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ABSTRACT
In recent years, a number of benchmark suites have been
created for the “Big Data” domain, and a number of such
applications fit the client-server paradigm. A large volume
of recent literature in characterizing “Big Data” applications
have largely focused on two extremes of the characterization
spectrum. On one hand, multiple studies have focused on
client-side performance. These involve fine-tuning server-
side parameters for an application to get the best client-side
performance. On the other extreme, characterization fo-
cuses on picking one set of client-side parameters and then
reporting the server microarchitectural statistics under those
assumptions. While the two ends of the spectrum present in-
teresting results, this paper argues that they are not enough,
and in some cases, undesirable, to drive system-wide archi-
tectural decisions in datacenter design.

This paper shows that for the purposes of designing an
efficient datacenter, detailed microarchitectural characteri-
zation of “Big Data” applications is an overkill. It identi-
fies four main system-level macro-architectural features and
shows that these features are more representative of an ap-
plication’s system level behavior. To this end, a number of
datacenter applications from a variety of benchmark suites
are evaluated and classified into these previously identified
macro-architectural features. Based on this analysis, the
paper further shows that each application class will benefit
from a very different server configuration leading to a highly
efficient, cost-effective datacenter.

Categories and Subject Descriptors
C [Computer Systems Organization]: Performance of
Systems; C.4 [Performance of Systems]: [Design studies;
Performance attributes; Measurement techniques]

Keywords
Performance measurement, Datacenter Performance, Data-
center, Benchmarking, Workload Characterization
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1. INTRODUCTION
In recent years, a large amount of the world’s compute

and storage has been pushed onto back end datacenters.
The large scale of these datacenters come at a hefty price–
initial setup cost can range anywhere from upwards of US
$200 million, and yearly operation cost is on the order of
millions [30]. With such a high TCO (Total Cost of Owner-
ship), performance/$ is a first-order design constraint. Tai-
loring the hardware to the specific set of applications the
datacenter is expected to run can save millions of dollars.

The term “Big Data” refers to the explosion in the quan-
tity (and sometimes, quality) of available and potentially
relevant data, largely because of the result of recent ad-
vancements in data recording and storage [26]. Modern dat-
acenters execute a diverse set of applications on these mas-
sive datasets. These applications are collectively referred
to as “Big Data” applications. Due to the unprecedented
scale of these applications and their highly-distributed na-
ture, the characteristics of “Big Data” applications are sig-
nificantly different than those of traditional multi-core ap-
plications [41]. To gain better understanding of the behavior
of these applications, a large body of work has been done
in recent years to develop and characterize representative
benchmarks for the “Big Data” domain.

A lot of these benchmark suites are focused towards re-
search of the microarchitecture of a single server [34, 27, 41].
While they provide valuable insights into core and chip de-
sign, they usually focus on the core 1 microarchitecture anal-
ysis. Since most on the microarchitecture research is done
using simulators, these “Big Data” benchmarks have been
tailored to fit this research model. For example, this leads
to decreasing the size of the working set so that the bench-
marks can be run within a simulator. This, in turn makes
the benchmark not exhibit most of its inherent properties
due to which it was chosen as a representative application
in the first place.

On the other side of the spectrum, detailed analysis has
been published on the client performance of specific applica-
tions [13, 7, 6, 9], focusing on tailoring the application for a
predefined server architecture. The middle of the spectrum–
namely characterizing the behavior of full-scale applications,
with representative data sets in a multi-server environment
for the purposes of system design is left somewhat unex-
plored. In this paper, we try to provide a framework for
the datacenter designer to make judicious decisions about
hardware acquisition based on characterization of realistic

1This paper uses core and processor interchangeably in the
rest of the discussion.
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applications. This paper describes the authors’ experience
in compiling and characterizing a number of representative
“Big Data” applications, from different benchmark suites.
The authors found that the existing benchmarks, if used
as-is, are ill-fitted for system and storage architecture re-
search. This is either because they are scaled down to the
point where they do not stress the relevant components, or
because they are concentrating on studying processor micro-
architecture, which is just one of the components of research
on system design. The reader is taken through the process
the authors went through for tuning the workloads to the en-
vironment they are running on, describing how they reason
about application scaling, and presenting performance char-
acterization and analysis for several multi-server, real-world
applications.

While the results and tuning process presented here should
be of interest to any hardware system researcher looking
at the “Big Data” domain, they are also valuable outside
the realm of pure systems research. Indeed, when trying
to decide on specific hardware needed for a new datacen-
ter deployment, server microarchitecture optimizations are
of little value. Instead, this paper illustrates how a smaller
number of coarse-grained metrics allow for good classifica-
tion of a workload and are usually enough to make the first
order decision about the most important system level bot-
tlenecks for the application. Keeping this context in mind,
this paper makes the following contributions:

• The reader is taken through the tuning process of “Big
Data” applications, providing an ordered recipe for
what should be done, and how.

• Characterization results are presented for several “Big
Data” workloads, concentrating on the coarse-grain,
per-server, system-level behavior rather than the fine-
grained microarchitectural profile.

• The paper illustrates how a few coarse-grained metrics
(macroarchitectural properties) are enough to gain un-
derstanding of an application’s behavior, and explain
how these metrics can be obtained.

• Finally, some insights are presented on how to use in-
formation about the macroarchitectural properties of
applications to intelligently co-locate applications.

The rest of this paper is organized as follows: Section 2
presents an overview of the organization of a modern dat-
acenter, and describes the applications considered in this
paper. Section 3 identifies the four macroarchitectural pa-
rameters, and provides insights into why these parameters
are important. Next, Section 4 presents the characteriza-
tion methodology and authors’ experience on performance
tuning of different workloads. Section 5 presents the related
work, and Section 6 concludes.

2. DATACENTERS AND APPLICATIONS
Datacenters are broadly classified into three categories:

(1) Enterprise, (2) Cloud Computing, and (3) Web 2.0. While
they share a common goal of reducing TCO and increasing
efficiency of available resources, their application set and re-
quirements are significantly different. As a result, the char-
acteristics and design points of these three deployments are
also very different.

• Enterprise: These datacenters support corporate and
financial environments for primarily one institution.

Such datacenters have a comparatively smaller scales,
with low multi-tenancy and a smaller application di-
versity. Enterprise datacenters mostly run proprietary
applications like SAP ERP, Microsoft Sharepoint and
Microsoft Exchange.

• Cloud Computing: Cloud computing datacenters pro-
vide a virtualized computing and storage resources as
a service to end users. These datacenters have larger
scale and support a bigger class of applications. Ex-
amples of Cloud Computing services include Amazon
Web Services, Microsoft Azure and Google Compute
Engine.

• Web 2.0: Web 2.0 datacenters support massively high-
volume data and users through vertically integrated
application stacks and popular open-source frameworks.
Most of the services provided by the likes of Google,
Facebook and Yahoo! are hosted on such servers.

This paper focuses on the Web 2.0 category– a category
with an expected Compound Annual Growth Rate (CAGR)
of 17.8% [24]. These datacenters typically consist of sev-
eral types of servers (or server clusters), each of which are
designed to execute designated tasks [39]. Figure 1 shows
a representative deployment scenario, where the datacenter
back-end consists of three distinct layers. Each layer runs a
different class of applications and has its distinct set of hard-
ware requirements. The following sections describe each one
of these three layers, and describe the applications that have
been characterized and analyzed in this paper.

2.1 The Caching Layer
The caching layer is primarily responsible for the perfor-

mance and response times of the datacenter. The caching
layer resides in between the web front-end and the back-
end database, and uses large amounts of DRAM capacity
to cache frequently used data and reduce the amount of
queries hitting the back-end database servers. The reduc-
tion in database (DB) queries reduces the pressure on the
servers– notably the I/O subsystem– and considerably im-
proves user-experience. Memcache [28]– an open source key-
value distributed caching software, is by far the most de-
ployed web caching application in this domain. Section 4.2
presents the authors’ experience in tuning Memcache and
using it as a representative web caching layer application.

2.2 The Analytics Layer
The analytics layer contains a rich set of applications that

analyze huge amount of data (i.e. “Big Data”) to extract
knowledge and provide value. The majority of “Big Data”
applications belong in this layer. These applications can be
further classified into two separate groups: real-time and
offline.

Real-Time Analytics: Designed for the most latency
sensitive analytics, real-time analytics applications are de-
signed such that they store either the entire data set or the
vast majority of their data set in server memory. Hence, this
paradigm of Real-Time Analytics is often referred to as In-
Memory Computing (IMC). In the past, their adoption was
hampered by high memory acquisition cost, but with the re-
cent decline in DRAM prices and the availability of mature
software, IMC is becoming widely used in many datacen-
ter deployments. Indeed, the exponential growth in data
and the need for faster turnaround in extracting meaningful
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Figure 1: Representative datacenter architecture. A datacenter is composed of several different server tiers.

information is expected to expand adoption of IMC, fore-
casted to reach over $13 B by 2018 [18]. Redis [4] and Apache
SPARK [15] are two popular open-source, in-memory frame-
works. This paper focuses on the Redis framework, which
is used in the production stack of several web 2.0 companies
like Twitter, Craigslist, Flickr and Github [21].

Redis [4] is an open-source, in-memory data structure
framework that provides an advanced key-value abstraction.
Unlike traditional key-value systems where keys are of a sim-
ple data type, Redis supports complex data types: keys
can contain hashes, lists, sets, and sorted sets. It enables
complex atomic operations on these data types; all opera-
tions are executed on the server, and the entire dataset is
served from the server’s DRAM. Data persistence is achieved
through frequent syncs to hard-drives, while sharding is used
for scaling-out. This abstraction has proved particularly use-
ful for multiple latency-sensitive tasks.

Offline Analytics and Batch Processing: Batch pro-
cessing of large scale data via distributed computing is a
widely used service in contemporary datacenters. These
services typically rely on the Map-Reduce computational
model, for which Apache Hadoop [1] is the most popular
open-source implementation. A Hadoop deployment spans
multiple nodes and comprises of multiple modules, includ-
ing the Hadoop distributed file system (HDFS) for large-
scale data storage and the map-reduce programming model
for computation. While the computation is slower than an
IMC system, the distributed model allows it to process mas-
sive amount of data using commodity hardware. It is exten-
sively used by organizations to support analytics like sen-
timent analysis and recommendation engines on enormous
data volumes. This paper studies two popular applications
on the Hadoop framework:

• Nutch Web search [14, 32] was the first proof-of-concept
Hadoop application and remains a good, representa-
tive data-intensive distributed application. Nutch is
an extensible and scalable open-source web search en-
gine package that aims to index the World Wide Web
as effectively as commercial search services.

• Mahout Data Analytics is a scalable, open-source
machine-learning framework built on top of Hadoop
Map-Reduce. It is used to apply machine learning
models to massive volumes of data that do not fit the

traditional computational environments. Specifically,
our workload uses the bayes classifier algorithm to ex-
ecute text analysis and clustering on large datasets.

2.3 The Data Store Layer
This layer often comprises of multiple databases that store

and serve data back to various applications in the data-
center. Traditionally, relational databases, organized in a
row-column format, were used exclusively for data storing.
However, since relational databases are both hard to scale
out and unfit for unstructured data, contemporary datacen-
ters rely on NoSQL databases to meet the performance re-
quirements at scale. This paper characterizes Cassandra– a
popular NoSQL database. Cassandra is designed for write-
intensive workloads and targets linear throughput scaling
with the number of nodes. The YCSB [25] framework was
used as a client for all experiments.

3. MACRO ARCHITECTURAL PARAME-
TERS FOR SYSTEM WIDE ANALYSIS

This section attempts to provide a framework for system
wide analysis of representative datacenter applications. Cre-
ation of such a framework is an important step in char-
acterizing these applications with the aim of finding the
best hardware configuration for each tier and/or applica-
tion class. Going through this exercise would be essential
for the following scenarios: (i) a new datacenter has to be
set up, based on the requirements of the application set of
each tier, or (ii) a datacenter installation already exists and
the applications running at each tier are well known, but the
hardware infrastructure of a particular (or all) tier(s) has to
be updated.

A large body of work has been dedicated to characterizing
datacenter level applications. Section 5 presents a detailed
survey of prior work. However, most of the existing litera-
ture is of little use for the said purpose since it highlights
one of the two characteristics: (i) client side performance, or
(ii) detailed exploration of server microarchitecture. Both
of these levels of characterization have value, but looking
at application characteristics from a system perspective is
much more valuable to the datacenter designer. Getting
a complete picture of how a server should be provisioned
based on its behavior under real-world use cases is essen-
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tial to make sure that each server machine can handle all
requests, meet QoS and SLA requirements, while still not
being extremely over-provisioned. In order to make an in-
formed decision, according to the authors’ experience, a first
level analysis of datacenter applications should be done on
a coarser, system-wide level. This section describes the four
main macro-architectural resource categories that should be
considered while making per-server provision decisions for a
particular application/class of applications.

Each macro-architectural resource category is composed
of several fine-grained metrics that effectively decide the na-
ture of the application considered with respect to that cate-
gory. Classifying each application into one or more such cat-
egories enables intelligent and cost-effective hardware provi-
sioning. Moreover, since it is in-feasible to list all the fine-
grained parameters, applications are broadly classified based
on their intensity of usage of each resource category. The
intensity of usage is defined as follows for each resource cat-
egory.

CPU Intensity CPU utilization provides a broad mea-
sure of the amount of work done by the application. It is
very important to note how the CPU is being utilized. It
is entirely possible that some programs have high CPU uti-
lization, while making little forward progress, e.g. in cases
where multiple threads of a program are waiting for I/O.
Learnings from the application compute requirements pro-
vides an effective understanding of the CPU performance
requirements and supports informed provisioning decisions
about choice of CPUs.

DRAM Intensity At a macro level, this is comprised
of two main components: (i) capacity, and (ii) bandwidth.
Identifying the dominating component for each application
supports effective provisioning trade-offs about DRAM ca-
pacity and performance in the server node.

Disk I/O Intensity The two most fundamental com-
ponents of Disk I/O are (i) access latency, and (ii) band-
width. Understanding application throughput and sensitiv-
ity to each parameter is essential in selecting the correct
interface and media for storage provisioning. These may
include traditional hard-disk drives (HDDs) or flash-based
solid-state disks (SSDs) on standard SATA3 interface, high
performance PCIe based SSDs or a combination of some/all
of the above.

Network Intensity All nodes in a datacenter commu-
nicate over a network, and ethernet is the most commonly
deployed technology. Maximum bandwidth of each ethernet
port is predefined by the protocol and understanding of sus-
tained and peak application network requirements supports
better network provisioning.

Several applications used in production environments rep-
resenting each tier were evaluated and classified into the
four broad categories. Results of characterization experi-
ments suggest that each of the aforementioned tiers of a dat-
acenter have distinct hardware requirements and a uniform,
general-purpose hardware allocation across all tiers does not
represent an efficient datacenter design. The authors pro-
vide a performance architect’s perspective of the Web 2.0
applications that over-provisioning hardware in isolation to
application requirements does not have any impact on the
performance or scalability of the applications, and macro-
architectural classification of applications is instrumental in
designing and deploying cost efficient datacenters.

4. DATACENTER APPLICATION CHARAC-
TERIZATION

Section 2 postulated that in most cases, matching the ap-
plication to the right set of hardware resources requires cate-
gorizing it into one of four main categories. This section first
presents the authors’ experiences in installing and running
out-of-the-box versions of “Big Data” benchmarks, with the
default data sets. Next, the section presents the observa-
tions from the default experiments and then compares those
results to finely tuned versions of the same applications to
highlight the learnings from application tuning. This expe-
rience is used to show that stock versions of the considered
benchmarks do not stress the intended subsystems of a typ-
ical server hardware. Based on these experiences, it is also
shown that in a datacenter setting, one application can have
multiple points of saturation on a server, and the points of
saturation are highly dependent on the considered use case.

4.1 Methodology
The configuration used for these studies comprises of a

cluster of eight server class machines running Ubuntu 12.04.5.
Each server node consists of a dual-socket Intel Xeon E5-
2690 processor. There are 8 physical cores on each socket,
supporting a total of 32 independent threads per node with
hyper-threading. Details of the setup can be found in ta-
ble 1. The Hadoop setup consisted of seven worker nodes
(DataNodes, TaskTrackers) and one master node (NameN-
ode, SecondaryNameNode, JobTracker). The nodes are con-
nected through a 10GbE network. The rest of the workloads
use the specified number of nodes as indicated for each con-
figuration. Most client-server style workloads were run as a
single client, single server setup, unless otherwise specified.

Table 1: Server node configuration
Processor Xeon E5-2690, 2.9GHz,

dual socket-8 cores
Storage 3× SATA 7200RPM HDDs

Memory Capacity 128 GB ECC DDR3 R-DIMMs
Memory B/W 102.4GB/s (8 channels,DDR3-1600)

Network 10 Gigabit Ethernet NIC
Operating system Ubuntu 12.04.5
Hadoop version 1.2.1

Memcache version 1.4.13
Cassandra version 2.0.9

Redis version 2.8.12

Benchmarks are evaluated by collecting data from the ap-
plication, operating system and processor performance coun-
ters. High level statistics of application and cluster perfor-
mance are reported as part of application client or load gen-
erator. In addition, collectl [16] is run to monitor system
level performance and use its plotting utility colplot [17] to
generate graphs.

4.2 Application Tuning
Most of the applications described in prior sections re-

quired a significant effort to identify and tune several pa-
rameters to emulate real-world use cases. This section sum-
marizes the authors’ learnings from the tuning process.

For most cases, if the application fit the client-server paradigm,
the goal was to maximize per-client performance, usually
measured through metrics like transactions/second (TPS).
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Table 2: Key parameters that had to be tuned for
Memcache and Cassandra

Parameter Original Value Tuned Value
Memcache Tuning

DRAM Size 4 GB 60 GB
Server Threads 4 32

Server TCP 200 4096
Connections

Memcslap Clients 1 4
Threads/Client 4 16

Cassandra Tuning

Commit Log
Same disk Different disk

as DB from DB
Heap Size/JVM Size Default 600MB/6GB

Concurrent Reads/Writes Default 64/64
Memtable size Default 4 GB

Allowed open file handles Default 32768
YCSB client threads Default 200
YCSB Database size Default 128 GB

The server’s characteristics are reported after the applica-
tion tuning has been completed.

Figure 2: Memcache performance tuning for num-
ber of client and server threads.

Memcache The Data Caching benchmark provided as
a part of CloudSuite benchmark suite was set up using the
default parameters suggested in the CloudSuite literature.
Over time, the authors realized that to emulate real-world
use case, a number of parameters in the benchmark required
significant changes. First, CloudSuite instructions [11] pre-
scribe running Memcache with 4 GB memory which can be
set using the -m option, and then increasing it to 10 GB for
larger working sets. However, experiments on Xeon servers
indicated that running Memcache with as much DRAM as
possible leads to better client side throughput. This is be-
cause of two factors: (i) Larger DRAM capacity implies a
larger cache, leading to higher hit rates, and (ii) having more
DRAM at hand allows the application to do better memory
management by itself. Hence, >90% of the total available
DRAM was attached to the Memcache server.

Prior studies [42] indicate poor scalability of Memcache
with increase in the number of server threads. However, with
the current production version of Memcache, good scalabil-
ity was observed in client side performance with increasing
the number of threads. Client side performance does not
begin to degrade until there were enough hardware contexts
to run client side threads. As indicated in Figure 2, it was
possible to maintain 99th percentile latency of < 1 ms with
32 server threads. This coincides with the E5-2690 Xeon
server having 16 physical and 32 SMT threads The number
of TCP connections also had to be tuned for both the server
and the client. The optimization details are listed in Ta-
ble 2. This experience led to an exploration of the optimal
number of threads on both the server and the client.

Figure 3: Optimized Cassandra client side perfor-
mance for YCSB workload E; parameters in Table 2.

In order to reap maximum benefits out of a datacen-
ter’s Memcache installation, the administrators should en-
sure the upper limits of TCP connections that both servers
and clients are allowed to make. One of the most important
changes that the authors had to do to their setup was in-
crease the number of client machines. This was because of
two reasons: (i) one physical client was not enough to push
the limits of the server, and (ii) no realistic use case could
be achieved using a one-server, one-client setup, especially
for Memcache [23]. Hence, the experiments were run with
four physical clients.

Cassandra Cassandra needs tuning in two different ecosys-
tems: (i) Being a client-server database application, the ap-
plication server needs to be tuned to make sure that the de-
structive interference between different components of the
application is reduced and the server is given enough phys-
ical resources for it to function properly – this will be ex-
plained shortly, and (ii) since it is a Java application, the
JVM settings need to be tuned. The latter is relatively easy
since enough information is publicly available.

For Cassandra-specific configuration parameters, tuning
three main ones in accordance with available resources was
found to have most impact on performance. The first and
the most important optimization was to have the commit
log on a different disk than the actual database. Since Cas-
sandra is optimized for extremely fast writes, which are con-
sidered complete when they are written (simultaneously) to
an on-disk structure called the commit-log (for durability)
and also to an in-memory structure called the Memtable,
which is a write-back cache. The second related optimiza-
tion is the size of the Memtable. A small Memtable causes
frequent writes to disk, affecting overall performance. The
authors found that for their setup, 4GB was the most opti-
mal Memtable size, and any further increase led to dimin-
ishing returns. Combined, these two optimizations lead to
a significant gain in performance ( 2×, as indicated in Fig-
ure 3; left and center bars). This is because the destructive
interference between the the two types of disk I/O : one for
durability to the commit log and the other to propagate the
writes to the database is removed. In addition, striping the
database across more than one disk also leads to much bet-
ter performance – middle and right bars in Figure 3 show
that another 1.5× performance benefit can be realized by
just allowing Cassandra to stripe data across two HDDs.

Several other, albeit smaller optimizations were also needed
for correctness, rather than performance. For example, the
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maximum number of concurrent open files was increased
within Linux to 32768, otherwise Cassandra would fail un-
der heavy load, when Java isn’t allowed to open the required
number of file descriptors.

Hadoop Hadoop is another good example where a large
number of Hadoop, OS and application parameters need to
be tuned for best performance on a specific cluster. Num-
ber of MapReduce slots, as well as the Java heap size were
the first configuration parameters to be tuned. The goal
was to maximize resource (CPU, Memory) utilization of the
cluster and Hadoop default values are usually too small.
Configuring Java heap size is dependent on available mem-
ory as well as application characteristics. It was observed
that some applications failed to run without sufficiently large
heap size/memory and needed to be tuned properly. Sev-
eral other OS and Hadoop configuration parameters were
tuned, including, but not limited to, increasing HDFS block
size, increasing TimeOut value and sorting parameters like
io.sort.factor and io.sort.mb. More details on Hadoop
tuning can be found in prior work [2, 3, 8, 12].

In addition to Hadoop cluster configuration, applications
require tuning for best utilization of resources. For the ex-
periments reported in this paper, the number of reduce tasks
were configured to take advantage of available reduce slots
in the cluster.

Redis Tuning Redis was relatively straightforward. The
default configuration file was used, and the limit on concur-
rent open sockets was increased to 15000 (via ulimit). It
was found that a single Redis process cannot saturate the
Xeon E5-2690 server. Further process scaling experiments
suggested that at least 4 Redis instances were needed to
saturate the server.

4.3 Macro Architectural Characterization
This section presents a number of plots for system wide

characteristics of application behavior that were generated
using colplot. Colplot results for all the benchmarks, for
each of the four macro-architectural categories are presented.
Analysis of the results show that for a particular benchmark
or phase in a benchmark, only one of the four categories is
interesting. Table 3 provides a legend for understanding the
information conveyed by these figures.

4.3.1 Memcache
Memcache was studied in a one server, four client configu-

ration. The Memcache server was started with the parame-
ters described previously in Table 2. A number of key-value
combinations were studied, but in the interest of space, re-
sults will be reported for key and value sizes of 32 bytes and
25 KB respectively. This particular value corresponds to the
Image Preview distribution described in [33].

CPU Intensity A well-tuned version of Memcache isn’t
very compute intensive. Although, if the number of worker
threads is made extremely high, the number of context switches
between the threads becomes high, and the workload be-
comes artificially compute bound, since most of the time is
spent context switching, rather than doing useful work.

DRAM Intensity Since Memcache is essentially an in-
memory cache, it is always bounded by DRAM capacity, ir-
respective of the size of key value pairs. Although, for server
class machines considered in this study, DRAM bandwidth
was never the bottleneck – the maximum observed DRAM
bandwidth utilization was only 9.3% of peak bandwidth.

Table 3: ColPlot legend
CPU

User Percent time spent
in user mode (application)

Sys Percent time spent
in system level (kernel)

Wait Percent time spent idle
waiting for an IO request

Memory
Map Combines mapped and

anonymous memory
Buff Memory used in system buffers

Cached Memory in the pagecache,
not including SwapCache

Slab memory allocated to slabs
Inact memory allocated to process

that is no longer running
I/O

ReadMB Reads to disk in megabytes
WriteMB Writes to disk in megabytes

Network
InMB Data sent, in megabytes

OutMB Data received, in megabytes

Figure 4: System-wide macro-architectural perfor-
mance for Memcache.

Disk I/O Intensity Memcache displays close to negli-
gible I/O activity, since all the data is made to fit in the
DRAM by design.

Network Intensity Depending on the use case, the line
rate (1.25 GB/s) of a 10 Gb ethernet card was achieved in a
number of experiments. This tends to be especially true for
use cases with larger value sizes, where the relative cost of
processing and sending the data over ethernet is amortized
over the larger sizes of data being transferred.

4.3.2 Cassandra
The primary bottleneck of a database has traditionally

been the server I/O subsystem. NoSQL databases are no
different. For Cassandra characterization, the YCSB [25]
client was used, which allows users to drive the database
with a number of different workloads (workload A - work-
load F), each varying in the proportion of read, write, insert,
read-modify-write, and scan operations. The general profile
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Figure 5: System-wide macro-architectural perfor-
mance for Cassandra.

of Cassandra doesn’t change much with the YCSB work-
load under consideration. It is almost always bottle-necked
by I/O, although the degree of saturation varies with the
workload. The results for YCSB scan-intensive workload
E are illustrated in Figure 5. Next, the characteristics of
the workload as a function of previously identified macro-
architectural parameters are explained.

CPU Intensity Most of the CPU activity is caused by
the server threads waiting for I/O to complete. This can be
clearly seen in the CPU summary graphs, where the green
part corresponding to CPU Wait time dominates – on an
average the CPU spends close to 50% of the time waiting
for I/O. The rest of the CPU activity is equally divided
between the user and kernel. This CPU profile remains sim-
ilar for other YCSB workloads as well, but the percentage of
CPU time spent waiting for I/O is reduced for read intensive
workloads, since some of the requests hit in the pagecache
of the server DRAM.

DRAM Intensity Cassandra is never bound by DRAM
bandwidth, although the servers utilize most of its DRAM
capacity, the majority of which is for caching I/O requests in
DRAM by the OS. This can be seen in Figure 5, where the
most of the DRAM capacity is used by Cached and Anon
types of pages. Some DRAM capacity is also used up by
Java, but has not been garbage collected, as indicated by
the Inact part of the DRAM usage.

Disk I/O Intensity Disk/storage is by far the most ex-
ercised system in the Cassandra server. Workload E is a
scan intensive workload that requires a lot of random reads
from the disk. This behavior leads to a very consistent read
throughput of about 50 MB/s from the hard disk drive. Due
to the internal commit and compaction operations of Cas-
sandra, spikes in write to disks are seen, which are evidenced
by the periodic red spikes in Figure 5. Since the window of
time is large ( 2.5 hours), the write traffic spikes appear as
a contiguous phenomenon. Zooming in to the data reveals
the correct behavior of the application.

Network Intensity Cassandra under the current test
configuration doesn’t exercise the network by much. For
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Figure 6: Task execution time for all Map/Reduce
tasks in Nutch Indexing.

workload E, the network traffic is especially small since scan
operations cause a large amount of disk I/O, while the amount
of data that has to be sent back to the client is small.
Hence, the maximum network utilization is around 1% of
the peak available bandwidth. For test cases involving mul-
tiple clients and read intensive workloads, this utilization
becomes better, but doesn’t come close to saturating the
line rate.

4.3.3 Nutch Indexing
The indexing sub-system of Nutch was studied as included

in the HiBench[31] suite. The workload uses the default
Linux dictionary file and automatically generates web crawl
data where hyperlinks and words follow the Zipfian distri-
bution. Crawl data is read and decompressed during map
phase and is converted into inverted index files in the reduce
phase. The dataset considered is 10M pages large. Several
Map/Reduce parameters were changed to improve perfor-
mance:

• MapReduce slots; tuned according to CPU count

• Status report timeout; increased to avoid killing jobs
pre-mature

• Number of Reduce jobs; originally set to 1, increased
to utilize all CPUs

• Map/Reduce Heap size; tuned for DRAM capacity

• Overlap between Map/Reduce jobs; reduced to elimi-
nate undesired impact

Figure 6 shows execution times for all Map/Reduce tasks
including execution time of shuffle and sort. Map execution
times vary greatly as is expected considering the varying
input file sizes and formats. Shuffle time is short, since we
reduce Map /Reduce overlap and shuffle starts only after
most map jobs have finished. Sort time is insignificant, and
Reduce jobs take noticeable time which justifies increasing
number of reduce tasks to the highest number of concurrent
tasks available on the cluster.

Figure 7 shows system behavior (CPU, disk, memory and
network) of a single datanode when running Nutch indexing
on the Hadoop cluster.

CPU Intensity: During the map phase, where crawl
data is read and decompressed, most CPU cycles are spent
waiting for I/O. On the other hand, the reduce phase, where
inverted indexes are generated , is very compute intensive.
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Figure 7: System-wide macro-arch performance for
Nutch indexing.

with up to 80% CPU utilization. Scaling experiments sug-
gest that enabling simultaneous multhithreading and utiliz-
ing all logical threads (32) in both map and reduce provides
the fastest total execution time. Increasing Map/Reduce
slots beyond that had no benefits.

DRAM Intensity: An extensive set of memory capac-
ity sensitivity studies were done and it was identified that
1.2 GB memory per map is the optimal capacity for map ex-
ecution for Nutch. Capacity below that caused failures due
to out of heap errors. Experiments also showed undesir-
able impact of concurrent map/reduce jobs due to resource
sharing, including DRAM. To address that, overlap between
phases was decreased by increasing the “slow-start” param-
eter in Hadoop configuration. Figure 8 shows MapReduce
execution time sensitivity to DRAM capacity (64 GB vs.
128 GB). As can be seen, increasing the memory capacity
to 128 GB from 64 GB leads to reduction in the average
execution time per map by about 5×.

Disk I/O Intensity: Nutch reads and transforms a large
amount of data leading to high disk read throughput during
map, and high write throughput (up-to 250 MB/s) during
shuffle and reduce phases. The compression option used
on input and output data can impact CPU and Disk I/O
intensity.

Network Intensity: Activity on network happens at two
distinct phases of execution: at the end of map where all
data is shuffled across nodes to prepare for the reduce phase,
and also at the end of reduce phase where the inverted index
files go over the network to be written back to HDFS. The
map phase was mostly data-local which explains the low
network activity during that phase. Higher network activity
is expected on larger cluster with hundreds or thousands of
nodes.

4.3.4 Data Analytics
The Data analytics workload in CloudSuite [27] uses the

existing implementation of bayes classification algorithm in
Mahout for categorizing documents. Bayes classifier is a sim-
ple probabilistic classifier based on the bayes theorem. The
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Figure 8: Execution time sensitivity to total DRAM
capacity per node (64 GB vs. 128 GB) for Nutch
indexing.

input dataset for categorization is the entire English lan-
guage Wikipedia articles database (45 GB), which is freely
available for download from the Wikipedia Foundation. The
training dataset that is used to train the classifier is a subset
of the Wikipedia articles (9 GB). This workload represents
an offline mode of data analytics, where the training data is
used to build the classifier model first, and the input dataset
is subsequently used for categorization based on the classi-
fier model. There is no feedback loop to the classifier model.
The workload is divided into four phases, in addition to sav-
ing the initial Wikipedia-dataset to HDFS.

• The first phase splits the input and training Wikipedia
dataset with a pre-defined chunk size across the avail-
able nodes in the Hadoop cluster.

• The second phase organizes and further splits the input
data (from phase 1) based on predefined categories.

• The third phase builds a classifier model based on the
training dataset using the Bayes algorithm. The clas-
sifier model is built once within the workload.

• The fourth or classification phase runs each input data
split created in the earlier phases against the classifier
model to categorize data. Most of the analysis of re-
sults in this section pertains to the classification phase.

The results of this study focus entirely on optimizing the
execution time of the workload. Figure 9 shows the system-
level characterization across the full lifetime of the workload.

CPU Intensity: The classification phase, which cate-
gorizes the input dataset, is highly CPU intensive, driving
CPU utilization close to peak, as shown in phase 4 of Fig-
ure 9. An extensive set of sensitivity and scaling exper-
iments were conducted by mapping map/reduce tasks to
varied CPU configurations in each node. Figure 11 shows a
subset of map execution time for different concurrent map
configurations (8, 16, and 32) per node across the classifica-
tion phase of the workload. It can be observed that increas-
ing concurrent map tasks past sixteen, leads to 2× increase
in execution time per map task. This is due to physical
CPU limit of sixteen on the dual-socket Xeon node, even
though it supports thirty two threads using hyper-threading.
It can be concluded that if shortest execution time is desired,
hyper-threading/simultaneous multi-threading (SMT) must
be disabled and independent physical CPUs should be used.
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Figure 9: System-wide macro-arch performance for
data analytics.

Figure 10: Aggregate memory bandwidth of classi-
fication phase in data-analytics.
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Figure 12: Data-analytics memory capacity scaling.

Although SMT is an effective architectural solution to in-
crease throughput by executing multiple threads on a phys-
ical CPU [40], sharing of resources (execution units, caches
etc.) leads to slowdown among homogeneous map jobs in
a node. In order to achieve maximum map job-level par-
allelism and lowest time to completion, the Hadoop cluster
must be provisioned to support enough independent physi-
cal CPUs for concurrent execution of all map jobs (function
of the input data-set).

Memory Bandwidth Intensity: Figure 10 shows the
aggregate memory bandwidth (including reads and writes)
for the classification phase. Overall memory bandwidth uti-
lization for the node is less than 20% of peak memory band-
width. The DRAM page hit rates were also studied and
they average around 80%, suggesting good locality of ref-
erence at the memory controller. Read bandwidth is also
much higher than write bandwidth. Sensitivity experiments
suggest memory bandwidth scales almost linearly with in-
creasing map jobs per node up until all CPUs are fully uti-
lized, although total bandwidth utilization remains less than
20% under full system-load.

Memory Capacity Intensity: An extensive set of mem-
ory capacity sensitivity studies were done to identify optimal
capacity requirements per map job. Figure 12 shows the av-
erage map execution time with a subset of identified scaling
memory capacity data points. Experimental results suggest
that a minimum of 600 MB of heap space (constrained by
physical memory) is required per map job for successful ex-
ecution, and anything less results in heap memory failures.
Increasing memory capacity per map job, 800 MB was iden-
tified as the most optimal point. The average execution time
of map jobs reduces by 3× - from over 300 s to 100 s by in-
creasing capacity from 600 MB to 800 MB. Scaling memory
capacity beyond 800 MB per map does not achieve any per-
formance benefits, as shown in Figure 12. This translates to
a total of 25 GB heap space on a node with 32 CPU threads
(with SMT enabled). In comparison, each dual socket Xeon
server node can support up-to 768 GB of DRAM.

Disk I/O and Network Intensity: Most of the disk
I/O activity is recorded in saving the initial Wikipedia data-
set on HDFS and the first phase of the workload execution,
which includes splitting and writing the updated input and
training data on HDFS, as shown in Figure 9. Network
traffic is also most prevalent in this phase. The classification
phase has intermittent disk and network I/O.

4.3.5 Redis
Redis supports a rich set of data structures and provides

various commands to manipulate them. While Redis can
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Figure 13: Redis memory bandwidth.

also be used as an in-memory cache layer (like Memcache),
this paper reports benchmarking results for a set of more
complex instructions that are more relevant to the data an-
alytics use-case. Specifically, this paper’s benchmark tests
utilize lists, sets, and sorted sets, which have all been con-
firmed to be used extensively in several real-world Redis
deployments [19]. Lists are often used to implement job
queues and maintain timelines. Sorted sets are naturally
used in dashboards, leader boards, and priority queues. Sets
are commonly used to maintain unique item lists which is a
common task in several real-time analytic applications [5].

Figure 14 shows the macro-architecture characterization
of our Redis benchmark. The workload comprises of 5 stages,
that are easily distinguishable in the figure: (1) lpush inserts
new elements to the head of a list. (2) lpop returns elements
from the head of a list. (3) zadd adds an element with a
specified score to a sorted set structure. (4) zrange - returns
a specified range of elements from a sorted set. The work-
load is set to return the element with the minimal score.
Lastly, (5) sadd adds an element to Redis set structure. (A
set holds an unordered collection of unique elements.)

Network Intensity As can be seen in Figure 14, the
server is clearly limited by the network bandwidth: it sat-
urates the 10GbE network link throughout the entire run,
while all other resources are lightly used. (lpush, zadd, and
sadd saturate the ingress direction, while lpop, and zrange
saturate the egress direction).

CPU Intensity CPU load is low for Redis. Even for
more compute-heavy operations like zadd and sadd, the net-
work bandwidth is getting saturated without fully utilizing
the cores. Moreover, note that the core utilization in Fig-
ure 14 is reported for the 4 active cores only. Redis is a
single-threaded workload, and 4 Redis instances proved to
be enough to saturate the network in all experiments. This
means that the majority of cores in the system are practi-
cally left idle.

Disk I/O Intensity Since Redis stores all data in mem-
ory and serves all requests from memory, there in no mean-
ingful disk traffic. While Redis periodically writes data back
to hard-drive to preserve data persistence, this turned out
to have minimal performance effect in our experiments.

DRAM Intensity As can be seen in Figure 13, DRAM
bandwidth utilization is low (less than 10 GB/s corresponds
to less than 10% utilization) throughout the entire run. How-
ever, since Redis stores all data in memory, the server mem-
ory capacity dictates the maximal database size the appli-
cation can store. To illustrate the DRAM capacity pressure,

Figure 14: System-wide macro-arch performance for
Redis.

the lpush phase stores 32 GB of data to a Redis list structure.
The increase in memory capacity can be clearly identified in
the memory usage plot in Figure 14. The lpop phase later
removes all elements from the list, and it can be seen that
the memory usage is indeed going down. (The score range
is kept limited in the zadd phase so the set size is kept min-
imal. Further increase in the range in the sadd test results
in an increase of memory capacity usage.)

5. RELATED WORK
There exists a lot of relevant literature on a number of Big

Data applications and benchmarks. This section provides an
exhaustive list of the most relevant work. The related work
is broken down into two main sections: (i) Microarchitec-
tural characterization of servers, and (ii) Client side analysis.
A highly specialized characterization work has resulted from
the growing popularity of the Hadoop MapReduce frame-
work, focusing on analyzing the system performance from
a “job” perspective. Section 5.3 has been dedicated to dis-
cussing the relevant job-level characterization efforts.

5.1 Client Side Analysis
Most of the characterization efforts from the industry have

focused on comparing client-side performance of products
that offer similar features. Netflix uses Cassandra deployed
in AWS [10, 13] as a key infrastructure component of its
globally distributed streaming product. They have con-
ducted extensive characterization of Cassandra [7, 20]. Most
of these studies focused on scalability aspects of Cassandra
and measuring client-side throughput in terms of requests
serviced per second, as well as client-side response latency.
DataStax, one of Cassandra’s commercial vendors has pro-
vided an extensive study on client side comparisons for many
NoSQL databases [9]. This work was an independent exten-
sion of the work done in [36] which provided client side com-
parisons for a number of leading NoSQL databases for one
particular use case – application performance management
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(APM). Similar scaling studies have been done for Mem-
cache at Facebook [38, 35].

5.2 Server Microarchitectural Characteriza-
tion

CloudSuite [27] characterization was one of the first works
that was done in the field of designing benchmarks for scale-
out datacenters. The authors did a great job of identify-
ing representative applications and putting them together
as a part of the benchmark suite. They also provide a com-
prehensive analysis of the workloads, providing results for
a number of microarchitectural parameters like L1 and L2
cache hits/misses, instructions per cycle (IPC) and mem-
ory/DRAM utilization. However, their analysis stops at the
boundary of DRAM, providing very little insight into the
I/O behavior of workloads. Given that most applications in
the domain are I/O bound, we believe that concentrating
workload characterization to just the CPU-Memory subsys-
tem doesn’t provide a comprehensive picture of benchmark
behavior.

BigDataBench [29, 41] provides a collection of another set
of applications that represent datacenter workloads. This
work is built on [27] by providing a more comprehensive list
of workloads, that cover a broader spectrum of datacenter
based services. They also provide representative datasets as
a part of the benchmarking suite. The workload analysis
done in both these papers has been extremely thorough,
and has dealt mostly with analyzing the workloads from
the CPU-centric perspective. The analysis has focused on
metrics like IPC, MPKI and LLC hit and miss ratios, while
not worrying about the client side results.

5.3 Job Level Analysis
A number of other papers have done more comprehensive,

per-node analysis of targeted workloads especially for the
Hadoop MapReduce framework. However, almost all prior
work has focused on carrying out rigorous analysis of one
subsystem for every workload that they have considered.
Abad and Roberts [22] provide a detailed analysis of the
storage subsystem for Hadoop based MapReduce jobs. For
the Hadoop framework, a number of studies have carried out
detailed analysis of the utilization of individual nodes, and
of the Hadoop cluster in general. Ren et al. [37] provide a
task and job level analysis of a production Hadoop cluster
from Taobao Inc.

6. CONCLUSIONS AND FUTURE WORK
This paper presents the authors’ experiences and learn-

ings in selecting, setting up and tuning workloads from var-
ious published benchmark suites, as well as a few others
based on popularity and use cases. The biggest learning that
was made from these studies was the fact that a “Big Data
benchmark” is a misnomer. The performance of a datacen-
ter application is highly dependent on the test setup, which
comprises of a number of moving parts, including, but not
limited to the hardware configurations of the server and the
client, the characteristics of the network and the fine tuning
of the operating system and application settings. Without
properly tuning most of the said components, the relevant
subsystems of the server will not be stressed.

Secondly, in order to emulate real-world use and deploy-
ment cases, it is very important that the application is op-
timized for providing best performance on the available re-

Table 4: System level bottlenecks for each of the
applications under consideration

Workload Pressure Points
Memcache DRAM, Network
Cassandra Disk

Redis Network
Nutch (Hadoop) CPU, Disk

Data Analytics (Hadoop) CPU

sources. This process results in most representative applica-
tion behavior and characteristics, leading to effective provi-
sioning decisions for each server node.

Even when the application characteristics for the use cases
are known, deciding resources for each of the different tiers
of a Web 2.0 datacenter is a hard problem. The intent of
the designers is to get the maximum performance out of
the available resources, be able to handle peak load with-
out buckling under the stress, as well as making sure that
the servers are not extremely over-provisioned. Knowing the
bottlenecks of different applications will help datacenter ar-
chitects make the right provisioning trade-offs for each tier
of the datacenter. Having a “pressure point matrix” similar
to Table 4 will greatly help in making such decisions. For ex-
ample, if the datacenter is projected to have a big in-memory
caching or analytics tier, it would be best to provision servers
with adequate network resources, maybe even at the cost of
direct attached storage for each server node in that tier.

Furthermore, being able to bin applications according to
their pressure points, in a fashion similar to Table 4 would
help decide their co-location potential across different tiers of
the datacenter. For example, some applications have strict
QoS requirements (the caching tier), while others may have
relaxed requirements. Knowing the pressure points of dif-
ferent applications, will help make intelligent co-location de-
cisions for different applications. This will lead to design-
ing policies that will result in better utilization of resources
across different tiers. We leave such studies for future work.
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