Utilizing Performance Unit Tests
To Increase Performance Awareness

Vojtéch Horky
Antonin Steinhauser

Peter Libi¢

Lukas Marek
Petr TUma

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics, Charles University
Malostranské namésti 25, Prague 1, 118 00, Czech Republic

{horky,libic,marek,steinhauser,tuma}@d3s.mff.cuni.cz

ABSTRACT

Many decisions taken during software development impact
the resulting application performance. The key decisions
whose potential impact is large are usually carefully weighed.
In contrast, the same care is not used for many decisions
whose individual impact is likely to be small — simply be-
cause the costs would outweigh the benefits. Developer opin-
ion is the common deciding factor for these cases, and our
goal is to provide the developer with information that would
help form such opinion, thus preventing performance loss
due to the accumulated effect of many poor decisions.

Our method turns performance unit tests into recipes for
generating performance documentation. When the devel-
oper selects an interface and workload of interest, relevant
performance documentation is generated interactively. This
increases performance awareness — with performance infor-
mation available alongside standard interface documenta-
tion, developers should find it easier to take informed deci-
sions even in situations where expensive performance evalu-
ation is not practical. We demonstrate the method on mul-
tiple examples, which show how equipping code with perfor-
mance unit tests works.

Categories and Subject Descriptors

D.2.6 [Programming Environments|: Interactive envi-
ronments; D.2.8 [Metrics]: Performance measures; D.4.8
[Performance]: Measurements

General Terms

Performance, Measurement, Documentation

Keywords

performance documentation; performance awareness; per-
formance testing; Java; JavaDoc
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1. INTRODUCTION

The software development process can be perceived as a
stream of decisions that gradually shape the final imple-
mentation of the initial requirements. Each of the decisions
presents multiple options, such as choosing between avail-
able libraries, selecting appropriate algorithms and internal
data structures, or adopting a particular coding style. The
concerns affecting the decision are also many, ranging from
cost or efficiency to complexity and maintainability, and the
developers are expected to keep these concerns in balance.

The decisions that drive the development process also
have a very different potential impact. Some decisions —
for example whether to use a filesystem or a database to
store persistent application data — are likely to have a ma-
jor impact. Other decisions — for example whether to use a
short integer or a long integer for a local counter variable —
are likely to have a minor impact.

The perceived impact determines how the individual de-
cisions are treated. Faced with a major-impact decision, the
developer would deliberate carefully and use techniques such
as modeling or prototyping to justify the eventual choice.
In contrast, large-scale deliberation is not appropriate for
minor-impact decisions, where the developer is more likely
to simply fall back on an educated guess.

We illustrate the examples of several such choices on an
imagined XML processing application. Listing 1 shows two
functionally equivalent methods that accept a DOM tree [12]
with purchase records as input and provide totals spent
per user as output. Listing 1.a shows one developer us-
ing XPath [42] to navigate the DOM tree and HashMap to
store the totals, whereas Listing 1.b shows another developer
choosing a sequence of getters for navigation and TreeMap
for storage.

The impact of choices from Listing 1 is likely perceived as
minor rather than major.! As such, the decisions would not
be made after a large-scale deliberation — choosing XPath
might simply appear straightforward to a developer who has
used XPath in the past, and choosing TreeMap might be
similarly straightforward for a developer who thinks the to-
tals will eventually be printed in a sorted sequence.

!But special circumstances can lend importance even to oth-
erwise innocuous choices — for example, the code can be used
in a hot loop, or availability of certain packages can be lim-
ited.



Map<String, Double> get(Document doc) {
Map<String, Double> result
= new HashMap<>();

XPathExpression<Element > expr
= XPathFactory.instance (). compile(
"/rec/purchase", Filters.element ());

for (Element e expr.evaluate (doc)) {
String customer
= e.getChildText ("customer");
double price = Double.parseDouble (
e.getChildText ("price"));
Double sum = result.get(customer);

if (sum == null) sum = price;
else sum += price;
result.put (customer, sum);

}

return result;

(1.a) XPath and HashMap

Map<String,

Double> get(Document doc) {
Map<String, Double> result
= new TreeMap<>();

List<Element > purchases
= doc.getRootElement ()
.getChildren ("purchase");

for (Element e purchases) {
String customer
= e.getChildText ("customer");
double price = Double.parseDouble (
e.getChildText ("price"));
Double sum = result.get(customer);

if (sum == null) sum = price;
else sum += price;
result.put (customer, sum);

}

return result;

(1.b) Getters and TreeMap

Listing 1: Alternative implementations of imagined XML processing.

We focus on situations where the developer relies on in-
sight to avoid large-scale deliberation. Ideally, the developer
would correctly identify decisions whose impact will be mi-
nor and use educated guesses to make reasonably appropri-
ate choices. For obvious reasons, we want to avoid situa-
tions where the developer fails to recognize that a choice de-
serves deliberation. We also want to avoid situations where
the developer makes individually innocuous choices whose
detrimental impact accumulates. Recent work on sources of
software bloat suggests that such choices are common and
can have a major impact on performance [33, 43, 44].

One way to avoid the bad situations is by making sure
the developer can be reasonably aware of the concerns af-
fecting each decision. For some concerns, this awareness
often comes naturally with experience — simply by virtue of
reading and maintaining code, the developer will have ample
opportunities for feedback on criteria related to code read-
ability and maintainability. Additional information can be
provided by tools such as CheckStyle [5] or FindBugs [21].

The situation is different where awareness concerns soft-
ware performance. Recognizing poor performance requires
knowing what performance should be expected, and that
information can only come from prototyping and measure-
ment — in fact, the very kind of large-scale activities the
developer wants to avoid. Apart from actively experiment-
ing, the developer is therefore likely to receive feedback on
software performance only when it is obviously insufficient.?

Our goal is to provide the developer with easily accessible
information on software performance that is relevant to the
software under development and thus increase performance
awareness. This should in turn decrease the chance that the
developer would make a poor choice due to lack of insight
into performance.

We meet our goal by utilizing performance unit tests, in-
troduced in detail in [4, 20]. When a performance unit test
accompanies a particular software artefact, we use the work-
load generation component of the unit test to execute perfor-

2 And experiments carry their own risks [2, 17, 9].
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mance measurements and present the measurement results
alongside the documentation for that artefact. Modern de-
velopment environments such as Eclipse [14] make locating
artefact documentation as easy as pointing with mouse to
the artefact of interest, our solution extends the same com-
fort to locating performance information. Same as the unit
tests, the performance information can be collected remotely
on the target deployment platform and the workload can be
adjusted to focus on relevant information.

In compact points, our contribution starts with identifying
the documentation potential of performance unit tests and
providing the technical design used to generate the perfor-
mance documentation. Furthermore, we explore the benefits
of our solution on multiple experimental examples. Rather
than solving a particular technical issue, we provide a mech-
anism that helps build performance awareness — our con-
tribution therefore carries the implied promise of improved
software development process, with smaller room for mis-
takes due to lack of developer insight.

We start our presentation by introducing the performance
unit tests in Section 2 and the motivating scenarios in Sec-
tion 3. The technical design needed to generate the perfor-
mance documentation is discussed in Section 4, followed by
experimental evaluation in Section 5. Related work discus-
sion and conclusion close the paper.

2. PERFORMANCE UNIT TESTS

Our mechanism for generating performance documenta-
tion uses code provided by performance unit tests, we there-
fore present the basic elements of the performance unit test
design as the necessary context. We consider performance
unit tests as described in [4, 20], using tools developed for
the Java platform.

The general structure of a performance unit test is de-
picted on Figure 1. It is similar to the structure of a func-
tional unit test, which usually consists of the setup, execu-
tion, validation and cleanup phases [1, 22]. In the setup
phase, the workload for the system under test is prepared
and the system under test is put into initial test state. In the



Performance Workload Workload
Unit Test Parameters Generator
Method
Selection
Condition Method Under
Evaluation Test

Test Harness

Figure 1: Performance unit test structure.

for i < 1 .. sample count do
test arguments < GENERATOR(workload parameters)
start the measurement
for all args < test arguments do
MEASUREDMETHOD (args[0], args[1], ...)
end for
stop the measurement
store the result
end for

Listing 2: Repeated measurement with workload generator.

execution phase, the system under test is subjected to the
previously prepared workload and the performance is mea-
sured. In the validation phase, the observed performance is
evaluated against the test criteria. The cleanup phase takes
care of preparing for the next test, if any.

Two notable distinctions between performance and func-
tional unit tests are the separation of the workload generator
and the test criteria evaluation.

In the setup phase, the unit test code prepares the se-
quences of input arguments, which will be used in the ex-
ecution phase to invoke the method under test. In effect,
the input arguments determine the unit test workload, we
therefore refer to this code as the workload generator. Tech-
nically, the generator is a standalone method that returns
the Iterable<Object[]1> type. Each Object[] contains ar-
guments for a single method invocation, used in a manner
similar to the invoke () method from the java.reflection
package.

Making the workload generator a standalone method has
two reasons. The first reason is code reuse — we can use the
same generator for different unit tests when those tests use
the same workload. The second reason is related to the per-
formance measurements. By preparing the workload before
the execution phase, we minimize the disruptive influence.
We can also easily repeat the test multiple times to obtain
more robust results. This process is illustrated in Listing 2.

The measurement results are evaluated against the test
criteria using statistical hypothesis testing. The criteria
is described in a formalism called Stochastic Performance
Logic (SPL) [4], which defines the performance of a method
as a random variable with a probability distribution that
reflects the workload parameters. Workload parameters are
arbitrary parameters that characterize the workload, given
as arguments to the workload generator — examples of work-
load parameters used in this paper include sizes of collections
to be measured, frequencies of individual collection opera-
tions, or sizes of generated graphs.
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3. MOTIVATING SCENARIOS

The goal of this paper is to investigate the possibility of
turning unit tests into performance documentation and to
resolve the many issues associated with the technical side of
this goal. To illustrate the benefits of our solution, we use
multiple experimental examples.

3.1 Case 1: Navigating DOM Tree

Our first example returns to Listing 1, where an XPath
query is used to retrieve the content of relevant document
nodes. The code is written assuming a fixed document struc-
ture and an infrequent execution. A similar situation can ex-
ist for example in applications that read their configuration
from an XML file.

Two major approaches for accessing values stored in an
XML file are using SAX or using DOM. With SAX, the
content is presented as arguments to content handlers during
parsing. With DOM, the content is available after parsing
in the form of an object tree. Here, we assume DOM was
chosen over SAX for simplicity.

With the content in the DOM tree, the developer can
select a particular element using XPath, illustrated on List-
ing 1.a, or using a sequence of getters, illustrated on List-
ing 1.b. The former alternative appears more flexible — for
example, the query string can be easily replaced with a more
readable symbolic constant or modified to describe a more
complex selection. In contrast, the latter alternative ap-
pears more straightforward — the developer may suspect that
getters are simple and therefore efficient. With knowledge
about performance of the two alternatives, the developer can
make an informed choice.

3.2 Case 2: Choosing A Collection

Our example from Listing 1 also involves choosing a collec-
tion implementation. The two alternative implementations
of the get method both return a Map object, however, List-
ing 1.a uses a HashMap and Listing 1.b a TreeMap. Syntacti-
cally, the two alternatives are very similar, we can therefore
assume the developer would decide based on criteria such as
overhead or performance.

Again, a similar situation can arise in most applications
that use collections. As an extension of the example from
Listing 1, we also consider an imagined online store where
each commodity has a list of attributes. These attributes
describe optional properties of each commodity, for example
the screen dimensions for computer monitors or the storage
capacity for disks. The commodity descriptions reside in
a database, our scenario deals with choosing the collection
implementation used for caching the commodity attributes
in memory. The choice should reflect these observations:

— The attribute names are strings, values are objects.
— The attributes are few, typically fewer than ten.

— Some attributes are queried more often than others.
— Some attributes are used as searching criteria.

— The attributes are rarely updated.

The choices available in these scenarios are many, start-
ing with the classes of the java.util package in the Java
Class Library. There, the obvious choice is one of the avail-
able implementations of Map<String, Object>. However,
a simpler list of pairs can be used as well — with the most

3For the same reason, we assume the developer would not
attempt using JAXB.



queried attributes kept in front, this choice can turn out to
be more efficient than a map. The spectrum of choices is
further extended by external collection implementations in
libraries such as PCJ [36], Guava [19] or Trove [40].

3.3 Case 3: Choosing A Library

For the third example, we consider the common task of
choosing among multiple libraries with similar purpose. In
our experiment, we examine GRAL [18], XChart [41] and
JFreeChart [27], three open source libraries that offer graph
plotting functions. The task at hand is generating image
files with line charts of up to 10000 data points, we assume
the developer found all three libraries functionally sufficient
and needs to choose one.

As with the other examples, we do not mean to suggest
that the developer should use performance as the sole factor
guiding the decision. We do believe, however, that knowl-
edge of performance should be used alongside other factors —
in this case for example the quality of the library documen-
tation or the maturity of the library code base — in reaching
the decision. With other things being equal, performance
should not be sacrificed needlessly.

4. TURNING TESTS INTO
DOCUMENTATION

Assuming we have a component reasonably covered by
performance unit tests, we now look at the issues involved in
generating performance documentation for such component.
The primary output of a performance unit test is the pass
or fail status.? This extremely condensed output is useful in
automated build environments, however, it is also backed by
the individual measurements collected during the test exe-
cution, which provide detailed information on the observed
performance of the component under test and therefore con-
stitute component performance documentation.

Unfortunately, distributing the measurements collected by
the performance tests as a part of the component documen-
tation is not a simple endeavour. Although some projects
regularly publish their performance test results, the reports
are limited to summaries — major examples of such activities
include the Open Benchmarking Site [35], which offers sum-
maries for several thousand test results, or the ACE+TAO+
CIAO Distributed Scoreboard [38], which provides results of
selected performance tests across the entire project history.

One of the reasons why performance measurements are
not provided together with the documentation is the mea-
surement duration. The measurements required to generate
a complete performance documentation would take too long
for even a moderately sized projects — even for the testing
purposes, the performance unit tests need to be run on care-
fully selected test cases only [20].

Another factor is the volume of the measurement data
collected. The study in [20], where the tests have covered
about 20 % of code, has produced several hundreds of kilo-
bytes of compressed measurement data, easily an order of
magnitude more than the size of the byte code tested.

Finally, the performance measurements are platform-de-
pendent. Although [20] shows that relative performance can

4To be completely accurate, the test in our tool implemen-
tation can also return a third status that indicates the test
does not yet have enough data to decide on the test condi-
tion.

292

class LinkedList {
@Generator ("LinkedListGen#contains")
public boolean contains (Object obj) {
/* */
}
}

Listing 4: Binding workload generator generator with the
measured method.

be a reasonably stable property across platforms, the dif-
ference in absolute numbers generally makes it difficult to
relate the measurement results collected on one platform to
the expected performance on other platforms.

4.1 Using Workload Generators

Section 2 has introduced the unit test structure, in which
the workload generator prepares the input arguments for
test execution based on the specified workload parameters.
Listing 3 contains an example generator code that prepares
arguments for invoking the LinkedList.contains () method
in a sequence that produces a given number of hits and
misses. The workload parameters — the size of the list and
the number of hits and misses — are specified as the generator
inputs. Briefly, the generator first prepares the underlying
list, on which the contains () method will be invoked. Next,
the arguments of the individual invocations are prepared,
first for hits (the invocation looks for a random integer from
a range that is known to be in the list) and then for misses
(the invocation looks for an integer beyond the range known
to be in the list).

Although the generator prepares the arguments for indi-
vidual method invocations in a form reminiscent of the in-
voke () method arguments from the java.reflection pack-
age, our tool for performance unit tests does not rely on re-
flection to execute the workload. Instead, the tool generates
code that extracts the arguments (unboxing and recasting
as necessary) and then performs a standard method invo-
cation. This is because reflection introduces a disruptive
overhead.

We use the workload generators to generate the perfor-
mance documentation on-the-fly on the application devel-
oper side. This helps overcome the outlined challenges —
rather than having the component provider collecting and
distributing measurements, the application developers run
the selected measurements of interest locally. Our perfor-
mance unit test framework also supports remote testing,
with the measurements performed on a remote deployment
platform rather than on the build system itself, this makes
it possible to display results directly relevant to the deploy-
ment platform.

4.2 Associating Generators With Methods

To generate a performance documentation for a method,
we need to locate the workload generator associated with
that method. In the performance unit tests, the association
relies on annotations, as illustrated in Listing 4. In certain
situations, such as when testing proprietary code, it is not
easily possible to attach the annotation directly to the mea-
sured method. When this is the case, we introduce a helper
class that defines an empty method with the same signa-
ture and attach the generator to this method instead, as
illustrated in Listing 5.



class LinkedListGen {

public Iterable<Object[]l> contains (int size,
new ArrayList<> (hits + nohits);
new LinkedList<> ();

ArrayList<Object [1> result =

LinkedList<Integer> list =

for (int i = 0 ; i < size ; i++) {
list.add (new Integer (i));

}

Random rnd new Random ();
for (int i 0 ; i < hits ;
Integer searchFor =
Object [] args =
result.add (args);

i++) {

new Object[]l { list,

rnd.nextInt (size);

int hits,

int nohits) {

searchFor 1};

searchFor 1};

}

for (int i = 0 ; i < nohits ; i++) {
Integer searchFor = new Integer (size + i);
Object [] args = new Object[] { 1list,
result.add (args);

}

return result;

Listing 3: Generator for invoking the contains() method of a linked list.

@TestHelper (
for = java.util.LinkedList.class)
class LinkedListHelper {
@Generator ("LinkedListGen#contains")
public boolean contains (Object obj) { }
}

Listing 5: Binding workload generator with the measured
method through a helper class.

In the straightforward example from Listing 4, we can
locate the generators that can be used with a particular
method simply by enumerating the method annotations. In
the example from Listing 5, the situation can be likened to
propagating documentation across an interface-implemen-
tation relationship. The annotation information is kept in
byte code, the generators can therefore be located even for
methods in packages that are distributed in compiled form.

Complex performance unit tests require workloads that
invoke multiple methods of a component. In these cases, we
use a special-purpose test method that executes the indi-
vidual component methods and associate the generator with
this special-purpose method. Listing 6 shows such a special-
purpose method, used by a unit test of a graph plotting li-
brary — the workload uses the library to create an image file
of given dimensions that shows given data points using a
line plot, this requires calls to multiple library methods.

The example from Listing 6 makes associating the gen-
erator with individual component methods more difficult,
we therefore use extra ShowWith* annotations that specify
classes and methods whose performance the test exercises.

The use of helper methods shown Listing 5 and Listing 6
requires searching for the classes that implement these meth-
ods. To reduce the search time, we assume the developer
would specify a separate class path to be searched.

4.3 Limiting Measurement Time

To avoid the issues with test execution duration, we ex-
pect that the performance documentation would be gener-
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ated on demand, much in the same way as the JavaDoc [24]
documentation is displayed on demand when the developer
selects a particular method. To react quickly enough in an
interactive environment, we need to execute the measure-
ments in a short time frame. There are situations where
this is clearly not possible, for example when even a sin-
gle invocation of the measured method takes a long time
to complete. When the measurement method executes in
reasonable time, we also need the workload generator to
prescribe a short enough workload.

As a complication, the requirement of relatively short
workloads conflicts with the need to make the performance
unit tests reliable — robust results are known to require long
measurements, possibly with multiple restarts and multiple
compilations [9, 17, 29]. This tendency was also reflected in
our initial performance unit test experiments [20], where the
workload generator design tended to put test robustness first
and test duration second. This resulted in execution times
inapplicably long for an interactive measurement context.

We aim to solve this issue by gradually updating the pre-
sented results. The very first time a developer displays the
documentation for a method, we only measure the method
for a short period of time, limiting both the scale of workload
parameters used and the number of measurement repetitions
performed. After displaying the initial results, further mea-
surements are collected on the background and the initial
results are gradually refined — a finer scale of the workload
parameters is used and the measurements are repeated more
times. Because the measurement results are preserved, this
only happens when a method documentation is first exam-
ined.

Figure 2 illustrates the effect of gradually updating the
presented results on a workload that measures the dura-
tion of the LinkedList<Integer>.contains () method when
looking for an element that does not exist in the collection.
We see that a very short measurement — 1 second — reveals
the general linear complexity trend, but does not run long
enough for runtime optimizations to occur. A slightly longer
measurement — 5 seconds — suffices to present stable results



@Generator (...)

@ShowWithClass (de.erichseifert.gral.plots.XYPlot.class)
@ShowWithMethod ("de.erichseifert.gral.io.plots.DrawableWriter#write")

void plotLinesToPng (DataTable data,
DrawableWriterFactory factory =
DrawableWriter writer = factory.get
XYPlot plot = new XYPlot (data);
LineRenderer lines =
lines.setSetting (LineRenderer.COLOR,

OutputStream output,
DrawableWriterFactory.getInstance ();
("image/png");

int width, int height) {

new DefaultLineRenderer2D ();
Color .BLUE);

Listing 6: Special-purpose test method for a plotting library. Exceptions omitted.

plot.setlLineRenderer (data, lines);
writer.write (plot, output, width, height);
}
After 1 second After 5 seconds After 5 minutes
s 28 28
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Figure 2: Improving the precision over time.

for six workload parameter values. A measurement of 300
seconds is safely enough to collect stable measurements for
100 workload parameter values.

A more complex issue concerns our very ability to cre-
ate workload generators that can drive short measurements.
Most measurements must execute in a loop to provide rea-
sonable results (for many reasons — for example to execute a
representative workload, to trigger runtime optimization, or
to compensate for measurement noise or measurement over-
head). When the method invocations in the measurement
loop change the measured object state, the collected mea-
surements may no longer reflect the intended workload. For
example, it is difficult to write a workload generator that
would measure the time to add an element to a collection
of particular size without invoking any other collection op-
eration — with each measurement repetition, the collection
would grow and the measurement would no longer apply
to the initial collection size. A specific solution is required
for each particular situation — in the collection example, we
can simply measure the time to add and remove an element
in the same loop, because this workload variation does not
grow the collection as the measurement progresses.

4.4 Presenting Measurement Results

The workload produced by a workload generator depends
on both the implementation of the generator and the sup-
plied workload parameters. When selecting the measure-
ment and presenting the results, we therefore need to provide
both the description of the generator and the description of
the workload parameters.

We rely on the fact that each generator is simply a method
of a class and therefore can be documented using JavaDoc.
JavaDoc can be used to capture the description of the whole
generator as well as the description of the individual work-
load parameters, which are simply arguments to the gener-
ator method. The advantage is that the developer writing
the workload generator uses a standard documentation tool.
The disadvantage is that the comments are not preserved
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when compiling into byte code, the documentation may thus
not be available in packages distributed in compiled form.

To address the issue of packages distributed in compiled
form, we add extra annotations that can be used to describe
the workload parameters in a compact manner, as shown
on Listing 7. The annotations serve dual purpose — besides
being used when JavaDoc is not available, they also describe
the axes of the measurement result plots together with valid
parameter ranges.

4.5 Realistic Measurement Context

So far, we have considered measurements collected using
workload generators originally designed for performance unit
tests. When associated with a component, these generators
produce workloads that the component developer considered
useful to test — these can be common workloads for the com-
ponent, workloads that exhibit interesting behavior, or even
workloads that target a particular performance regression.
However, these workloads can still substantially differ from
the workload expected by the application developer. They
are also designed to be executed in relative isolation, which
makes them similar to classical micro benchmarks.

Correctly interpreting a micro benchmark result is tricky
— even with a reasonable workload, the micro benchmark
still executes under conditions that can be very different
from those in the eventual application. This is not an is-
sue for the performance unit tests, which are designed with
the knowledge of the benchmark execution conditions. It
is, however, a potential issue when trying to interpret the
micro benchmark result with the application conditions in
mind. Although our tool permits adding custom workload
generators that can remedy this issue, the surest way to de-
termine the behavior of a component in an application is
still by measuring it in the application.

Our work on performance awareness in component sys-
tems [3] suggests a solution. We use the DiSL framework [31]
to instrument the component inside the application and col-
lect measurements in much the same way as with the perfor-
mance unit tests — except now, the workload is generated by
the application itself rather than the workload generator. To
determine the workload parameters required for presenting
the measurements, we employ sizers as an inverse comple-
ment to generators — where the generator produces workload
given the relevant parameters, the sizer produces the param-
eters while observing the workload.

S. EXPERIMENTAL EVALUATION

The ultimate aim of our approach is to improve perfor-
mance awareness among software developers so that they



/** Generator for testing Collection.contains() method.

*

* Q@param size Size of the underlying collection.

* Q@param hits Number of searches that hit.
* Q@param nohits Number of searches that miss.

*/

@Generator ("Collection.contains() with mix of hits and misses.")

public Iterable<Object[]> contains(
@Param("Collection size", min=10)
@Param ("Searches that hit", min=0)
@Param ("Searches that miss", min=0)

/* */

int size,
int hits,
int nohits) {

Listing 7: Generator documentation with annotations.

can write more efficient code. With this aim in mind, the
evident method of experimental evaluation is to conduct a
study that would test whether developers with access to per-
formance documentation write more efficient code. We in-
vestigate this evaluation method next, however, it turns out
the study is too expensive to be practical. We therefore turn
to additional methods of examining our approach, looking
at whether reasonably realistic use cases can be found, and
whether real software can benefit.

We have executed our experiments on a 2.33 GHz machine
with two quad core Intel Xeon E5345 processors and 8 GB of
memory, running Fedora Linux with kernel 3.9.9, glibc 2.16-
33 and OpenJDK 1.7.0-25, all in 64 bit mode. The libraries
used in the experiments were JDOM 2.0.5 [26] with Jaxen
1.1.6 [25], GRAL 0.9 [18], XChart 2.3.0 [41] and JFreeChart
1.0.17 [27].

Our experimental implementation includes a complete
performance unit test framework for Java [39]. The frame-
work supports for workload generators attached through an-
notations, local and remote measurement, result collection
and processing. We have not yet implemented the user inter-
face integration envisioned in our approach, specifically the
workload generator and workload parameter selection and
the integrated result display features. The graphs shown
here are produced manually from the measurement data.

5.1 Developer Awareness Study

To test whether developers with access to performance
documentation write more efficient code, we design an ex-
periment where multiple developers are given the same im-
plementation task, and the performance of the resulting im-
plementations is compared. In terms of hypothesis test-
ing, we postulate the following null hypothesis: availability
of performance documentation during software development
has no impact on the eventual implementation performance.
Our independent variable is the availability of performance
documentation, our dependent variable is the execution time
of the resulting implementation.

With limited resources to hire professional developers, our
test subjects are volunteer computer science students. The
students have completed a Java Programming class and par-
ticipated in an Advanced Java Programming class, the av-
erage self assessment of the relevant programming language
skills is 3.5 on a scale of 1 to 5. The students were not told
the purpose of the experiment beyond the bare minimum
needed to ask for consensus.

As the implementation task, we choose XML processing
with the JDOM library, for which we have developed the
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performance unit tests in [20]. The students were asked to
implement an application that accepts a DocBook [11] file
on the standard input and produces a list of cross references
grouped per section on the standard output. This is a rea-
sonably simple task — our reference solution has less than
200 LOC- yet it provides opportunity for exercising multi-
ple different uses of the JDOM library and the standard
collections.

We have assigned the task to 39 students split into three
equal-sized groups — one control group and two test groups.
The control group was given the standard JDOM library
documentation, the two test groups were given two versions
of documentation augmented with performance information,
one strictly correct and one deliberately misleading. In both
versions, methods relevant to the task were identified to-
gether with possible alternatives. In the first test group, the
true performance measurements of all methods were pro-
vided, with the intent to guide the students towards more
efficient implementation. In the second test group, the per-
formance measurements of the fastest and the slowest meth-
ods in some alternatives were switched, to guide the students
towards less efficient implementation.

The experiment results suffered from high attrition rate.
Of the 39 students, only 12 have submitted implementations
that have passed minimum correctness tests. The attrition
rates have not differed greatly between the three groups, sug-
gesting low general motivation to complete the task rather
than bias particular to individual groups.

More importantly, the execution times of the implemen-
tations have exhibited very high variance. On a test input
of 80 MB, the fastest implementation has finished in 3.28s,
but the slowest implementation has not finished in one day.
The median execution time was 5.38s. The high variance
prevents making statistically significant rejection of the null
hypothesis at reasonable scales — even if we filter out the
execution times that exceed one minute as anomalies, the
variance remains such that a two-sided t-test at the 5% con-
fidence level would only spot average differences above 6.13 s.
Our approach does not aspire at performance improvements
of such a large relative magnitude.

Given that our approach targets minor-impact decisions,
we believe it could be considered successful if it brought aver-
age performance improvement in the order of tens of percent.
We can use the common sample size estimation methods to
guess the required experiment size. In statistical terms, we
consider the probability P that the sample average perfor-
mance X estimates the true mean performance p with a



relative error exceeding ¢, and we want P to remain at a
reasonably low confidence level a: P((X — p)/p) > 6) = a.
Under normality assumptions, reasonable for this particular
lower bound computation, we can estimate the minimum
sample size n = (22 * 02) /(62 * u?) [34]. For our experiment
results, a set to 5% and § set to 10 %, this suggests a mini-
mum of 2397 students per group, or 128 students per group
if we again filter out the execution times that exceed one
minute as anomalies.

Our study did not provide sufficient data to rule on wheth-
er our approach indeed helps improve performance aware-
ness among software developers, however, it did point out
another important observation — a direct evaluation of the
possible effect would require a study with a minimum of
several hundred participating developers. It is possible that
some aspects of the experiment can help reduce this num-
ber. For example, using more experienced developers or
constraining the assignment may reduce the execution time
variance, however, neither solution is without drawbacks.
Before considering this more expensive evaluation, we there-
fore turn to additional methods of examining our approach.

5.2 Evaluating Motivating Scenarios

To see whether reasonably realistic use cases can be found,
we evaluate our approach in the context of the motivating
scenarios from Section 3. For each scenario, we show what
the generated performance documentation would reveal and
discuss how the information relates to the eventual developer
decision.

The exact shape of the performance documentation de-
pends on the available workload generators. It is rather un-
likely that a generator would address a particular scenario
directly — for example, when a scenario calls for comparing
the performance of two collection implementations on a par-
ticular workload, it would be ideally addressed by a work-
load generator that can drive both collection implementa-
tions with that exact workload. Having a performance unit
test with such a workload generator would seem too much
of a coincidence, we are more likely to have workload gen-
erators that drive individual collection implementations in
some other — possibly similar — workloads. We discuss this
issue with each scenario too.’

5.3 Case 1: Navigating DOM Tree

In this scenario, the developer considers whether to navi-
gate a DOM tree using a sequence of getters or using XPath.
The choice with sequence of getters relies on the Element.
getChild() method. Internally, the method is fairly com-
plex, using a lazy element name filter and a cache of filter
results — we can therefore reasonably assume the compo-
nent developer would equip the method with a performance
unit test that makes sure both the lazy filtering and the re-
sult caching work. This suggests a workload generator that
calls the getChild() method on an element with a variable
number of children and a variable position of the match-
ing child, coupled with a performance unit test that makes
sure the getChild() timing does not depend on the child
count when the matching child position stays constant. The

5For the curious reader, we have also evaluated the alter-
natives from Listing 1. On 10000 purchase records of 1000
customers, Listing 1.a takes an average 304 ms to complete,
Listing 1.b completes in an average of 12ms. The best com-
bination uses a sequence of getters and HashMap in 7 ms.
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Figure 4: Measurements of XPath query for varying element
count and selected matching element position. Compilation
amortized over 100 queries.

measurement results collected using such a generator are on
Figure 3.

For the alternative choice with XPath, we do not have
to hypothesize what workload generator can be reasonably
available. The developers that use Jaxen, the XPath engine
used in our experiments, have already implemented a simple
performance benchmark [6] that measures the time needed
to execute a query that locates a unique node in various po-
sitions of a tree with a given size. We have implemented the
corresponding workload generator, the measurement results
are on Figure 4.

Equipped with the information from Figures 3 and 4, the
developer can properly balance the difference in performance
with other concerns. In particular, the information helps
notify the developer of some performance realities that are
not self evident, for example the linear dependency between
the getChild() time and the position of the matching child
among siblings.

5.4 Case 2: Choosing A Collection

In the second scenario, the developer decides what col-
lection to use to store a relatively small number of variable
attributes. Evaluating the performance of a collection im-
plementation against a particular workload is a common en-
deavor, we therefore assume the evaluation would provide a
workload generator. Our implementation of such a workload
generator accepts basic workload parameters — the initial
size of the collection, the number of operations to perform,
and the relative frequencies of individual operations in the
workload. The operations are inserting and removing an
element, iterating over the collection, and two versions of
searching the collection (one that searches for an existing



= TreeMap
HashMap e
v " LinkedHashMap .77./ —
=) P
© -»,,,,./'/
E g
é S _/‘7./
3 e
w o | T e
h o
t—
T T T T
5 10 15 20

Number of elements in the map

Figure 5: Measurements of operation mix on Map<String,
String> collections. Average time, dotted lines at 3o.

- = ArrayList
LinkedList
TreeSet -4
_| m HashSet LT

= LinkedHashSet

10 12 14 16 18

Execution time [us]

8
I

6
|
\

20
Number of elements in the collection

Figure 6: Measurements of operation mix on Collec-
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element and one that searches for an element that does not
exist).

Ideally, the generator would also permit specifying the
type of the collection elements (the type parameter of the
collection type). So far, we have not tackled the issue of
specifying a type as a workload parameter, and instead as-
sume multiple workload generators would be present — one
for each type for a small set of common types. Figure 5
shows the measurements on a workload suggested in the
scenario, that is, a mix of one-third iterations, one-third
successful searches, one-third unsuccessful searches on the
Map<String,String> type. The figure can help the devel-
oper realize that in this scenario, all three collections per-
form reasonably well, with perhaps a small saving to be
made by using LinkedHashMap.

Among other likely concerns in the choice of a collection
is the memory overhead [33]. This might lead the developer
to also look at the performance of collections that do not
implement the Map interface — after all, for the collection
sizes suggested in the scenario, searching an array might
not be much slower than searching a sophisticated collec-
tion. The developer can look at the same workload on the
Collection<String> type, with results shown on Figure 6.
The results would suggest that for small collections, trad-
ing memory requirements for performance by using arrays
is potentially feasible.

5.5 Case 3: Choosing A Library

In the last scenario, the developer needs to select among
different graph plotting libraries. Although we cannot ex-
pect the libraries to provide workload generators matching
our needs exactly, we assume each library would provide
tests demonstrating typical usage — as a matter of fact, the
library developers can use the examples distributed with the

297

o
3 -
« | = GRAL -
o XChart —
@ & 1 m JFreeChart —
£ « -
0 o _—
E 81 _
c T —
= _—
3 O | _—
o O —
L + -
x —
& _
o
1 wi——r—i
o \n
\. T T T T T
0 2000 4000 6000 8000 10000

Number of data points plotted

Figure 7: Measurements of line plot creation time. Image
dimension 800 x 600 points.

library documentation, because the amount of additional
work required to turn the examples into generators is low.

In our scenario, the developer would look at workload gen-
erators that plot line charts. The workload parameters of
the generators can differ from library to library, the devel-
oper will thus be presented with separate results rather than
the combined result plot we present here. The generator we
use creates a PNG image with a line chart, the workload pa-
rameters were the image dimensions and the number of data
points. Figure 7 offers a comparison of the three libraries
under consideration.

As another example of an interesting behavior, the de-
pendency on Figure 7 is not strictly monotonous. This be-
havior correlates with the line plot appearance — with too
many data points, the lines merge into larger blotches that
are easier to compress.

5.6 Evaluating Existing Projects

Although our motivating scenarios were inspired by real
code, they are not from real projects. Lacking the means
to involve a sufficient number of external developers, we in-
stead examine the existing projects ourselves, looking for
opportunities for performance improvement based on per-
formance documentation. Many of our performance unit
tests were developed for the JDOM library [20], we have
therefore looked for open source projects that use JDOM.

We have used the Ohloh® open source project tracking
site to look for projects that import classes from the JDOM
library package, locating roughly 100 projects. We did not
consider projects that are simply too big to evaluate, such
as the Eclipse development environment. We have also ex-
cluded projects that use JDOM merely to read their con-
figuration files, because in such projects the performance
improvement is unlikely to matter. Finally, some projects
did not build on our experimental platform. The following
sections document cases of performance improvement.

5.7 Project 1: Buildhealth

Buildhealth” is a utility that parses the reports of common
software development tools, such as JUnit or FindBugs, to
create a build health summary. Many of the parsed reports
are stored in XML and Buildhealth uses JDOM for their
analysis. The individual modules for parsing the reports
often use XPath. Our performance documentation reveals
high initial cost associated with XPath compilation, we have
therefore decided to replace simple XPath expressions — such

Shttp://www.openhub.net
"https://github.com/pescuma/buildhealth



Table 1: Buildhealth results

Original No XPath Cached XPath
Repeated 938.3ms  908.4 ms 929.8 ms
Ant task 2.23s 2.16s —
Standalone 2.52s 2.40s -

Repeated measurement in single JVM
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Cached XPath -
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Duration [ms]
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Figure 8: Buildhealth

as selecting all children of given name — with more efficient
but less versatile API calls. The changes were a few lines in
size and done within minutes.

We do not analyze other qualities of the modification, such
as code readability or maintainability. Without doubt, com-
plex XPath expressions would be very difficult to replace in
a similar manner, however, in this case the expressions were
sufficiently simple to justify the change.

We have evaluated the performance effect of our changes
in three different settings. All concern the processing time
of JUnit reports for the Apache Ant project, the size of the
report files is approximately 4 MB. The average execution
times are in Table 1, boxplots are displayed in Figure 8.

The first of the three settings serves to explain the perfor-
mance effect of our changes. To filter out the usual warm up
effects, we run the core of the Buildhealth utility in an arti-
ficial loop. Besides the original and the modified versions of
the utility, we also show the performance when the compiled
XPath expression is cached. The results indicate the part
of the performance improvement due to XPath compilation,
the API calls used by the modified version of the utility are
faster than even compiled XPath.

In the second of the three settings, we have executed
Buildhealth as an Ant task. Using the ProfileLogger® sup-
port, we have measured only the time needed to execute
Buildhealth, without the overhead of the Ant invocation.

In the third setting, we have measured the total time to
execute Buildhealth. This setting is the most realistic, but
it does not allow us to filter the warm up effects, which are
therefore included in this and further results. Overall, the
changes have improved performance of the utility on our

8http://ant.apache.org/manual/listeners.html#ProfileLogger
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Table 2: METS downloader results

XPath  Nested getChildren
Total time 120.2s 120.4s
getImageURLs 131.5ms 27.4ms
Original 4 poreeeeeee L I 1
Improved + +--{lll---1
50 100 150
Duration [ms]

Figure 9: METS downloader, the getImageURLs method.

data by about 5%, which can be considered a success espe-
cially given that the modifications were small and performed
without deep knowledge of the source code.

5.8 Project 2: METS Downloader

The METS (Metadata Encoding and Transmission Stan-
dard) is a “standard for encoding descriptive, administrative,
and structural metadata regarding objects within a digital
library” [32]. To facilitate downloading METS documents
recursively (with referenced files), an unofficial downloader
exists.”

The downloader uses XPath to extract the list of refer-
enced images that need to be downloaded. Technically, the
XPath expression selects a link attribute from elements
nested in certain order. Motivated by the same informa-
tion as in the previous project, we have replaced this XPath
expression with a series of nested loops iterating over the in-
dividual child elements. The modification is located in the
getImageURLs method of the MetsDocument class.

Table 2 shows both the total execution time of the down-
loader and the execution time of the getImageURLs method,
measured on about 67 MB of data from the UCB library site.
While the impact on the overall performance — which is in-
fluenced much more by the network latency and throughput
— is negligible, the method alone executes in one fifth of the
original time, as also illustrated on Figure 9.

5.9 Project 3: Dynamic Replica Placement

For our last project, we have chosen a prototype imple-
mentation'? that accompanied a paper about dynamic rep-
lica placement in CDN [8]. Again guided by our perfor-
mance documentation, we have replaced a recursive docu-
ment traversal based around the getChildren method with
a single iteration over elements returned by the getDescen-
dants method in one of the included tests.

The results are displayed in Table 3 and in Figure 10.
The modifications were again relatively small, we were able
to improve the total execution time by 2% and the affected
method alone by 6 %.

6. DISCUSSION AND RELATED WORK

In our evaluation, we have demonstrated the kind of infor-
mation that performance documentation can provide to the
software developer. We have also shown that real software
projects do contain the kind of code constructs that lead to

9The sources are available from https://svn.thulb.uni-jena.
de/repos/maven-projects/mets-downloader, we are not aware
of an official project homepage.
https://code.google.com/p/dynamicreplicaplacement



Table 3: CDN simulator test results

getChildren getDescendants
Total time 1.93s 1.89s
Processing alone 744.3 ms 700.3 ms
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Figure 10: CDN simulation, the process method.

needless performance loss and that can be easily fixed. Ad-
ditionally, we saw that even on an assignment that is short
and thus limited in the number of decisions taken during de-
velopment, the performance of individual implementations
can vary significantly.

On the down side, our evaluation is not comprehensive —
while we did show cases where our approach is useful, we
did not quantify the share of those cases in some represen-
tative sample of software development activities. One can
easily observe that such quantification will require long term
effort and should be expected to deliver results in the form
of developer acceptance or rejection, rather than hard num-
bers. Towards this goal, we continue to develop and improve
our prototype tools.

We can also see several potential drawbacks of our ap-
proach. Obviously, when the performance unit tests are con-
structed improperly, the derived performance documenta-
tion can provide misleading information. Interpreting mea-
surements is also a skill that requires some experience — in
this context, we can only argue that the developers should
be trusted to acquire that skill, and eventually develop best
practices for writing the documentation.

In a broader view, we should also stress that performance
documentation is not a substitute for efficient algorithms.
While it can warn the developer of unexpected complexity
in the used code, our approach complements, rather than
replaces, the need to choose proper algorithms and archi-
tectures. Along the same lines, our approach complements
techniques such as profiling or parameter tuning, which are
useful at other software development stages.

There is also the question of costs vs benefits. Where we
point out that our approach increases performance aware-
ness, it also brings costs associated with developing the unit
tests and executing the measurements. Possibly, the perfor-
mance information can draw the developer attention away
from other topics, which might have more impact on the
overall software performance. Again, these are likely issues
that are best evaluated through practice — we can draw a
parallel with functional unit testing, which has been shown
to improve software quality without adding extra costs [15].

On the related work side, much work has been dedicat-
ed to enriching interface specifications with non-functional
properties, which often include performance metrics. One
such example is the performance-enabled WSDL [13], which
adds requirements and assumptions about performance of
web services. Where the existing work focuses on automatic
service selection at runtime, we aim at providing perfor-
mance relevant information to the developer.
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An important aspect of approaches that extend the inter-
face description is the choice of metrics for quantifying per-
formance. One possible approach is to devise a portable met-
ric that summarizes the performance as a platform-indepen-
dent value. For example, JavaPSL [16], used for detecting
performance problems in parallel applications, normalizes
the values to [0, 1] to simplify comparison. The performance
unit tests in [4] also rely on relative comparison to tackle the
platform-dependent nature of the measurements. In con-
trast, the approach described here provides platform-specific
information in absolute numbers.

As a practically useful extension, we also consider measur-
ing more than just the execution time of a specific method.
Of eminent interest are the memory-related metrics such as
heap consumption or cache utilization. The basic idea is a
straightforward extension of this paper, however, the tech-
nical process of defining and collecting the memory-related
metrics presents specific challenges especially for the separa-
tion of the workload generator from the measured method.

In a broader context, our work also complements the re-
search effort in the performance adaptation domain. We
have touched on the issue of choosing a suitable collection
implementation, which is addressed in depth by the Chame-
leon tool [37] — the tool observes access patterns on individ-
ual collections and, based on a set of static rules, issues rec-
ommendations on which collection implementation to use.
The problem of choosing from multiple available implemen-
tations was explored for example in the context of selecting
the best parallel algorithm [45]. Other frameworks address
the need for adaptive configuration [10] and other situations.
What these approaches have in common is that the devel-
oper has to be aware of the potential for dynamic adaptation
to attempt the adaptation in the first place. Our work im-
proves the awareness of the likely performance of individual
software components and therefore helps the developer iden-
tify the adaptation opportunities to be explored in detail.

On the benchmarking side, our work is also related to
the existing benchmarking tools, especially those in the mi-
cro benchmark category. Among such tools for Java are
jmh [28], Japex [23] or Caliper [7]. These projects allow the
developer to mark a method as a benchmark and collect the
results. Our approach stands apart especially in using the
unit test code and in integrating the performance evaluation
into the interactive software development process.

7. CONCLUSION

Our work seeks to improve the perception of typical soft-
ware performance that the software developers form in their
work. We propose a system where performance unit tests
acquire dual purpose — besides evaluating a component, the
unit tests also serve to generate performance documentation
for application developers that use the components. Our ap-
proach facilitates building software architectures where the
performance of individual components can be easily exam-
ined and where the decisions that steer the development
process can take this performance into account.

We have illustrated the potential use of performance docu-
mentation on multiple examples, each accompanied by mea-
surements carried out using a real performance unit test
tool. We believe the potential benefits of our approach par-
allel those of functional unit testing, and although such ben-
efits are difficult to quantify experimentally [30], we find it



reasonable to expect that a better-informed developer makes
fewer wrong decisions.

Among the plethora of performance optimization oppor-
tunities, we see the contribution of our approach especially
with the many low profile decisions. An experienced devel-
oper should not make major performance mistakes often,
however, that same developer can make a conscious decision
to ignore the performance impact of low profile decisions
simply for the sake of fast development. Better performance
awareness reduces the need for this particular sacrifice. We
also provide more chances to recognize situations where ad-
vanced performance solutions, such as dynamic adaptation
or manual optimization, are warranted by the potential per-
formance benefit.
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