
Generic Instrumentation and Monitoring Description for
Software Performance Evaluation ∗

Alexander Wert1, Henning Schulz2, Christoph Heger1, Roozbeh Farahbod2

1Karlsruhe Institute of Technology, Am Fasanengarten 5, Karlsruhe, Germany
2SAP AG, Vincenz-Priessnitz-Strasse 1, Karlsruhe, Germany

alexander.wert@kit.edu, henning.schulz@sap.com, christoph.heger@kit.edu,
roozbeh.farahbod@sap.com

ABSTRACT
Instrumentation and monitoring plays an important role in
measurement-based performance evaluation of software sys-
tems. To this end, a large body of instrumentation and moni-
toring tools exist which, however, depend on proprietary and
programming-language-specific instrumentation languages.
Due to the lack of a common instrumentation language, it is
difficult and expensive to port per se generic measurement-
based performance evaluation approaches among different
application contexts. In this work-in-progress paper, we
address this issue by introducing a performance-oriented,
generic meta-model for application-independent and tool-
independent description of instrumentation instructions. De-
coupling the instrumentation description from its realization
in a concrete application context, by a concrete instrumenta-
tion tool allows to design measurement-based performance
evaluation approaches in a generic and portable way.

1. INTRODUCTION
Many performance engineering tasks entail measurement-

based analysis of the application under test (AUT), such
as performance troubleshooting, capacity planning, perfor-
mance regressions testing, etc [11]. Most of these tasks
employ instrumentation and monitoring (IaM) tools to re-
trieve performance data from the AUT. There is a large
body of different IaM tools with different, proprietary and
programming-language-specific configuration languages.

Though many measurement-based performance engineer-
ing tasks are conceptually transferable from one applica-
tion context to another, the lack of a common, generic and
abstract configuration language for the IaM tools renders
portability of established performance engineering processes
among different AUTs (potentially based on different tech-
nologies) impractical. On the one hand, in many performance
engineering projects multiple, different IaM tools are used,

∗The research leading to these results has received funding
from the DFG grant RE 1674/6-1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2695525.

requiring expertise in different instrumentation languages
and a way of keeping different instrumentation descriptions
consistent. Furthermore, introducing a new IaM tool entails
tedious migration of existing instrumentation descriptions.
On the other hand, without a common instrumentation lan-
guage, applying conceptually similar instrumentation and
monitoring instructions on different contexts (i.e., projects)
implies tedious analysis of the target AUT in order to create
AUT-specific instrumentation descriptions for each concrete
context.

Existing languages for the description of instrumentation
instructions [2, 3, 5, 7] either lack abstraction from technical
implementation details, are programing-language-specific,
or are not designed for measurement-based performance
evaluation. As such, they are not sufficient to enable generic
description of instrumentation instructions, which can be
reused among different application contexts.

In this work-in-progress paper we present the Instrumenta-
tion Description Model (IDM) which is a generic meta-model
for describing instrumentation and monitoring instructions
in an AUT-independent, IaM-tool-independent way for the
purpose of software performance engineering. Primarily de-
signed for AUTs implemented in object-oriented, managed
programing languages, IDM instances can be reused even in
different environments, such as Java or .NET. We show the
conceptual relationship between IDM, potential AUTs and
existing IaM tools. Furthermore, we discuss the main design
goals for IDM and describe the semantics of the individual
model elements.

2. INSTRUMENTATION DESCRIPTION
In this section, we explain the context of IDM, discuss

the main design goals for an abstract instrumentation de-
scription model and show how we realized these goals by
explaining IDM in detail. Finally, we show an example of an
instantiation of IDM.

2.1 Giving the Context
The main goal of IDM is to decouple the instrumenta-

tion and monitoring descriptions from their realization in
a concrete managed-language-based context. Hereby, con-
crete context means both the application under test (AUT)
and the instrumentation and monitoring (IaM) tools used to
instrument the AUT.

IDM is a meta-model for the specification of instrumen-
tation descriptions (IDM instances). An IDM instance can
reference concrete parts of a specific AUT (e.g. concrete
methods), generic concepts common in most AUTs (e.g. the

203

concept of a database interface), or both. An IDM instance
is generically reusable among different contexts (AUTs and
IaM tools) if it only comprises instrumentation description
entities which reference generic concepts without referenc-
ing AUT-Specific parts. Specific instrumentation engine are
responsible for mapping generic concepts to concrete imple-
mentations of the AUT. For instance, in the context of Java,
a Java instrumentation engine would map the concept of a
database interface to the JDBC API. Hereby, it is irrelevant
how a specific instrumentation engine realizes the instrumen-
tation described by an IDM instance, whether through static
code analyses, load-time weaving [5] or even dynamically
adaptable instrumentation [1]. Existing IaM tools can be
adapted to use IDM by providing an adapter which inter-
prets and translates IDM instances to the tool-specific and
context-specific specification.

2.2 Design Goals for IDM
In order to address the issues mentioned in Section 1, we

identified the following design goals for IDM:

Abstraction. In order to reuse instrumentation descrip-
tions in different contexts, we need a meta-model which
allows to abstract from the specifics of individual run-time
environments, programming languages and concrete AUTs.
However, if an AUT-specific instrumentation is required, the
meta-model has to provide means to describe an AUT-specific
instrumentation, too.

Orthogonality. An instrumentation instruction has basi-
cally two dimensions: Where to instrument (in the following
called scope), and How to instrument (which probes to in-
ject). Since entities of both dimensions can be comprehensive,
definitions of scopes and probes need to be independently
reusable. Therefore, as far as reasonable, probes need to be
independent of scopes, and vice versa.

Composability. In order to provide a flexible and expres-
sive way of describing instrumentation instructions, the meta-
model needs to be composable. Besides the orthogonality of
probes and scopes, individual model elements should cover
basic, minimalistic aspects of the AUT and the measurement
data of interest. In this way, instrumentation descriptions
can be kept simple (e.g. in order to keep the measurement
overhead low), while advanced descriptions can be composed
when needed.

Focus. An instrumentation description language with a clear
focus on a domain allows to define expressive models while
reducing complexity and effort of model creation. Our focus
lies on performance evaluation which guides the definition of
probes (i.e. data to measure).

2.3 IDM in Detail
Following the design goals (cf. Section 2.2), we created

IDM as depicted in Figure 1. In general, IDM can be parti-
tioned along two dimensions. Hereby, we distinguish between
sampling and instrumentation on the first dimension, and
between scopes and probes (cf. orthogonality principle, Sec-
tion 2.2) on the second dimension. Sampling is the process
of periodically retrieving information from a certain resource
(e.g. CPU utilization, Disk I/O, etc.) while instrumentation
is used to retrieve measurement data (e.g. response times)
from the control flow of the AUT. While scopes describe
which resource to monitor, respectively where in the code to
instrument, probes define what should be measured.

The IaM Description is the root element of IDM, con-
stituting a container for Instrumentation Entities and
Sampling Entities which are explained in the following.

2.3.1 Instrumentation
An Instrumentation Entity comprises an Instrumenta-

tion Scope (i.e. where to measure) and a set of Measurement
Probes (i.e. what to measure). We distinguish different types
of scopes:

Synchronization Scope. This scope covers all points in
the AUT, where synchronization of threads occurs due to a
lock on a passive resource. In particular, this scope covers
all lock acquisition events and lock release events.

Method Enclosing Scope. This is an abstract scope, pro-
viding a common parent element for all scopes which cover a
set of individual methods or method calls. Entities of this
scope type comprise two parts: a before-method-execution
and an after-method-execution part.

Method Scope. The Method Scope is the most direct way
to specify a set of methods to be instrumented. Hereby, the
methods are identified by a set of method patterns (method
names with potential wild-cards). A Method Scope covers all
methods (except for constructors) whose full qualified names
match a specified pattern.

Constructor Scope. Covers the instrumentation of all con-
structors of the target classes. Analogously to the method
patterns the target classes are specified by name patterns.

Allocation Scope. Covers all code statements where an
object of the target classes is allocated. By contrast to
the Constructor Scope, this scope does not instrument any
constructor, but only their invocation.

Modifier Scope. The Modifier Scope allows to specify a
set of modifiers (e.g. public, private, etc.) to describe
a scope of all methods whose modifiers match all specified
modifiers of the scope.

API Scope. Conceptually, an API Scope covers all meth-
ods of an abstract API whose implementing methods shall
be instrumented. An abstract API represents a conceptual
interface for which concrete APIs consist in most modern,
managed programing languages (e.g. Java, .NET, etc.). In
the current version, IDM supports the following five API
scopes: The Entry Point API covers all entry points into a
server application (e.g. in Java: Servlets, HTTP handlers,
etc.). The Messaging API covers all ways of the target con-
text to realize remote communication (e.g. in Java: JMS,
RMI, etc.). The Database API and the OR Mapping API

need to be mapped to the concrete standard API of the tar-
get context for managing a database connection (e.g. JDBC
in Java), respectively concrete API for realizing an object-
relation mapping (e.g. JPA in Java). Finally, the Logging

API covers standard interfaces for logging (e.g. log4j, slf4j).

Trace Scope. The Trace Scope allows to instrument the
whole dynamic trace (i.e. call tree) originating from the
methods covered by the sub-scope.

The Method, Allocation and Constructor Scope provide
a application-specific way of specifying a scope. Application-
specific definition of instrumentation instructions may be use-
ful in some application scenarios where the AUT is know and
reuse of the instrumentation descriptions is not important.
However, in an evolving environment, where IaM tools may
be replaced, or common measurement-based performance
evaluation approaches need to be applied on several AUTs,

204

IaM Description

Instrumentation
Scope

*

instrumentation

entities

patterns : String [*]

Method Scope

patterns : String [*]

Constructor
Scope

API Scope

1

scope Instrumentation
Entity 1..*

probes

Trace Scope

delay : int

Sampling Entity

*
sampling

entities

patterns : String [*]

Allocation
Scope

Measurement
Probe

Response
Time

Memory
Footprint

Trace ID

1 sub-scope

OR
Mapping

API

Database
API

Messaging
API

Sampling
Scope

1

scope

CPU

Disk Network

Memory

*

include

*

exclude

DB Query

Syncronization
Scope

Logging
API

CPU
Time

Entry Point
API

Waiting
Time

inv: self.entity.scope.
oclIsKindOf(Database API)

Method Enclosing
Scope

mods : String [*]

Modifier Scope

Restriction 0..1

globalRestriction

0..1

localRestriction

Utilization

Queue
Length

hostName : String
procId : int

Process Spec
*

processes

*

processes

Capacity

Sampling
Probe

1..*

probes

inv: self.entity.scope.
oclIsKindOf(Syncronization Scope)

inv: self.entity.scope.
oclIsKindOf(Method Enclosing Scope)

a
p

p
lic

a
ti

o
n

-s
p

ec
if

ic
 s

co
p

es

g
en

er
ic

 s
co

p
es

sa
m

p
lin

g
in

st
ru

m
e

n
ta

ti
o

n

scopes (i.e. where to instrument) probes (i.e. what to measure)

Figure 1: Instrumentation Description Model (IDM)

purely generic instrumentation descriptions are required. To
this end, IDM provides the remaining scopes (Synchronized,
Trace, Modifier and API Scope), which allow to describe
scopes in an AUT-independent way.

Following the composability principle (cf. Section 2.2), an
Instrumentation Scope can be further refined by a local
Restriction. In particular, a Restriction allows to limit
a scope to a set of processes (specified by a host name and
process id) and a set of excluded, respectively included,
scopes. Hereby, the restriction has the following semantics:
Let us assume that M is the set of all methods in the AUT, S
is the set of methods defined by a scope X (without regarding
the restrictions), and Ini, Exj are the inclusive, respectively
exclusive, scopes of the restriction for X. Then, the scope X
is resolved to the following set of methods:

X = S ∩

(⋂
i

Ini

)
∩

(⋂
j

M\Exj

)
(1)

Additionally to the local restrictions, an IaM Description

can have a global Restriction which applies to all Instru-
mentation Entities.

Orthogonally to the Instrumentation Scope, an Instru-

mentation Entity comprises a set of Measurement Probes

specifying the data to be retrieved from the corresponding
scope. Although the probes are orthogonal to the scopes,
not all probes are reasonably applicable with all scopes.
Therefore, we define some restrictions (expressed as OCL
statements) limiting the applicability of certain probes to cor-
responding sub-sets of scopes. In particular, Response Time,
Memory Footprint, Trace ID and CPU Time can be mea-
sured from all Method Enclosing Scopes. Waiting Time

and Queue Length can be retrieved from the Synchroniza-

tion Scope. Finally, the SQL statement of an executed
DB Query can be retrieved from a Database API scope.

2.3.2 Sampling
A Sampling Entity is specified by a delay (in ms) deter-

mining the sampling frequency, exactly one sampling scope
(e.g. CPU, Memory, Disk or Network), and a set of sam-
pling probes (e.g. Utilization and Capacity). The Capacity

probe stands for the absolute capacity of the corresponding
resource, e.g. the absolute clock rate of a CPU, the net-
work bandwidth or total memory. The Sampling Scope can
be further restricted to a set of operating system processes

205

(Process Spec) specified by a host name and a process id. In
this way one could monitor for instance the CPU utilization
of a single process instead of the overall CPU utilization.

2.4 IDM Instance Example
Figure 2 shows an exemplary, target application-independent,

however, Java-specific IDM instance. On the sampling side
of the IaM Description, the IDM instance specifies sam-
pling of the utilization of all CPUs with a frequency of 2Hz
(cf. delay=500ms). On the instrumentation side the goal is

:IaM Description

delay = 500

CPU Sampler

:Sampling Entity

:CPU

:Utilization
probe

instrumentation

entity

:Instrumentation

Entity

:Entry Point

API
:Restriction

pattern = *.doGet(HttpServletRequest, HttpServletResponse)

:Method Scope

:Response Time

:Memory Footprint

sampling

entity

scope

probe

probe

scope
local

restriction

include

Figure 2: An exemplary IDM instance

to capture the response times and memory footprints (cf.
probes) of all doGet(...) methods (cf. inclusive restriction)
of all Java Servlets (covered by the Entry Point API). Note,
the method pattern *.doGet(...) as part of the restriction
is the only Java-specific entity in this example.

3. RELATED WORK
As instrumentation is a cross-cutting concern, most in-

strumentation languages and tools are based on ideas of
aspect oriented programming (AOP) [6]. AspectJ [5] is an
implementation of AOP in Java comprising its own language
for instrumentation definition. AspectJ (similarly to IDM)
distinguishes between where to instrument (pointcuts) and
how to instrument (advices), which is specified in a Java-like
syntax. Josh [3] is an AspectJ-like language introducing
a mechanism for defining custom pointcut designators in
Java. SCoPE [2] is an AspectJ compiler allowing to provide
user-defined analysis-based pointcuts. DiSL [7] is a domain-
specific instrumentation language. Relying on concepts of
AOP, DiSL provides high level language constructs based
on Java and Java annotations to describe instrumentation
instructions for an AUT. Providing an open join point model,
DiSL is able to instrument any region of Java bytecode,
ranging from methods through loops to single statements.
All muti-purpose, AOP-based languages [2, 3, 5, 7] inherently
lack a focus on performance evaluation, requiring additional
definition of probe-code. Furthermore, AOP-based languages
are specific to the target programing language they are de-
signed for, rendering general, language-independent reuse of
instrumentation descriptions impossible.

Kieker [9] is a framework for continuous monitoring and
performance analysis of software utilizing existing AOP solu-
tions for instrumentation. Although Kieker does not comprise
its own instrumentation language, it provides AOP advices
for measurement-based performance evaluation simplifying

the definition of performance-oriented instrumentation de-
scriptions. Though Kieker supports different programing
languages, descriptions of instrumentation instructions are
programing-language-specific.

The Java Performance Measurement Framework (JPMF)
[8] introduces a generic interface for definition of performance
events in Java. In this way JPMF decouples the occurrence
of an event (cf. scope in IDM) from the measurement of
performance data (cf. probes in IDM). Primarily designed
for Java, JPMF is programming-language-specific.

4. CONCLUSION
In this paper, we presented a novel instrumentation descrip-

tion model (IDM) for the purpose of measurement-based per-
formance evaluation of managed-language-based applications.
IDM allows to describe instrumentation and monitoring in-
structions in an application-independent and monitoring-tool-
independent way, enabling portability of instrumentation in-
structions and, thus, a more generic applicability of different
measurement-based performance evaluation approaches.

Though the presented IDM is the current state of ongoing
research, it gives an insight on a common, generic instrumen-
tation description language, constituting a potential standard
for different, performance-oriented instrumentation tools like
Kieker [9] or SPASS-meter [4]. So far, we used IDM to create
generic instrumentation descriptions for measurement-based,
automated diagnostics of performance problems [10]. To
this end, we created a Java instrumentation engine [1] which
directly uses IDM descriptions as input.

Furthermore, we are currently working on adapters for
Kieker which translate an IDM instance to corresponding
Java or .NET instrumentation configurations for Kieker. We
plan to extend the current version of IDM by further scopes
and probes to provide a more comprehensive language.

5. REFERENCES
[1] Aim: Adaptable instrumentation and monitoring. visited:

October 2014. http://sopeco.github.io/AIM.

[2] T. Aotani and H. Masuhara. Scope: an aspectj compiler for
supporting user-defined analysis-based pointcuts. In
AOSD’07, pages 161–172. ACM, 2007.

[3] S. Chiba and K. Nakagawa. Josh: an open aspectj-like
language. In AOSD’04, pages 102–111. ACM, 2004.

[4] H. Eichelberger and K. Schmid. Flexible resource monitoring
of java programs. JSS, 93:163–186, 2014.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of aspectj. In ECOOP’01.
Springer, 2001.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. Springer, 1997.

[7] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder,
and Z. Qi. Disl: a domain-specific language for bytecode
instrumentation. In AOSD’12. ACM, 2012.

[8] Q-ImPrESS. Java performance measurement framework,
January 2011. http://www.q-impress.eu/wordpress/wp-
content/uploads/2011/01/D6.1-Annex-Guidelines-and-Tool-
Manuals Final version.pdf.

[9] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In ICPE’12. ACM, 2012.

[10] A. Wert, J. Happe, and L. Happe. Supporting swift reaction:
automatically uncovering performance problems by
systematic experiments. In ICSE’13. IEEE, 2013.

[11] M. Woodside, G. Franks, and D. C. Petriu. The future of
software performance engineering. In FOSE’07. IEEE, 2007.

206

