is used for
image recognition. Only 100 Bytes are used to represent the
decyphered words.

Completion of an offloaded OCR task can be divided into
three phases: 1) the Android application transmits the im-
age from the mobile device to the server, 2) the words on the
image are recognised using the OCR engine in the server,
and 3) the mobile device receives and displays the result
from the server. The Offloading Completion Time(OCT)
is the time needed to complete the three steps. The same
offloading task has been repeated more than 58 000 times
in approximately 24 hours in order to observe OCT under
the different network conditions. The results are stored in
a text file in the mobile device. The memory of the mobile
phone used for caching is cleared after the task completion
and reused again in the next new task.

In addition, we conducted a different experiment where
the image recognition is performed in the mobile device.
We call it local execution, as all the processing steps (e.g.
analysis, chopping and recognition) are completed by the
mobile device itself. The completion time is called Local
Completion Time(LCT). The same image Fig. 1 is repeat-
edly recognised 8 400 times by the local execution. In the
next subsection, we will show that although local execution
is slower than offloading, it is more stable than the latter.

Fig. 2 shows a scatter plot of all data of the entire 58 000
samples over a 24-hour period starting at 8am on 14th Jan-
uary 2014. Under the assumption of a constant processing
time, a large total completion time can be attributed to a
long transmission time, i.e. poor network performance. The
majority of the samples fall into the range between 980ms
and 1380ms, corresponding to the 0.05 and 0.75 quantile of
all the samples. Obviously the distribution of the sample val-
ues is not identical at different times. While we do not know
the reason for systematic changes in network transmission
times, there are clearly several types of typical behaviour
that should be distinguished.

We have selected three subsets of our observations as in-
dicated by the shaded areas in Fig. 2, each containing 2000
samples, which corresponds to a time window of 40 minutes
each. The number of samples is enough to decently fit a
distribution and capture one type of network behaviour, the
normal, the deteriorated and the bad state.

3.2 Experimental Results
Table 1 shows the mean, the quantiles and the variance of

the three subsets. In the normal subset the mean completion

5

Figure 2: Scatter plot of all OCT samples

time has a low variability, as the 0.9 quantile is only 15%
higher than the mean. It is also worth mentioning, that
for the given application and setup fast offloading takes in
total only half as long as local computation, because remote
servers are much faster than mobile devices.

Table 1: Statistics of completion times (msec)

Normal Deteriorated Bad LCT

mean 1191 1618 2183 2377

0.6-quantile 1171 1466 2075 2382

0.9-quantile 1358 2595 3027 2411

0.99-quantile 1575 5495 7514 2480

variance 14496 80 5861 1680265 1249

Very roughly speaking, it seems like the network degrades
most in the early afternoon and in the evening. We do not
try to explain this, as finding the cause for network delays
is not the scope of this paper. Rather we argue that offload-
ing, as well as a local restart make sense for certain network
condition and since we rightfully assume that network con-
ditions change over time a sliding window estimate is needed
and appropriate.

Figure 3: Scatter plot of all LCT samples

It should be noted that on the average, even in poor net-
work condition the offloaded task completes faster than the
one that is computed locally. However, for the bad network
period, since enough outliers skew the distribution and in-
crease the sample variance, the variability in the data is high
enough to justify the use of restart.

The completion time measurement of the local computa-
tion (LCT) are shown in Fig. 3. Local computation is usu-
ally stable, with very few outliers. Most samples fall into
a narrow range between 2338ms and 2411ms, corresponding
to the 0.05 and 0.9 quantile.

In summary, in the best case offloading can provide a so-
lution in approximately half the time needed for local pro-
cessing. On the other hand, local execution times are very
stable, albeit longer than processing using offloading, which
suffers from high variability and, hence, sometimes takes
very long.

3.3 Data Analysis
In this section the sampled data will be analysed to deter-

mine whether the theoretical conditions for successful restart
are met. It can be shown [42] that restart is beneficial if the
task completion time follows a distribution with sufficiently
high variance or heavy-tail. Therefore, the distribution of
the experimental data and its variability will be determined.
The log-log complementary distribution plot is used to illus-
trate the weight of the tail of the distribution [10].

Fig. 4 shows the completion time of the three subsets and
the local completion time versus their complementary cu-
mulative distributions on a log scale. Clearly, for the subset
of the bad network state the curve has an approximately
constant slope of − 2, indicating a heavy tail [10]. For the
subset in deteriorated condition the tail has an exponential
decay for long task completion times. Therefore in this case
we cannot clearly diagnose a heavy-tailed distribution. For
the normal subset the decrease is steep, for local computa-
tion completion times it is almost infinite. This indicates
certainly no heavy tail in the latter two subsets.

Completion times using the local computation are almost
constant. There is very little variation in the measurements.
This means that once local computation has started restart
will certainly not be beneficial. However, during a phase
of poor network quality, a local restart may speed up the

6

Figure 4: Log-log complementary distribution of the com-
pletion time

solution. This does not yet answer the question what a good
choice of the timeout for restart could be.

Fig. 5-7 show the histograms of the three subsets and the
density of the fitted distribution. For convenient fitting of
phase-type distributions the histograms have been shifted
to the origin by subtracting the minimum value from all
observations. The distribution fitting will be discussed in
the next section.

3.4 Distribution Fitting
In this section we will describe the fitting process for

the offloading completion time (OCT) as shown in the his-
tograms and densities in Figs. 5-7. Let the random variable
To represent OCT of an offloading task without restart. The
distribution of To is fitted with the Cluster-based fitting al-
gorithm [29] that fits a phase-type (PH) distribution to the
data. The fitting procedure uses clustering and fits an Er-
lang distribution to each cluster. The full distribution is
then a mix of those Erlang distributions, a hyper-Erlang
distribution.

The hyper-Erlang distribution is suitable for situations
where restarts succeed [31]. This distribution takes values
from different random variables with different probabilities,
for instance, with probability αi a value from an Erlang
distribution with mi phases and parameter λi > 0, i =
1, 2, ...,M . M is the number of clusters. In general, the
mixed-Erlang distribution is represented by a vector-matrix
tuple (α, Q).

Q =


Q1 0

. . .
. . .

0
QM

 ,Qi =


−λi λi

. . .
. . .

−λi λi
−λi

 (1)

α = (α1, 0, ..., 0︸ ︷︷ ︸
m1

, α2, 0, ..., αM , 0, ..., 0︸ ︷︷ ︸
mM

,)

M∑
i=1

αi = 1 (2)

Figure 5: Histogram and PH distribution of the normal sub-
set

Figure 6: Histogram and PH distribution of the deteriorated
subset

Figure 7: Histogram and PH distribution of the bad subset

7

Qi ∈ Rmi×mi , i = 1, ...,M is a square matrix with size
mi. The probability density function and cumulative distri-
bution function are defined as:

f(t) = αeQt(−Q · I) (3)

F (t) = 1−αeQt · I, (4)

where I is the column vector of ones with the appropriate
size.

Although the hyper-Erlang distribution has exponentially
decaying tails, its variance can still be large enough to ful-
fil the requirements for successful restart as formally intro-
duced in Section 4.1.

Since the completion times of a task have a lower threshold
greater zero, as can be seen in Fig. 2 and PH-distributions
preferably have a non-zero density at the origin, we have
shifted the density fo(t) to the left by the minimum observed
value T omin for To, i.e. fo(t) = f ′o(t−T omin). This yields f ′o(t)
as the PH fitting result of the experimental data shifted to
the origin.

Table 2: Hyper-Erlang parameters

T omin 806

Phase-Type Distribution

m λ α

normal [5, 2, 3] [0.016, 0.0041, 0.0037] [0.88, 0.047, 0.073]

det * [3, 6, 2] [0.00082, 0.0163, 0.0023] [0.1, 0.7, 0.2]

bad [4, 8, 4] [0.008, 0.0036, 0.001] [0.7, 0.15, 0.15]

* det = deteriorated.

Fig. 5-7 show the histograms and the PH results of the
shifted To of the normal, deteriorated and bad subset. We
used three clusters to fit the data, M = 3. Since we grouped
the data into three categories this seemed to be a natu-
ral choice. Of course, one could have chosen more clusters,
which might have increased the accuracy of the fit. The
parameter results are shown in Table 2. Table 3 shows the
error measurement of the PH results of the three subsets.
We use the area difference between densities 4f and the
relative error in the first moment e1 to measure the error.

4f =
∫∞
0
|f̂(t) − f(t)|dt and e1 =

|ĉ1 − c1|
c1

, f(t) denotes

the empirical pdf of the distribution to be fitted, f̂(t) is
the pdf of the PH result, c1 and ĉ1 is the first standardized
moment of the empirical distribution and of the fitted PH
distribution, respectively.

Table 3: Error
Normal Deteriorated Bad

4f 0.2783 0.3051 0.2921

e1 0.1077 0.0262 0.2894

4. OPTIMAL LOCAL RESTART
When using restart one has to decide whether and when to

abort a running task and to restart it. Obviously, there is a
trade-off between waiting for the offloading task to complete

and terminating the attempt to try again locally. In [42], an
iterative solution for an infinite number of possible retries
has been derived. In this section, we adopt the solution for
computing the optimal timeout from [42] for two tries and a
single restart: a first attempt using offloading and a fall back
local computation after expiry of the timeout. The efficiency
of the method is shown in experiments. In the next section
we derive an expression that formulates a condition under
which restart in our offloading scenario will be beneficial.
In the following section we derive the optimal timeout after
which to restart.

4.1 Derivation of the Restart Condition
The theoretical concept of restart applies to random vari-

ables for which, first, two successive tries are statistically
independent and identically distributed, and, second, new
tries abort previous attempts. In the mobile offloading sys-
tem, the second assumption is certainly met. When the
mobile device restarts the task by a local try it abandons
the first try on the remote server, where it might continue to
run, but will not influence further processing of the restarted
task. However, the two successive tries are not drawn from
the same distribution, as the computation time in the lo-
cal device follows a different distribution than the offloading
task. The offloading timeout might not be optimal, but com-
pletion of the task is guaranteed as the local computation
always finishes.

In this section the sampled data will be analysed to deter-
mine whether the theoretical conditions for successful restart
are met. For a given random variable T describing task
completion time restart after a timeout τ is promising if the
following condition holds [42]:

E[T] < E[T − τ |T > τ] (5)

The interpretation of condition (5) means that for restart
to be beneficial the expected completion time when restart-
ing from scratch must be less than the expected time still
needed to wait for completion. It can be shown [42] that
condition (5) holds if the task completion time follows a dis-
tribution with sufficiently high variance or heavy-tail.

Remember that To represents the offloading completion
time OCT of an offloading task without restart. Its density
is fo(t) and its distribution function is Fo(t). Assume τ is the
restart time, at which the previous offloading task is aborted
and the local computation is issued. Correspondingly, Tl
represents the local computation time LCT of the same task,
fl(t) its density and Fl(t) its distribution. We assume that
Fo(t) and Fl(t) are both continuous probability distribution
functions defined over the domain [0,∞), such that Fo(t) >
0 and Fl(t) > 0 if t > 0. We introduce T to denote the
completion time when a local restart is allowed. We write
f(t) and F (t) for its density and cumulative distribution
function, respectively. We are interested in the expectation
of T using the optimal timeout τ .

F (t) =

{
Fo(t) (0 6 t < τ)
1− (1− Fo(τ))(1− Fl(t− τ)) (τ 6 t)

(6)

f(t) =

{
fo(t) (0 6 t < τ)
(1− Fo(τ))fl(t− τ) (τ 6 t)

(7)

8

Figure 8: Restart timeout for the different subsets of the
data

Analogous to [42] we define the partial moments Mn(τ)
of the completion time T to determine its expectation E[T].

Mn(τ) =

∫ τ

0

tnf(t)dt =

∫ τ

0

tnfo(t)dt (8)

The respective densities of T and To are identical between
0 and τ , so their partial moments are equal.

E[Tn] =

∫ τ

0

tnfo(t)dt+

∫ ∞
τ

tn(1− Fo(τ))fl(t− τ)dt

= Mn(τ) + (1− Fo(τ))

n∑
k=0

(
n
k

)
τn−kE[T kl]

(9)

E[T] = M(τ) + (1− Fo(τ))(τ + E[Tl]) (10)

A simple criterion to decide whether to restart or not can
be formulated. If there exists an interval S in [0, ∞), where
τ ∈ S ⇒ E[T] < E[To], then restart is beneficial. With (10),
this condition can be written as the following inequality:

E[Tl] <

∫∞
τ
tfo(t)dt

1− Fo(τ)
− τ (11)

Since the data has been shifted to the origin (11) has to
be adjusted to

E[Tl] <

∫∞
τ−To

min
tf ′o(t)dt

1− F ′o(τ − T omin)
− (τ − T omin) (12)

The optimal restart time is the value of τ where E[T] is
minimal. Hence, fo(t) is the key factor for finding the op-
timal τ and to take the decision to restart. As introduced
in Section 3.3, fo(t) changes with the network quality. Ac-
curately capturing fo(t) at run time gives a good solution,
but it is a challenge. In the next section, we will introduce a
fast method to dynamically approximate fo(t). Before that,
we use the previous experiment data to test the validity of
the local restart condition (12).

Figure 9: Expectation of OCT with/without the local
restart versus τ

4.2 The Optimal Restart Timeout
For convenience we use g(δ) to represent the right hand

side of (12), δ = τ − T omin, i.e.

g(δ) =

∫∞
δ
tf ′o(t)dt

1− F ′o(δ)
− δ (13)

The potential benefit of the local restart is expressed by
g(δ) and E[Tl] is the threshold to decide whether the local
restart is useful or not. If the value of g(δ) is low, it indicates
that the task has a high probability to be completed by
offloading and local restart is not helpful. If the value of
g(δ) is high, it indicates that the network condition is poor
and the task completion has a high probability to be delayed.
In this case restart can be very beneficial to the task.

Fig. 8 shows the result of (13), calculated according to
f ′o(t) of the three subsets from Table 2. E[Tl] is calculated
based on the data in Fig. 3. Only for values δ for which
g(.) is larger than the expected local completion time E[Tl]
a retry will be beneficial. It can be seen in Fig. 8 that such
values only exist for the curve based on the bad subset of
data.

However, Fig. 8 does not allow to determine the optimal
restart timeout. We use the expectation of T as a metric
to evaluate the system performance under different restart
timeouts. The optimal time is found when E[T] is minimal.
Equation (10) is used to calculate E[T].

For comparing the system performance with and without
the local restart, Fig. 9 shows E[T] and E[To] for the three
subsets. As expected only E[T]-bad benefits from restart
and even has a clear minimum under restart. The optimal
restart time is found at the value for δ, for which E[T]-bad
is minimal. We can confirm observations we already made
earlier for restart, that when in doubt, one should rather
set the timeout too large. A too large timeout may not
be optimal, but still better than no restart. While a too
small restart timeout can be detrimental to the expected
task completion time. Fig. 9 confirms this observation. The
figure also shows that none of the other subsets benefit from
restart.

Since changes in network conditions and hence the his-
togram can be expected, a dynamical method is needed. In

9

the next section, we propose a fast and simple method to dy-
namically update the histogram and to estimate the restart
condition directly from the histogram without first fitting a
distribution.

5. DYNAMIC RESTART SCHEME
The procedure of fitting a theoretical distribution and

computing the optimal restart timeout from this distribu-
tion is very expensive in terms of computation cost. Var-
ious algorithms and tools exist for fitting PH distributions
to empirical data [38, 17, 39, 43], and the fitted distribu-
tions approximate the data in many cases very well. For
efficiency reasons we use a direct method [30] to estimate
g(δ) and E[T] from the histogram. We dynamically build
and update a histogram and then repeatedly determine the
optimal restart timeout as discussed in the following subsec-
tions.

5.1 Dynamic Histogram
A histogram simply divides up the range of possible obser-

vations into intervals, which we call buckets, and counts the
number of observations that fall into each bucket. Buckets
can have a variable or a constant width; we choose the latter
for simplicity. Histograms initially hold too few samples to
provide a good approximation of a probability distribution.
After collecting data for a while a stationary distribution
is represented increasingly well. However, if the distribu-
tion changes, old samples will never be dismissed from the
histogram and will forever bias the new probability distri-
bution.

There are several options how to handle changes in distri-
bution: the histogram can be repeatedly flushed as to build
up a new histogram for the respective current state of the
system. This introduces many initial periods with insuffi-
cient data. Another option is to transform the buckets into
dripping buckets that lose samples constantly over time. It
is not easy to adjust the dripping speed such that the his-
togram will hold sufficient but not too many samples at all
times [28, 24, 36].

We propose a partial flush which is tuned using two pa-
rameters, the total number of samples in the histogram when
executing the partial flush and the percentage of samples to
equally flush from all buckets.

Algorithm 1 (Initialization for the histogram)

Tl ← Local Run() //Complete the task by local execution
T omin ← Offload Run() //Complete the task by offloading
T omax = Tl
4B = (T omax − T omin)/N //4B: The bucket width
for i = 1 to N do

Baverage[i] = 0
NB [i] = 0

end for
Nout = 0
Bout = 0

Algorithm 1 shows the algorithm to initialise the his-
togram prior to run time. The parameters are the following:

T omin: The lower bound of the histogram.

T omax: The upper bound of the histogram.

Tl: The task completion time by local execution.

N : The number of buckets in the histogram.

Baverage[i]: The mean of all the samples in the ith bucket.

NB [i]: The number of samples in the ith bucket.

Nout: The number of samples, whose value > T omax.

Bout: The mean of all the samples > T omax.

The number of buckets N must be chosen manually. The
upper bound of the histogram is determined by the execu-
tion time of one local run. The lower bound is given as the
execution time of one offloading task. In the course of the ex-
periments there may later be shorter offloading times which
will be used as new lower bound and additional buckets will
be inserted. These choices are motivated by the purpose of
the histogram: to determine the optimal restart timeout the
precise shape of the distribution in the tail is not needed.

Algorithm 2 (Recording a new sample)

Local Execution:
1: Ttemp ← Local Run()
2: Tl = (Tl + Ttemp)/2

Offloading:
3: Ttemp ← Offload Run()
4: switch Ttemp do
5: case 1 : Ttemp > T omax
6: Bout =

(Bout×Nout)+(Ttemp−To
min)

Nout+1
7: Nout + +

8: case 2 : Ttemp < T omin
9: M = d(T omin − Ttemp)/4Be

10: Insert(M)
11: Baverage[1] = Ttemp − T omin
12: NB [1] = 1

13: case 3 : T omin 6 Ttemp < T omax
14: j = b(Ttemp − T omin)/4Bc+ 1

15: Baverage[j] =
(Baverage[j]×NB [j])+(Ttemp−To

min)

NB [j]+1

16: NB [j] + +

17:
18: function Insert(k)

//Insert k empty buckets between Ttemp and T omin
19: N = N + k
20: T omin = T omin −4B × k
21: for i = 1 to N do
22: Baverage[i + k] = Baverage[i] +4B × k
23: NB [i + k] = NB [i]
24: end for
25: end function

Algorithm 2 shows the algorithm to record a new sample
at run time. If the sample comes from local execution, Tl
is updated by the mean of its original value and the new
sample. Hence, the impact of old samples is reduced and
replaced by that of new ones.

If the new sample is produced by offloading, it can be
added to the histogram in three ways according to its value.
Case 1, when new samples are larger than T omax, they are
all added to the out bucket. Case 2, when a shorter of-
floading time arrives, M additional buckets are inserted, M
is calculated based on the ceiling function shown in line 9.
T omin moves down to include the new sample. Line 21 ∼ 24
adjusts the mean and index of each original bucket accord-
ingly. Case 3, when the sample falls into the range between
T omin and T omax, it is added to the corresponding bucket in
the histogram. Fig. 10 is the illustrative diagram of the three
cases.

10

Figure 10: Recording a new offloading sample

The partial flush algorithm, shown as Algorithm 3, needs
the two new parameters Nbound and p:

Nbound: threshold to start the update. When the number
of samples stored in the histogram exceeds this value, the
update algorithm is triggered.

p: percentage of samples to be kept. From each bucket,
(1 − p)/100 ∗ ni samples are removed if the bucket holds
a total of ni samples before the partial flush.

A large number of samples Nbound until partial flush leads
to a long sampling period. Conversely, a large percentage p
indicates that the majority of the samples are kept after up-
dating. This will lead to frequent inexpensive partial flushes.
Please note that the mechanism is related to hysteresis as
used in the control of queueing systems.

Algorithm 3 (Update for the histogram)

B =
N∑
i=1

NB [i] +Nout

if B > Nbound then
NB [i] = bNB [i]× pc // i from 1 to N
Nout = bNout × pc

end if

5.2 Asymptotically Unbiased Ratio Estimator
The estimate for the optimal restart timeout is based on

the asymptotically unbiased ratio estimator [9]. Using the
dynamic histogram proposed in the last subsection, an esti-
mator for g(δ) in equation (13) is:

ĝ(δi) =

∑N
j=iNB [j] ·Baverage[j] +Nout ·Bout
(
∑N
k=iNB [k] +Nout)(1− F̂o

′
(δi))

− δi (14)

We assume that the optimal timeout δ only takes on values
δi = i × 4B , i = 1, 2, ..., N . The cumulative distribution

function F̂o
′
(δi) is estimated as:

Figure 11: Scatter plot of the dynamic local restart scheme
with N = 20, Nbound = 100 and p = 50%.

F̂o
′
(δi) =

∑i
j=1NB [j]∑N

k=1NB [k] +Nout
(15)

If the maximum estimate ĝ(δi)max > Tl, the local restart
condition (12) is fulfilled. Then, an estimate of E[T] pro-
vides the optimal timeout.

Ê[T]δi = M̂ ′(δi) + (1− F̂o
′
(δi))(δi + Tl) + T omin (16)

Remember that we have shifted all data, and the his-
togram to the origin. Therefore the lower bound T omin of
the histogram should be added to the expectation. The par-
tial moment M̂ ′(δi) is estimated as:

M̂ ′(δi) =

∑i
j=1NB [j] ·Baverage[j]∑i

k=1NB [k]
(17)

The optimal local restart time can be identified by select-
ing the value of δi, which minimizes Ê[T]δi , and the optimal
timeout is τ = δi + T omin. Actually, at run time first the
restart condition is evaluated and if it is not satisfied, Ê[T]δi
is not determined.

5.3 Evaluation of the Dynamic Restart
In order to evaluate the performance of the dynamic local

restart scheme, it is implemented in our mobile offloading
engine [44] and evaluated using the OCR application with
the same picture as before (cf. Fig. 1). As introduced in
Section 3.2, we again conduct measurements over a period of
24 hours from 8:00 on 28th April 2014 and we sampled 54 318
completion times. Using the experiment we then show that
our dynamic histogram captures changes in the system and
allows the offloading system to react to those in real-time.

Fig. 11 shows a short episode of the whole experiment
process. This episode lasts for about 5 minutes (begins at
9:12) and contains 180 successive tasks. A scatter plot of
some related parameters of the 180 tasks is shown in Fig. 11.
It can be seen that the potential benefit of the local restart,
ĝ(δ)max, first increases stepwise and then remains constant.
After some very long offloading times, ĝ(δ)max > TL, several
restarts complete the computation locally.

11

Figure 12: Throughput of different times in a day

For comparing the performance of the scheme with and
without the dynamic local restart, the throughput of the
two schemes over periods of two hours are shown in Fig. 12.
We define the throughput as the number of tasks completed
in each period. Here we compare data from the two experi-
ment sessions that took place on different days: the right col-
umn in each interval represents the first series of experiments
without restart, while the left column shows the new series
of experiments using restart. Surprisingly, both columns
follow a similar pattern over the day and in most intervals
the throughput is almost identical in both experiment series.
Only for the last three pairs of columns the dynamic local
restart scheme can effectively increase the throughput.

In conclusion, the dynamic local restart scheme can effec-
tively increase the system performance sometimes and does
not harm it at any time.

6. CONCLUSION
In this paper, we have introduced a dynamic local restart

scheme to improve the performance of the mobile offload-
ing system. Restarting the offloading task again locally in
the mobile device at the appropriate moment can reduce
its completion time in some cases. First, we introduced an
experiment to illustrate the impact of network delays on
mobile offloading. Then, we mathematically derived a con-
dition and the optimal timeout for local restart in order to
reduce the task completion time. We proposed a dynamic
local restart scheme for the mobile offloading system. In
this scheme, a dynamic histogram is used to track the vari-
ation of the network quality, and the restart condition and
the optimal time is estimated with the histogram. Since the
normal user might not perform the same task many times
in sequence, we have to adjust the method to suit various
applications and different tasks. This might be possible by
considering more fine-grained metrics such as packet trans-
mission time to base the restart decision on.

7. REFERENCES
[1] tesseract-ocr.

http://code.google.com/p/tesseract-ocr/.

[2] Altman, E., El-Azouzi, R., Menasche, D. S., and
Xu, Y. Forever young: Aging control for smartphones

in hybrid networks. arXiv preprint arXiv:1009.4733
(2010).

[3] Asmussen, S., Fiorini, P., Lipsky, L., Rolski, T.,
and Sheahan, R. Asymptotic behavior of total times
for jobs that must start over if a failure occurs.
Mathematics of Operations Research 33, 4 (2008),
932–944.

[4] Balan, R. K., Satyanarayanan, M., Park, S. Y.,
and Okoshi, T. Tactics-based remote execution for
mobile computing. In Proceedings of the 1st
international conference on Mobile systems,
applications and services (2003), ACM, pp. 273–286.

[5] Bobbio, A., and Trivedi, K. S. Computation of the
distribution of the completion time when the work
requirement is a ph random variable This work was
supported in part by the US Office of Naval Research
under Contract no. N3014-88-K-0623, by NASA under
Grant NAG-1-70, and by the Italian National
Research Council CNR under the project “Material
and Devices for Solid State Electronics” Grant no.
86.02177. 61. Stochastic Models 6, 1 (1990), 133–150.

[6] Carroll, A., and Heiser, G. An analysis of power
consumption in a smartphone. In Proceedings of the
2010 USENIX conference on USENIX annual
technical conference (2010), USENIX Association,
pp. 21–21.

[7] Chun, B., Ihm, S., Maniatis, P., Naik, M., and
Patti, A. Clonecloud: elastic execution between
mobile device and cloud. In Proceedings of the sixth
conference on Computer systems (2011), pp. 301–314.

[8] Clark, C., Fraser, K., Hand, S., Hansen, J. G.,
Jul, E., Limpach, C., Pratt, I., and Warfield, A.
Live migration of virtual machines. In Proceedings of
the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2 (2005),
USENIX Association, pp. 273–286.

[9] Cochran, W. G. Sampling techniques. John Wiley &
Sons, 2007.

[10] Crovella, M. E., Taqqu, M. S., and Bestavros,
A. Heavy-tailed probability distributions in the World
Wide Web. A practical guide to heavy tails 1 (1998),
3–26.

[11] Cuervo, E., Balasubramanian, A., Cho, D.,
Wolman, A., Saroiu, S., Chandra, R., and Bahl,
P. MAUI: making smartphones last longer with code
offload. In Proceedings of the 8th international
conference on Mobile systems, applications, and
services (2010), ACM, pp. 49–62.

[12] Deboosere, L., Simoens, P., De Wachter, J.,
Vankeirsbilck, B., De Turck, F., Dhoedt, B.,
and Demeester, P. Grid design for mobile thin
client computing. Future Generation Computer
Systems 27, 6 (2011), 681–693.

[13] Donjerkovic, D., Ioannidis, Y. E., and
Ramakrishnan, R. Dynamic histograms: Capturing
evolving data sets. In Proceedings of the International
Conference on Data Engineering (2000), IEEE
Computer Society Press; 1998, pp. 86–86.

[14] Fernando, N., Loke, S. W., and Rahayu, W.
Mobile cloud computing: A survey. Future Generation
Computer Systems 29, 1 (2013), 84–106.

12

[15] Flinn, J., Park, S., and Satyanarayanan, M.
Balancing performance, energy, and quality in
pervasive computing. In Distributed Computing
Systems, 2002. Proceedings. 22nd International
Conference on (2002), IEEE, pp. 217–226.

[16] Gilbert, A. C., Kotidis, Y., Muthukrishnan, S.,
and Strauss, M. Surfing wavelets on streams:
One-pass summaries for approximate aggregate
queries. In VLDB (2001), vol. 1, pp. 79–88.

[17] Horváth, A., and Telek, M. Phfit: A general
phase-type fitting tool. In Computer Performance
Evaluation: Modelling Techniques and Tools. Springer,
2002, pp. 82–91.

[18] Huang, D., Zhang, X., Kang, M., and Luo, J.
MobiCloud: building secure cloud framework for
mobile computing and communication. In Service
Oriented System Engineering (SOSE), 2010 Fifth
IEEE International Symposium on (2010), IEEE,
pp. 27–34.

[19] Huerta-Canepa, G., and Lee, D. A virtual cloud
computing provider for mobile devices. In Proceedings
of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond
(2010), ACM, p. 6.

[20] Kemp, R., Palmer, N., Kielmann, T., and Bal, H.
Cuckoo: a computation offloading framework for
smartphones. In Mobile Computing, Applications, and
Services. Springer, 2012, pp. 59–79.

[21] Kristensen, M. D. Scavenger: Transparent
development of efficient cyber foraging applications. In
Pervasive Computing and Communications (PerCom),
2010 IEEE International Conference on (2010), IEEE,
pp. 217–226.

[22] Kulkarni, V. G., Nicola, V. F., and Trivedi,
K. S. On modelling the performance and reliability of
multimode computer systems. Journal of Systems and
Software 6, 1 (1986), 175–182.

[23] Marinelli, E. E. Hyrax: cloud computing on mobile
devices using MapReduce. Tech. rep., DTIC
Document, 2009.

[24] Matias, Y., Vitter, J. S., and Wang, M. Dynamic
Maintenance of Wavelet-Based Histograms. In
Proceedings of the 26th International Conference on
Very Large Data Bases (San Francisco, CA, USA,
2000), VLDB ’00, Morgan Kaufmann Publishers Inc.,
pp. 101–110.

[25] Maurer, S. M., and Huberman, B. A. Restart
strategies and Internet congestion. Journal of
Economic Dynamics and Control 25, 3 (2001),
641–654.

[26] Miettinen, A. P., and Nurminen, J. K. Energy
efficiency of mobile clients in cloud computing. In
Proceedings of the 2nd USENIX conference on Hot
topics in cloud computing (2010), USENIX
Association, pp. 4–4.

[27] NICOLA, V., and Trivedi, K. The completion time
of a job on multimode systems. Advances in Applied
Probability 19, 4 (1987), 932–954.

[28] Poosala, V., Haas, P. J., Ioannidis, Y. E., and
Shekita, E. J. Improved histograms for selectivity
estimation of range predicates. ACM SIGMOD Record
25, 2 (1996), 294–305.

[29] Reinecke, P., Krauß, T., and Wolter, K.
Cluster-based fitting of phase-type distributions to
empirical data. Computers & Mathematics with
Applications 64, 12 (2012), 3840–3851.

[30] Reinecke, P., Van Moorsel, A., and Wolter, K.
A measurement study of the interplay between
application level restart and transport protocol. In
Service Availability. Springer, 2005, pp. 86–100.

[31] Ruan, Y., Horvitz, E., and Kautz, H. Restart
policies with dependence among runs: A dynamic
programming approach. In Principles and Practice of
Constraint Programming-CP 2002 (2002), Springer,
pp. 573–586.

[32] Satyanarayanan, M. Mobile computing. Computer
26, 9 (1993), 81–82.

[33] Satyanarayanan, M. Pervasive computing: Vision
and challenges. Personal Communications, IEEE 8, 4
(2001), 10–17.

[34] Satyanarayanan, M., Bahl, P., Caceres, R., and
Davies, N. The case for vm-based cloudlets in mobile
computing. Pervasive Computing, IEEE 8, 4 (2009),
14–23.

[35] Sheahan, R., Lipsky, L., Fiorini, P. M., and
Asmussen, S. On the completion time distribution for
tasks that must restart from the beginning if a failure
occurs. ACM SIGMETRICS Performance Evaluation
Review 34, 3 (2006), 24–26.

[36] Shrivastava, N., Buragohain, C., Agrawal, D.,
and Suri, S. Medians and beyond: new aggregation
techniques for sensor networks. In Proceedings of the
2nd international conference on Embedded networked
sensor systems (2004), ACM, pp. 239–249.

[37] Smith, R. An Overview of the Tesseract OCR Engine.
In ICDAR (2007), vol. 7, pp. 629–633.

[38] Telek, M., and Heindl, A. Matching moments for
acyclic discrete and continuous phase-type
distributions of second order.

[39] Thummler, A., Buchholz, P., and Telek, M. A
novel approach for phase-type fitting with the EM
algorithm. Dependable and Secure Computing, IEEE
Transactions on 3, 3 (2006), 245–258.

[40] Van Moorsel, A. P., and Wolter, K. Analysis
and algorithms for restart. In Quantitative Evaluation
of Systems, 2004. QEST 2004. Proceedings. First
International Conference on the (2004), IEEE,
pp. 195–204.

[41] van Moorsel, A. P., and Wolter, K. Meeting
Deadlines through Restart. In MMB (2004),
pp. 155–160.

[42] Van Moorsel, A. P., and Wolter, K. Analysis of
restart mechanisms in software systems. Software
Engineering, IEEE Transactions on 32, 8 (2006),
547–558.

[43] Wang, J., Liu, J., and She, C. Segment-based
adaptive hyper-Erlang model for long-tailed network
traffic approximation. The Journal of Supercomputing
45, 3 (2008), 296–312.

[44] Wang, Q., Griera Jorba, M., Ripoll, J. M., and
Wolter, K. Analysis of local re-execution in mobile
offloading system. In Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium
on (2013), IEEE, pp. 31–40.

13

