
Enhancing Performance And Reliability of Rule
Management Platforms

Mark Grechanik
University of Illinois at Chicago

Chicago, IL 60607
drmark@uic.edu

B. M. Mainul Hossain
University of Illinois at Chicago

Chicago, IL 60607
bhossa2@uic.edu

ABSTRACT
RulE Management Platforms (REMPs) enable software engineers
to represent programming logic as conditional sentences that relate
statements of facts. A key benefit of REMPs is that they make soft-
ware adaptable by burying the complexity of rule invocation in their
engines, so that programmers can concentrate on business aspects
of highly modular rules. Naturally, rule-driven applications are ex-
pected to have excellent performance, since REMP engines should
be able to invoke highly modular rules in parallel in response to
asserting different facts. In reality, it is very difficult to parallelize
rule executions, since it leads to the loss of reliability and adapt-
ability of rule-driven applications.

We created a novel solution that is based on obtaining a rule ex-
ecution model that is used at different layers of REMPs to enhance
the performance of rule-driven applications while maintaining their
reliability and adaptability. First, using this model, possible races
are detected statically among rules, and we evaluate an implemen-
tation of our abstraction of algorithms for automatically preventing
races among rules. Next, we use the sensitivity analysis to find bet-
ter schedules among simultaneously executing rules to improve the
overall performance of the application. We implemented our so-
lution for JBoss Drools and we evaluated it on three applications.
The results suggest that our solution is effective, since we achieved
over 225% speedup on average.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Representation; I.2.4
[Knowledge Representation Formalisms and Methods]: Rep-
resentations—Rule-Based; C.4 [Performance of Systems]: Relia-
bility, availability, and serviceability

General Terms
Algorithms, Performance, Experimentation

Keywords
concurrency; parallelism; rule-driven application; expert system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c⃝ 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688035.

1. INTRODUCTION
Widely used in different software applications (e.g., anti-money-

laundering, fraud detection, network monitoring, stock exchange
trading, insurance claim management, and risk assessment) [65,
63, 53, 77], RulE Management Platforms (REMPs) allow software
engineers to represent programming logic as conditional sentences
that relate statements of facts (i.e., rules) using high-level declara-
tive languages [14, 29, 38, 41]. New facts are inferred in REMPs
automatically using modus ponens. An example of a rule is “if an
insurance customer filed a claim for over $1Mil and this customer
is 30 year old or younger, then the insurance premium should be
increased by 20% for this customer.” Once the facts “an insurance
customer filed a claim for over $1Mil” and “this customer is 30
year old or younger” are asserted, this rule is fired (or invoked)
by the underlying REMP engine and a new fact is produced, i.e.,
the insurance premium for this customer is increased by 20%. The
popularity of REMPs is partially explained by the ease of designing
and maintaining the highly modular logic of rules [35, 39, 42, 47,
59, 17, 10]. Different stakeholders can independently design and
deploy rules for Rule-driven APplications (RAPs) that run on top
of REMPs, making RAPs highly adaptable to frequent changes in
business requirements in today’s dynamic world.

REMPs have become very important in the age of big data—
collections of large-sized data sets that contain useful patterns and
rules. Programmers often encode into RAPs patterns and rules that
are extracted from big data (e.g., rules that describe increases in
insurance premiums for customers with some risky behavior), so
that these rules are invoked in business processes. RAPs are per-
vasive, they are used by many major insurance companies, govern-
ment agencies, and various non-profit organizations [65, 33, 38];
for example, they are used to check for fraud for 90% of all credit
card transactions in the USA in real time [65]. The market for
REMP engines alone is estimated to be growing at the annual rate
of 10.5%, reaching $1 Billion worldwide [38].

1.1 Background on REMPs
A key property of REMPs is that they encapsulate the control

flow that includes fact inference and rule firing logics, while en-
forcing a fundamental separation of concerns of the control flow
and the rule business logic. REMPs enable software engineers to
concentrate on reasoning about higher-level business logic that they
encode in rules without worrying about low-level details of rule in-
vocations by effectively delegating this job to REMP engines. With
this separation of concerns, RAPs are highly adaptable to changing
requirements, since stakeholders simply add new rules as indepen-
dent modules to RAPs and the underlying REMP engines ensure
that these rules are fired when these conditions are met.

187

In a model for rule-based programming, rules can be viewed
as decision points in some business process [46]. Martin Fowler
views a rule-based computational model for REMPs as an alterna-
tive to the imperative model where sequences of if-then state-
ments with conditionals and loops are evaluated in a strictly de-
fined order. Having many if-then conditions results in a hard-
to-maintain and inefficient code that is not adaptable to frequent
changes in business requirements [26]. Moreover, since the con-
ditional expressions of if-then statements must be evaluated by
the runtime system, some overhead is incurred. In contrast, using
rules replaces if-then statements with an optimized network of
rule invocations that are controlled by the REMP engine. In addi-
tion, burying the complexity of reasoning about executions of mul-
tiple nested if statements inside the REMP engine enables stake-
holders to write easy-to-comprehend rules that are more efficiently
executed by REMPs, since runtime evaluation of many conditional
expressions is avoided. Rules are often simple and they rarely con-
tain complex nested loops and conditional statements [30, pages
495-558]; we use this insight to offer lightweight analysis to detect
and prevent data races. Many problems naturally fit this model,
since their solutions are often expressed using if-then rules.

Using the REMP model, it is easy to maintain and evolve RAPs,
since rules often do not depend on one another [26, 51, 46, 55].
Adding new rules and replacing old rules does not require recom-
pilation of the entire RAP’s source code. Stakeholders can maintain
different rules independently and these rules can be added to RAPs
without regard to one another. Since rules are easy-to-comprehend
and highly modular, it is easy to make changes to complex RAPs to
enable large organizations to modify complex business processes
inexpensively, hence RAPs are highly adaptable [30, pages 370].

1.2 Drawbacks of the REMP Model
These benefits have the other side. RAPs contain highly diverse

rules, and it makes their analysis very difficult. Our investigation of
dozens of open-source multithreaded Java applications showed that
applications spawn many threads that execute a small subset of the
application’s methods, and still it is very difficult to reason about
even a small number of concurrently executing methods [31].

In contrast, consider a RAP at a major insurance company that
has over 30,000 different rules, many of which are written by dif-
ferent stakeholders. Our analysis showed that at any point hundreds
to thousands of rules could be fired concurrently. “No one has any
idea if there are conflicting rules when a new one is added” is a
comment left on a programming forums that discuss pros and cons
for using rules in applications [69]. “Rules should not be used if
they are strongly connected Java files” is the other comment left
on a different programming forum [70]. Redhat portal specifies:
“Rules engines are not really intended to handle workflow or pro-
cess executions nor are workflow engines or process management
tools designed to do rules” [60]. These drawbacks highlight what
happen when dependencies are introduced among rules – suddenly,
they lose adaptability and they become very difficult to maintain
and evolve. Hiding the logic that deals with these dependencies in-
side the REMP engine is a way to free stakeholders from dealing
with the accidental complexity of explicitly coded dependencies
among rules, thus ensuring adaptability of RAPs.

1.3 The PAR Model
A fundamental problem of REMPs that we address in this paper

lies at the intersection of Performance, Adaptability and Reliabil-
ity (PAR) that is shown in Figure 1. Recall that in today’s rapidly
changing business requirements, software adaptability is a critical
element that ensures success [71, 16, 45, 25]. For example, an

Figure 1: The PAR model.
efficient but inflexible software application makes it very difficult
for businesses to refocus their effort on new revenue-generating
opportunities. REMPs provide software adaptability by burying
the complexity of rule invocation in REMP engines and enabling
stakeholders to concentrate on business aspects of highly modular
rules. Unlike RAPs, in “classic” software applications, modularity
and adaptability are often sacrificed while optimizing these appli-
cations for performance and reliability [8]. With advent of big data
and cloud computing, the focus shifted somewhat towards the inter-
section of adaptability and performance while sacrificing reliabil-
ity, where applications are created from modular components (e.g.,
RapidMiner, Weka) that use machine learning and data mining al-
gorithms to compute somewhat incorrect and approximate results
fast and if needed, quickly change the configurations of these appli-
cations. New methodologies known as probabilistic programming
and cloud accelerators put emphasis on computing approximate re-
sults faster and applying quick program repair techniques to allow
buggy programs to complete calculations at the expense of reliabil-
ity [23, 21, 22, 11, 52, 61, 64, 18].

Naturally, RAPs are expected to have excellent performance,
since REMP engines should be able to invoke highly modular declar-
ative rules in parallel in response to asserting different facts [75, 32,
30]. In some exceptional cases it is straightforward to do so, e.g.,
checking for credit card transaction fraud is done by invoking rules
in parallel, since they almost never produce any side effects. How-
ever, in general, it is difficult to parallelize executions of rules.

Early languages for REMPs were purely declarative [41], how-
ever, over years, tight integration of RAPs with legacy systems
made vendors mix imperative and declarative constructs [38, 53,
65, 33]. For example, programmers can define facts by assign-
ing values to global variables. Prominent examples of open source
REMPs with mixed languages include CLIPS [76], JESS [39] and
JBoss Drools [5, 13], where C functions and Java methods are used
in rules (see an example in Figure 2). Commercial REMPs with
mixed language constructs include BizTalk by Microsoft [36] and
Fusion by Oracle [27]. These and other REMPs fire rules sequen-
tially [67], e.g., Oracle Fusion documentation states: “Rules fire
sequentially, not in parallel. Note that rule actions often change the
set of rule activations and thus change the next rule to fire” [58].
Thus, the results of the computations depend on the order of rule
executions, i.e., if executing rules in parallel may lead to different

188

results for the same input values (i.e., facts) and for the same envi-
ronment configuration, hence the loss of reliability.

Not only do many REMPs execute RAPs sequentially, but also
programmers are often restricted from using locks to handle con-
current accesses to resources from different RAPs to prevent races.
Locks introduce complex dependencies among rules, thereby de-
feating the separation of concerns and eventually the adaptability
of RAPs [56]. For example, waiting on locks to be released over-
rides the control flow computed by the underlying REMP engines.
Clearly, programmers should be able to write their code for rules
without worrying about races, and REMP engines should take care
of rule firing and preventing data races at the same time. Thus, a
fundamental problem of REMPs is how to enhance the performance
of RAPs without sacrificing their adaptability and reliability, i.e.,
to move REMPs into the center of the PAR area in Figure 1.

1.4 Our Contributions
Our novel solution for enhancing PErformance and Reliability

for ruLe-driven ApplicaTiOns (PERLATO) connects separate lay-
ers or REMPs in a way that enable us to solve the fundamental
problem of REMP. First, we obtain a rule execution model from a
RAP that approximate different execution scenarios by using the
if-then structure of rules by analyzing their antecedents and
consequents. To do that, we statically analyze conditions in an-
tecedents of rules and possible ways that rules can be triggered by
approximating the control flow in consequents. As a result of this
analysis, we obtain constraints that can be solved using constraint
solvers to obtain dependencies among rules. Second, the obtained
rule execution model is used in PERLATO to detect races statically
among these rules effectively and efficiently. A key idea is that if
the rule execution model shows that some rules cannot run concur-
rently (e.g., one rule is triggered based on the constraint x > y and
the other rule is triggered based on the constraint x < y, where x
and y some variables), the complexity of the data race analysis can
be significantly reduced.

Next, the rule execution model and locking strategies for a given
RAP are passed to the REMP engine, so that it can precompute an
execution schedule for rules in a RAP to optimize the performance
of the RAP. This is the essence of a cross-layer design where we
pass the information that we compute at the application layer deep
into the REMP engine layers to schedule rules in a way that lets
faster executing rules proceed sooner and a longer executing rule
to wait until other faster executing rules finish, so that some perfor-
mance can be gained by reducing an average waiting time. Using a
scheduler to enforce a specific order of rule execution is our novel
way to optimize the performance of the RAP that addresses the is-
sue of reliability, since the REMP engine will enforce locking and
scheduling leading to the same results of executions for the same
input data and environment configuration. This paper makes the
following contributions.

• With PERLATO, we show how to parallelize rule execution
automatically inside REMP engines without requiring pro-
grammers to use locks. Our tool and results are available at
http://www.cs.uic.edu/~drmark/perlato.htm.

• Using sensitivity analysis [62], we show how to compute
symbiotic schedules (i.e., co-scheduling conflicting jobs to
achieve higher speedup [24, 68]) of execution of rules that
have concurrent accesses to resources.

• We implemented PERLATO for JBoss Drools, an open-source
enterprise-level REMP [5, 13] and we evaluated PERLATO
on three RAPs. The results suggest that PERLATO is effec-

rule "Rule-Credit" salience 10 1

when 2

$cashflow : Cashflow($account:account, 3

$date : date, $amount : amount, 4

type==Cashflow.CREDIT) 5

not Cashflow(account==$account,date<$date) 6

then 7

//some code 8

$account.setBalance(9

$account.getBalance()+$amount); 10

retract($cashflow); 11

end 12

rule "Rule-Debit" salience 1 13

when 14

$cashflow : Cashflow($account : account, 15

$date : date, $amount : amount, 16

type==Cashflow.DEBIT) 17

not Cashflow(account==$account,date<$date) 18

then 19

//some code 20

if($account.getBalance()>$amount){ 21

$account.setBalance(22

$account.getBalance()-$amount); } 23

else { new BlockedAccount($cashflow); } 24

retract($cashflow); 25

end 26

Figure 2: An example of debit and credit rules from a banking
RAP that concurrently modify an account balance.

tive and efficient, since we achieved up to 225% speedup on
average without observing any races.

• Summarily, we extend the theory of REMPs by enhancing
their performance and reliability while preserving adaptabil-
ity of RAPs without violating the separation of concerns be-
tween REMP engines and high-level rules.

2. THE PROBLEM
In this section, we provide a motivating example, discuss in-

terplays between the components of the PAR model, and give the
problem statement.

2.1 Motivating Example
Consider account debit and credit rules1 that are shown in Fig-

ure 2 – they are similar to over 30,000 rules that an insurance claim
handling RAP comprises at a major insurance company. The head-
ers of the rules that are located in line 1 and line 13 contain the
names of these rules, Rule-Credit and Rule-Debit corre-
spondingly, and their saliences, with which programmers define
priorities that the REMP engine should give to rules when choos-
ing to execute them. The design idea of specifying the value of
salience equal to 1 for rule Rule-Debit versus value 10 for rule
Rule-Credit is to ensure that the REMP engine will first de-
posit money to the account before it subtracts an amount when both
rules are triggered, thus preventing overdrafts in some cases.

Suppose that a bank user debits her account and a web store cred-
its this account at the same time. Correspondingly, two Cashflow
objects will be created that will trigger these rules by matching an-
tecedents in the when parts of these rules in lines 2–6 and lines
14–18. The condition not Cashflow ensures that there is no

1http://docs.jboss.org/drools/release/5.2.0.
Final/drools-expert-docs/html/ch09.html

189

Cashflow object with an earlier date. In the end of the conse-
quence part of the rule, the object Cashflow is retracted in line 11
and line 25 to ensure that it will not trigger rules any more. To han-
dle overdrafts, the object of type BlockedAccount is created in
line 24, and this fact will trigger some rules that handle overdrafts.
Declarations of all classes are not shown here for simplicity.

Since JBoss Drools engine executes rules sequentially, there are
no concurrency bugs in this example. However, doing so worsens
the performance of RAPs. Code in lines 8, 11, 20, 24, and 25 can be
executed in parallel, since locks are required only for the method
setBalance in lines 9–10 and 21-23 to prevent a data race to
update the value of the concurrently modified variable account.
While it seems straightforward to parallelize the execution of rules
and let programmers use locks, it would lead to serious problems.

2.2 Parallelism Interferes With Saliences
Since REMP engines execute rules sequentially, there are no

concurrency bugs in our motivating example, but the performance
of the RAP is much worse when compared with unrestricted paral-
lel execution of rules. In a gedanken experiment, let us assume that
a REMP engine executes rules in parallel, (e.g., one rule per thread)
and lock objects are used to synchronize concurrent accesses. Since
code in different rules (i.e., threads) locked by the same object can-
not interleave, one thread will execute and the other thread will
suspend execution until the first thread release the lock. However,
this standard practice in multithreaded programming leads to seri-
ous challenges when applying it to RAPs – dependencies are intro-
duced among different rules, leading to lost adaptability and mak-
ing it very difficult to maintain and evolve RAPs.

Parallelizing rules and using synchronization locks interfere with
salience values. Consider the situation when conditions of two or
more rules are satisfied. These rules are fired, and during executing
these rules more facts are asserted and when conditions of rules
are satisfied, which leads to firing other rules until there are no
more rules whose conditions are satisfied. The set of rules whose
conditions are satisfied at any given time is called the conflict set.
REMP engines employ different strategies for conflict resolution
[41, pages 85-87], most popular of which are random, where rules
are chosen to fire at random and recent, where rules are ranked
higher if they use data that have been most recently created or mod-
ified in memory. These strategies work in conjunction with the val-
ues of salience, which programmers specify for some rules, and
there lies a challenge.

Consider our example in Figure 2 and suppose that both rules
are triggered at the same time. According to the higher value of
salience, the rule Rule-Credit should be give a higher priority
(e.g., by giving it a larger time slice to execute) by JBoss Drools
(i.e., the REMP engine) before the rule Rule-Debit. However,
the lock object may be reached faster in the rule Rule-Debit, af-
ter which the rule Rule-Credit will be put on hold to wait until
the object is released. In this scenario, using a lock object effec-
tively overrides the intention of the programmer to give the priority
to the rule Rule-Credit. Moreover, a new BlockedAccount
object that is created in line 17 may trigger more rules in the RAP
that otherwise will not be triggered if the order of executing these
rules would be different, i.e., no account overdraft occurs. Given
the large number of possible interleavings among tens of thousands
of rules in a RAP, it is very difficult to reason about interactions be-
tween saliences and synchronization lock mechanisms. Therefore,
it is not enough to introduce locks to prevent races, rules must be
scheduled in a way to preserve priority invariants that are embed-
ded into saliences of these rules.

2.3 Reliability Meets Performance In REMPs
Loss or reliability of RAPs comes from two sources: different

orders in which rules are executed by the REMP engines for con-
secutive runs of the same RAP with the same input facts and races
between parallelized executions of rules. Recall from Section 1.3
that the Oracle Fusion documentation warns that rule actions of-
ten change the set of rule activations and thus change the next rule
to fire. It is contrary to the classic example in the parallelism and
concurrency theory, where two or more threads concurrently exe-
cute the same set of instructions (e.g., increment a variable) and as
long as locks are applied correctly w.r.t. the atomicity assumptions,
the result of the execution is always the same for the same input
data. Adjusting this example to REMPs, we view a rule as a thread
and these rules/threads execute different sets of instructions, some
of which may spawn additional threads of execution based on the
order in which program variables are assigned values in different
threads. Reasoning about such complicated scenarios is difficult.

We studied two large insurance systems where REMP engines
were allowed to execute rules in parallel. Performance is paramount
for these systems and the reliability may be of lesser importance
(e.g., a precise oracle is not known for an insurance quote or risk
assessment due to the time-dependent nature of input data). Some-
times, it is more important that a RAP computes an approximately
correct result fast like in the case of determining if a credit card
transaction is fraudulent [12]. Since the user does not know what
the correct result should be (e.g., a precise insurance quote), the
user does not perceive any loss of reliability for a slightly different
result. However, when the system produces different results con-
secutively for the same computational task using the same input
data, it is a serious problem, since it reduces the confidence of the
users in the RAP and it impacts negatively their perception about
the reliability of the RAP.

Consider a situation where the user obtains an insurance quote
from a RAP of some insurance company, then the user shops around,
compares different quotes and comes back to the RAP from that
insurance company to purchase the insurance. This time, when en-
tering the same data the user will get a different quote. The loss of
reliability comes from the fact that the execution order for different
instructions can be affected by multiple factors beyond the control
of stakeholders: input/output loads that lead to high variability in
times that some instructions take to execute, the CPU load, RAM
fragmentation and the frequency with which garbage collector is
run, essentially, running other concurrent processes that steal CPU
cycles and make RAP instructions execute longer. All in all, some-
times even slight changes in the non-functional parameters of the
environment (e.g., paging on demand) for executing RAPs result in
different orders of instruction interleavings that lead to different re-
sults, hence the loss of reliability. It is our goal to ensure reliability
while parallelizing the execution of rules.

Even if locks could be used, it is difficult for programmers to
make correct atomicity assumption and deal with unserializable ex-
ecutions, i.e., a property for the concurrent execution of several op-
erations where their effect is not equivalent to that of a serial execu-
tion of these operations [49, 43, 48]. In our motivating example in
Figure 2, it may be relatively easy to see that the code between lines
21–23 should be treated as atomic; however, for tens of thousands
of rules that are written by different programmers, it is difficult to
determine correct atomicity assumptions. Recall from Section 1.2
that stakeholders often do not have an idea how rules interact in
a RAP. It is highly likely that even if programmers used synchro-
nization locks in RAPs, which would defeat their adaptability, races
would still remain and RAPs will not be reliable.

190

2.4 The Problem Statement
Our goal is to achieve with a high degree of automation the fol-

lowing multiple conflicting objectives: 1) enable REMPs to execute
rules in RAPs in parallel; 2) do not violate the separation of con-
cerns in REMPs by requiring programmers to use synchronization
lock mechanisms for concurrent accesses to shared resources; 3)
prevent races in parallelized RAPs without explicit using of lock-
ing mechanisms by programmers; 4) enable reliable executions by
guaranteeing that the same RAP outputs the same values for the
same input facts under the same hardware and software configura-
tions, and 5) choose an effective schedule for executing rules that
concurrently access the same resources to improve the overall per-
formance of RAPs.

We aim to make PERLATO sound, i.e., to ensure the absence of
races. It means that our solution should be conservative, since it
assumes that all accesses to external resources (e.g., network, files,
databases) are concurrent, and all statically unresolved references
to variables in some rule are considered concurrent with all unre-
solved references to resources in other rules. At the same time,
the execution of RAP should be parallelized to achieve a speedup
when compared with the baseline approach when executions of all
rules are sequentialized. In general, it is an NP-complete problem
to detect all races [15]. There are many approaches for enabling
race detection and protecting shared resources automatically using
locks [9]. Once read-write and write-write concurrent accesses to
resources among rules are identified, these approaches can be used
to define synchronization of rules around these concurrent accesses.

It is not our goal to use these approaches in PERLATO, but to
abstract them to study how much they can contribute to improving
performance and reliability of RAPS. Since we use a sound con-
servative approach that leads to false positive conflicts, too many
of them may lead to less than optimal parallelization strategies for
RAPs. Our insight is that a point of attack is based on using a rule
execution model that can eliminate many infeasible scenarios when
rules cannot be instantiated concurrently based on contradictions
among their antecedents.

3. OUR SOLUTION
In this section, we discuss key ideas of our solution, explain

the architecture of PERLATO, give an algorithm for synchroniz-
ing concurrent accesses to resources in REMPs, and describe how
we select schedules for parallelization of rules.

3.1 Key Ideas
Our key idea is threefold. First, we obtain a rule execution

model, which is an overapproximation of the actual behavior of
RAP. Our goal is to determine rules with concurrent accesses to
the same resources that cannot be executed at the same time due
to contradictions in their antecedents. Using this model, read-
write and write-write concurrent accesses to resources are obtained
from rules in RAPs statically. Naturally, there will be false posi-
tives, since our analysis can miss contradictions in rule antecedents.
Since our goal is to make PERLATO a sound approach, we will
make conservative approximations about read-write and write-write
concurrent accesses to resources among rules, which may nega-
tively affect the speedup that is achieved by parallelizing the ex-
ecution of rules. However, as we show in Section 4, we achieve
significant speedup even with this conservative approach.

We consider three abstract levels to synchronize rules based on
the scope: rule-level, atomic section level, and a single operation
which accesses a resource (or variable) concurrently. Rule-level
synchronization has the coarsest granularity – the entire rule is
locked by a REMP when executed and other conflicting rules wait

!"#$%&

!'()&

!'*+,&

-./0123&

($3$23.4&
-./2"44$/3&

-./0123%&

526$7"#$&

8$/$493.4&526$7"#$%&

4"#$%$3&

:.2;%$3&

8$/$493.4&

4"#$%$3&

!"

#"

$"

%"

&"

'" ("

!)"

!!"

!#"

!"#$&

)/9#<=$4&

*+,"

-"
."

Figure 3: PERLATO’s architecture and workflow.

upon completion of the executing rule. With atomic synchroniza-
tion, a REMP places the lock before the first conflicting operation
for a rule and holds this lock until the last conflicting operation is
executed. Finally, the finest granularity of synchronization is when
the lock is acquired before a conflicting operation access a shared
variable and released right after it is executed. We experiment with
these synchronization levels and we show in Section 4 that speedup
is significant between rule and atomic synchronization levels.

The third part of our idea is to schedule executions of rules
around synchronization locks, so that the same results will be con-
sistently outputted if the same RDA is executed with the same input
values under the same hardware/software configuration. That is, we
impose a complete order among all rules that are fired and are in the
working memory (i.e., a special memory region in REMPs where
fired rules are placed for execution) that have conflicts with one an-
other and this order is imported and used by REMPs for subsequent
executions of the RAPs. We show in Section 4 that ordering rules
with read-write and write-write concurrent accesses to resources
guarantees the consistency of output results and achieves a speedup
of up to 25% for atomic level synchronization level when the same
RAP is executed with the same input values under the same hard-
ware/software configuration.

3.2 PERLATO Architecture
The architecture of PERLATO is shown in Figure 3. Solid ar-

rows show command and data flows between components, dashed
arrows show relations between components and the block arrow
with the label (12) indicates a feedback loop; numbers in circles
indicate the sequences of operations in the workflow. The input to
PERLATO is the set of rules of the RAP, and it is specified with the
dashed arrow labeled (1). The RAP is hosted and run on top of
a REMP. The output of PERLATO is the scheduled rule set that is
specified with the arrow labeled (11).

We use a lightweight static analysis for detecting read-write and
write-write concurrent accesses to resources among rules. Recall
from Section 1.1 that rules are often simple and they rarely con-
tain complex nested loops and conditional statements; in addition,
recall from Section 1 that only few rules access resources concur-
rently. The latter makes sense; too many dependencies among rules
defeat a goal of using a REMP in the first place, since stakeholders
will not be able to obtain benefits that we discussed in Section 1.1.
Therefore, our insight is to use lightweight context-insensitive in-
terprocedural analysis to resolve references to objects and their
fields. To do that, we construct and traverse a control-flow graph
(CFG) of the RAP. When traversing the CFG we obtain a list of
all objects and their fields that are referenced in rules. We perform
virtual-call resolution using static class hierarchy analysis, and we
take a conservative approach by accounting for all references of

191

methods that can potentially be invoked. We also automatically
assign concurrent accesses to all unresolved references including
network calls, file and database accesses. This conservative ap-
proach catches all races, but it also produces false positives that
will reduce the performance of PERLATO. However, even with this
conservative baseline the performance of PERLATO improves the
state-of-the-art significantly as we show in Section 5.

As part of the lightweight static analysis, the Rule Analyzer (2)
inputs rules and then produces (3) a rule execution model which
(4) is used by the Conflict Detector (5) to obtain read-write and
write-write concurrent accesses to resources, i.e., Concurrent Con-
flicts, which are the input (6) to the Schedule Generator that uses a
race detection algorithm (7) to output Schedules for synchroniza-
tion locks for handling these concurrent accesses within the REMP
engine. This information is buried within the REMP engine thus
preventing additional accidental complexity.

The dynamic phase of PERLATO starts with executing the RAP
on top of the REMP where some facts are asserted and (8) a rule
set is computed that includes the rules that are triggered by the as-
serted facts. At this point, this rule set is supplied (9) into the
Lockset Generator along with (10) the precomputed Schedules
that uses a locking strategy to output (11) a partitioned rule set
(it is shown with the thick horizontal line that separated rules with
dashed line border on top and solid border rules on the bottom).
This top section of the rule set contains rules that can be executed
in parallel and the bottom section contains rules whose execution
order is defined based on the precomputed schedule. At this point,
REMP continues to execute rules of the RAP. The REMP engine
periodically applies sensitivity analysis [62] during RAP mainte-
nance phases (e.g., regression testing) to perturb schedules and de-
termine a better one that can improve the performance thus (12)
realizing a feedback loop.

3.3 PERLATO Lockset Algorithm
Our algorithm for generating execution schedules and synchro-

nization locks is shown in Algorithm 1. Our goal is to abstract
existing race detection algorithms, so that we can roughly evalu-
ate the bounds in performance improvements that these algorithms
can give. Algorithm 1 consists of two procedures: the procedure
ComputeLockset that determines sets of locks for each pair
of rules with read-write and write-write concurrent accesses to re-
sources and the procedure AtomicLocks that computes atomic
syncronization locks for all pairs of rules with concurrent accesses.
We give the algorithm only for atomic levels because rule-based
and shared variable-based lock levels are trivial to compute.

The algorithm’s procedure ComputeLockset takes as its in-
put the set of all rules in the RAP with read-write and write-write
concurrent accesses to resources, R and it outputs sets of locks for
each pair of rules, (Ls

i j,L
e
i j). A key idea of this procedure is to

compute the set of lock starts, Ls
i j and lock exits, Le

i j for the rule
ri assuming that it executes concurrently with some other rule, r j.
This algorithmic procedure consists of two nested loops between
Lines 3–14. For each pair of rules, ri and r j the set of conflicts is
computed in Line 6 where it is placed in the variable Vi j . If at least
one of these rules accesses a shared variable with the write access
(see Line 7), we compute the locations of accesses to these vari-
ables within the rule in Lines 8–12. Correspondingly, we update
the values of (Ls

i j,L
e
i j) for these rules. Once the loops finish, the

procedure terminates. As a results, all locks are computed conser-
vatively for all combinations of read-write and write-write concur-
rent accesses in rule pairs.

The algorithm’s procedure AtomicLocks in Line 17 that takes
as its input the set of rules for which lock sets are computed by the

Algorithm 1 Obtaining atomic synchronization locks for rules.
1: ComputeLockset(Set of rules R)
2: V ← /0 {Initialize the set of conflicts}
3: for all ri ∈ R do
4: Ls

i j ← /0,Le
i j ← /0{Initialize the values of lock sets for each

pair of rules to empty. Ls designates where the lock is placed
and Le where it ends in the rule ri when it is executed with
the rule r j.}

5: for all r j ∈ R ∧ ri ̸= r j do
6: Vi j← conflict(ri,r j)
7: if access(Vi j,ri) =W ∨access(Vi j,rJ) =W then
8: if loc(ri,Vi j)<loc(ri,Ls

i j) then
9: Ls

i j←Vi j

10: else if loc(ri,Vi j)>loc(ri,Le
i j) then

11: Le
i j←Vi j

12: end if
13: end if
14: end for
15: end for
16: return (Ls

i j,L
e
i j)

17: AtomicLocks(Set of rules R)
18: for all ri ∈ R do
19: Ls

i ←END_OF_RULE_i,Le
i ←START_OF_RULE_i

20: for all r j ∈ R ∧ ri ̸= r j∧conflict(ri,r j) ̸= /0 do
21: if Ls

i > loc(ri,Ls
i j) then

22: Ls
i ← Ls

i j
23: end if
24: if Le

i < loc(ri,Le
i j) then

25: Le
i ← Le

i j
26: end if
27: if ri /∈ S then
28: S 7→ S ∪ ri
29: end if
30: end for
31: end for
32: return S ,Ls

i ,L
e
i

procedure ComputeLockset, R and it outputs sets of atomic
locks for each rule, ri, Ls

i and Le
i and the sequence, S for entering

atomic sections protected by lock sets for rules with concurrent ac-
cesses to resources. Lines 18–32 in Algorithm 1 specify the body
of the procedure AtomicLocks. For each rule, the lock indica-
tors Ls

i and Le
i are initialized in Line 19. While iterating through

all rules in the triggered rule set, R in Lines 20–31, the procedure
computes the minimum size atomic section of shared variables that
that are concurrently accessed by other rules and this section will
be protected by synchronization locks within the REMP engine.
We sort rules in a random order; precedence is given to rules with
higher values of salience; among rules with the same salience we
sort them in a random order and assign unique sequence integers
to them and we use these integers to add rules to the sequence set
S in Lines 27–29 that is used in a rule scheduler within the REMP
engine. The algorithm terminates when all rules are explored.

3.4 Achieving Reliability By Determining And
Enforcing Schedules In REMPs

Recall the example from Section 2.3 that shows the loss of relia-
bility in REMPs, where the user of an insurance RAP runs it twice
with the same inputs and obtains a different quote. Our idea is to
determine execution schedules for conflicting rules for RAPs, so
that rule saliences are respected.

192

Our idea of computing optimal execution schedules to enforce
the same results for executing the RAP with the same input data
is based on our observation that a REMP engine usually hosts one
RAP, since industrial RAPs are big and mission critical, and it is
impractical to run more than one such RAP on top of a REMP en-
gine. In contrast, the schedulers of operating system kernels do not
preempt processes to avoid race conditions, since it is not feasible
to find an optimal context switching schedule quickly for multiple
processes and the overhead of doing it is prohibitive. However,
in the case of REMPs it is possible to precompute an execution
schedule for a RAP using our rule execution model and the REMP
engine will use it to both improve the performance and guarantee
reliability without requiring stakeholders to change their existing
programming practices.

THEOREM 1. If the RAP is executed two or more times with the
same input values and the same environment configuration, then
PERLATO preserves the output values for this RAP.

PROOF. The proof is by contradiction. Let us assume that two
executions of the same RAP using the same starting states produced
different output values. Since the starting state is the same, it would
mean that the execution orders Sm ̸= Sm+1 or the interleavings of
instructions are different for executing rules. However, race detec-
tion algorithmic procedures from Algorithm 1 guarantee that every
possible conflict is protected by locks, thus preventing instruction
interleavings within atomic sections that are protected by the same
locks. Moreover, the scheduler will ensure that the order of rule ex-
ecution is always the same for the same starting states for the same
RAP. Therefore, the same values are produced for both executions
leading to the same output values, hence the contradiction.

3.5 Symbiotic Scheduling
Recall from Section 1 that symbiotic scheduling is co-scheduling

conflicting jobs to achieve higher speedup of execution of rules that
have concurrent accesses to shared resources. Symbiotic schedul-
ing is widely used in the schedulers of simultaneous multithreading
processors [24, 68]), and we apply it in PERLATO to determine if
it is possible to improve the performance of RAPs over time.

Our idea is the following. Using sensitivity analysis [62], we
permute the order that is computed in Algorithm 1 in which con-
flicting rules are scheduled to access resources concurrently using
synchronization locks. For our motivating example that is shown
in Figure 2 we will change the order of rules Rule-Debit and
Rule-Credit. A goal of this operation is to obtain samples of
alternative orders of executions that may give us clues if scheduling
of rules can be changed to improve the overall performance of the
RAP. Of course, this exercise should be done independently from
live production execution of RAPs, so that the consistency of the
output values will not be violated. We suggest that this exercise
can be done as part of acceptance testing of RAPs. We experiment
with symbiotic scheduling and show that the overall performance
of RAPs can be improved by up to 20% in Section 5.

4. EXPERIMENTAL EVALUATION
In this section, we pose research questions (RQs), explain our

methodology and variables and discuss threats to validity.

4.1 Research Questions
We seek to answer the following research questions.

RQ1: Is PERLATO effective in achieving higher speedups?

RQ2: Is finer granularity locking strategy more effective in obtain-
ing higher speedup for RAPs?

RQ3: Is symbiotic scheduling effective in obtaining higher speedups?

The rationale for RQ1 is to compare the elapsed time it takes to
execute RAPs using the baseline approach with the original JBoss
Drools sequential rule execution engine to the elapsed time it takes
to execute these RAPs using parallel versions of JBoss Drools. Our
goal is to show that PERLATO is more effective than this baseline
approach. The rationale for RQ2 is determine if finer granularity
locking leads to much higher speedups. Recall that PERLATO al-
lows three types of locking strategies: Rule-level locking were all
concurrent accesses in a given rule are protected using synchroniza-
tion lock objects as the rule is about to execute and released only
after the REMP engine finishes executing the rule; Atomic locking
that is shown in Algorithm 1 where the section of the rule code is
locked starting with the first concurrent access and this lock is re-
leased with the last concurrent access; and finally, the resource- or
Variable-level locking where each operation that uses concurrently
shared variables is surrounded with a lock/unlock commands. Us-
ing rule-level locking is the simplest locking strategy, but it may
lead to unnecessary waits by other rules with concurrent accesses;
and the variable-level locking strategy seems to be most efficient,
but it may leads to the increased frequency of deadlocks. Answer-
ing RQ2 will help programmers select an optimal locking strat-
egy. Finally, the rationale behind RQ3 is to determine if symbiotic
scheduling results in higher speedups for RAPs versus the baseline
approach where the schedule is computed by Algorithm 1.

4.2 Subject Applications
We evaluate PERLATO on three RAPs, each of which has been

developed by five to eight graduate students as part of their master
project work and taking a graduate course on distributed object pro-
gramming at the University of Illinois at Chicago. Characteristics
of the subject RAPs are shown in Table 4. The number of con-
currently accesses variable is small, and it is expected to be small,
since it is an indication of good rule design. Each subject RAP
uses a database, and we report information about databases in the
last three columns. With our conservative static analysis the num-
bers of false positive are large percentagewise, even though their
absolute values are small. It is more important to determine how
they affect the speedup that can be achieved with parallelizing the
JBoss Drool engine.

4.3 Methodology
We aligned our methodology with the guidelines for statistical

tests to assess randomized approaches in software engineering [2].
Since parallel execution with different input facts may result in dif-
ferent speedups, several executions with different inputs for sub-
ject RAPs are required to answer the RQs. Our goal is to collect
highly representative samples of runs when applying different ap-
proaches, perform statistical tests on these samples, and draw con-
clusions from these tests. Since our experiments involve the proba-
bility of obtaining different speedups when executing subject RAPs
with different input facts, it is important to conduct the experiments
multiple times to pick the average to avoid skewed results. For each
subject RAP, we ran each experiment 50 times with each approach
to obtain a good representative sample.

Our first set of experiment is to obtain baseline indicators of the
performance of the sequential and fully parallelized JBoss Drools
engine. Recall that the state-of-the-art implementation is sequential
and a fully parallelized version does not use any synchronization
locks. Even though the latter implementation does not prevent any
races, it gives us an upper bound on the performance of RAPs.

The second set of experiments involve using synchronization
locks at the Rule, Atomic (computed using Algorithm 1), and Variable

193

Table 1: Characteristics of the subject applications: their code name and the full name are shown in the first and the second columns
respectively followed by the lines of code, LOC column. The next column, Rules, shows the total number of rules followed by the total
number of shared variables, Svar that may be accessed concurrently from different rules. The next column shows the total number
of false positives, FPs detected through static analysis, then the maximum number of rules, Rmax that concurrently accessed at least
one variable and the minimum number of rules, Rmin that concurrently accessed at least one variable. Last three columns show the
number of tables in the database that the RAPs access, the number of rows and the number of columns in those tables.

Application Name LOC Rules Svar FPs Rmax Rmin Tables Rows Cols
EEWS Early Epidemic Warning System 4,029 13 8 4 6 2 6 1,005,918 27
TAXC TAX Calculator 13,215 23 5 2 8 2 28 179,372,032 89
IMS Insurance Management System 17,249 79 5 1 33 27 10 1,076,550 78

levels. Intuitively, we expect that the performance of RAPs should
be better than the one of the sequential rule execution but lower
when compared to the fully parallelized JBoss Drools engine.

For symbiotic scheduling, we perform 50 runs for each set of
input facts using different permutations of schedules for each run,
and then we compute the average elapsed execution time and the
variance for each run from the average execution time. Then, we
select a schedule that has the least sum of variances for different
sets of input facts.

4.4 Variables
We have three independent variables: the subject RAP, the ap-

proach (DROOLS or PERLATO), and sets of input facts for each
RAP. For the approach DROOLS we have two types of experi-
ments: sequential and parallel version of the engine. For PER-
LATO, there are three types of experiment: the Regular or baseline,
where a subject RAP is run using the rule-level synchronization,
the experiment with the Atomic-level synchronization that enables
concurrent execution of unsynchronized parts of rules from subject
RAPs, and finally, the experiment with Variable synchronization
that enables RAPs to execute with the highest concurrency.

We measure the performance of RAPs as the elapsed execution
time, and it is a dependent variable. Using its values we obtain
speedups for PERLATO when compared with the baseline sequen-
tial JBoss Drools engine. We repeated each experiment 10 times.
Thus, the total number of experiments is equal to three RAPs ×
(three types (R,A,V) for PERLATO + two types (Seq and Par) for
DROOLS) × three sets of input facts × 50 times = 2,250 experi-
ments. We report statistical results.

4.5 Hypotheses
We introduce the following null and alternative hypotheses to

evaluate how close the means are for speedups for different ap-
proaches. We seek to evaluate the following hypotheses at a 0.05
level of significance.

H0 The primary null hypothesis is that there is no difference in the
values of speedup between R, A, and V approaches for all
subject RDAs.

H1 An alternative hypothesis to H0 is that there is statistically sig-
nificant difference in the values of speedups between R, A,
and V approaches for all subject RDAs.

Once we test the null hypothesis H0, we are interested in the direc-
tionality of means, µ, of the results of control and treatment groups.
We are interested to compare the effectiveness of the R, A, and V
approaches vs one another.

H1 (Speedup of R versus A). The effective null hypothesis is that
µR = µA, while the true null hypothesis is that µR ≤ µA. Con-
versely, the alternative hypothesis is µR > µA.

H2 (Speedup of R versus V). The effective null hypothesis is that
µR = µV , while the true null hypothesis is that µR ≤ µV . Con-
versely, the alternative hypothesis is µR > µV .

H3 (Speedup of A versus V). The effective null hypothesis is that
µA = µV , while the true null hypothesis is that µA ≤ µV . Con-
versely, the alternative is µA > µV .

The rationale behind the alternative hypotheses to H1–H3 is that
finer granularity locking may lead to higher speedups. These alter-
native hypotheses are motivated by our belief that finer granularity
locking may not necessarily lead to statistically significant increase
of speedups, given the complexity of even small RAPs and depen-
dencies among their rules that are introduced by locks.

4.6 Threats to Validity
A threat to the validity of this experimental evaluation is that

our subject programs are relatively small; it is difficult to find large
open-source RAPs. Large RAPs may have millions of lines of code
and use databases whose sizes are measured in thousands of tables
and attributes. Those RAPs may have different characteristics com-
pared to our smaller subject programs. On the one hand, increasing
the size of RAPs to millions of lines of code is unlikely to affect the
time and space demands of our analyses because PERLATO only
considers conflicts among concurrently accessed variables, and by
the nature of rule-based programming, rules do not share many
variables. Thus, the majority of the source code of RAPs is ignored
in the conflict analysis, which is focused on concurrent accesses to
shared variables among rules. Evaluating this impact is a subject of
future work.

Additional threats to validity of this study is that we used grad-
uate students as programmers who created RAPs, and this task
should be tackled by professional programmers. However, many
of these students have at least one year of professional program-
ming experience, thereby reducing this threat to validity. The other
threat to validity is that we tried to avoid complex logics, and
we issued instructions to students to restrict the subject RAPs by
writing rules under the default agenda group MAIN of drools and
also by writing rules without many complicated attributes such as
ruleflow-group, activation-group, date-expires.

Finally, recall that our conflict analysis is conservative and there
are many false positives. Improving the precision of this analysis
may also improve the overhead of PERLATO. It is also unclear how
well PERLATO will perform on many different and diverse RAPs,
so this is a threat to external validity of our results.

5. RESULTS
In this section, we report the results of the experiment and eval-

uate the null hypotheses. We use one-way ANOVA and t-tests for
paired two sample for means to evaluate the hypotheses that we
stated in Section 4.5. Results of our experiments are provided in
Table 2. We used ANOVA to evaluate the null hypothesis H0 that

194

Table 2: PERLATO experimental results. The first four columns specify the name of the RAP, the sequence number for collections of
input facts that are inputs for the RAPs, the number of asserted facts and the total number of fired rules during the execution of the
RAPs. Next columns report average, median, minimum, and maximum execution times for two types of approaches (DROOLS and
PERLATO). Two types of DROOLS approach are (sequential and parallel) and three types of PERLATO approach are rule level,
atomic level and variable level for 50 execution runs of each experiment.

Application Input Set Facts Rules Fired Approach Type Avg Med Min Max σ2

EEWS

1 246896 1088

DROOLS Seq 32.22 32.08 31.559 35.358 0.4
Par 9.52 9.27 8.267 11.789 0.87

PERLATO
Rule 13.44 13.6 10.927 14.911 0.99

Atomic 10.85 10.82 10.21 11.867 0.14
Variable 10.67 10.67 10.21 11.359 0.06

2 334220 1454

DROOLS Seq 42.31 42.12 41.508 43.322 0.21
Par 11.62 11.53 10.299 14.126 0.85

PERLATO
Rule 18.86 19.02 15.794 21.549 2.07

Atomic 15.62 15.58 15.016 16.476 0.11
Variable 15.08 15.02 14.24 16.689 0.21

3 247113 572

DROOLS Seq 19.51 19.44 18.906 21.115 0.24
Par 6.05 6.19 3.947 8.242 1.32

PERLATO
Rule 8.33 8.22 7.025 9.442 0.42

Atomic 7.24 7.13 6.837 8.259 0.13
Variable 6.79 6.76 6.662 7.165 0.02

TAXC

1 16 95

DROOLS Seq 20.4 20.32 20.023 20.97 0.06
Par 19.52 19.52 19.115 20.072 0.07

PERLATO
Rule 19.71 19.69 19.232 20.657 0.13

Atomic 19.62 19.61 19.144 20.227 0.08
Variable 19.55 19.52 19.077 20.161 0.08

2 22 162

DROOLS Seq 42.48 42.48 41.553 43.63 0.32
Par 34.27 34.6 31.866 36.019 1.13

PERLATO
Rule 36.87 36.83 36.016 37.812 0.19

Atomic 36.86 36.77 36.007 37.775 0.21
Variable 36.8 36.74 35.972 37.698 0.23

3 10 66

DROOLS Seq 11.78 11.73 11.549 12.344 0.04
Par 9.85 9.87 9.116 10.314 0.05

PERLATO
Rule 9.93 9.9 9.641 10.431 0.03

Atomic 9.91 9.92 9.145 10.342 0.04
Variable 9.98 9.97 9.309 10.761 0.06

IMS

1 17 124

DROOLS Seq 8.58 8.59 8.102 8.838 0.01
Par 2.42 2.42 1.543 3.721 0.11

PERLATO
Rule 3.08 3.06 2.862 3.618 0.02

Atomic 3.07 3.08 2.809 3.598 0.02
Variable 4.46 4.44 4.35 4.736 0.01

2 75 550

DROOLS Seq 60.02 60.02 58.883 61.681 0.44
Par 11.86 11.97 7.074 16.414 4.51

PERLATO
Rule 10.94 11.05 9.41 12.579 0.42

Atomic 10.02 10.04 9.242 10.948 0.23
Variable 15.79 15.78 15.499 16.362 0.01

3 120 880

DROOLS Seq 37.76 37.66 37.502 39.536 0.09
Par 23.29 24.51 15.33 27.849 10.26

PERLATO
Rule 19.7 19.73 18.43 21.88 0.55

Atomic 18.78 18.69 17.022 21.016 1.1
Variable 32.73 32.92 30.445 34.785 0.99

the variation in an experiment is no greater than that due to normal
variation of individuals’ characteristics and error in their measure-
ment. The results of ANOVA confirm that there are large differ-
ences between the groups for R, A, and V for RAPs as shown in
Table 3. Based on these results we can reject the null hypothesis
for RAPs EEWS and IMS and we accept the alternative hypothe-
sis H1. We accept the null hypothesis for the application TAXC.
One explanation for TAXC is that the code for rules that concur-
rently access variables contains very few statements that can be
executed in parallel; as a result, R, A, and V synchronization lock

approaches do not lead to increased parallelism and subsequently,
higher speedup values.

Not surprisingly, the speedup is the highest between the fully
unsynchronized parallel execution and fully sequential execution
– the maximum speedup is close to 600%, with races, of course.
However, an average speedup is 225% across three subject RAPs
for all three synchronization approaches. These numbers are in the
ballpark of the reported results from a major insurance company
whose REMP is fully parallelized and where synchronization was

195

Table 3: Results of ANOVA tests for sets of input facts.
RAP Input F Fcrit p Test H0

EEWS
1 77.3 4.4 ≈ 6.2 ·10−8 Accept
2 65.6 3.35 ≈ 4.3 ·10−11 Accept
3 31.3 3.35 ≈ 9.2 ·10−8 Accept

TAXC
1 1.97 3.35 0.16 Reject
2 0.19 3.35 0.83 Reject
3 2,41 3.35 0.1 Reject

IMS
1 789.6 3.35 ≈ 1.1 ·10−24 Accept
2 256.5.6 3.35 ≈ 2.7 ·10−18 Accept
3 789.6 3.35 ≈ 1.1 ·10−24 Accept

Table 4: Results of experiments with symbiotic schedules.
Application Input Best Schedule Avg Var

EEWS
1 10.489 10.4 0.01
2 15.339 15.19 0.06
3 6.923 6.95 0.01

TAXC
1 19.428 19.57 0.05
2 36.028 36.8 0.06
3 9.286 9.55 0.09

IMS
1 3.084 2.76 0.01
2 9.297 9.43 0.06
3 17.409 17.32 0.82

experimentally tried at our request. Interestingly, the company sug-
gested that they may go with a higher speedup and tolerate incon.

To test the null hypothesis H1, H2, and H3 we applied two t-
tests for paired two sample for means, for elapsed execution times
for different experiments. Based on these results we reject the null
hypotheses H1 and H3, and we accept the alternative hypothe-
ses that say that atomic-level synchronizations result in higher
speedups than using rule and variable-level synchronization
locks. The hypothesis H2 is accepted, leading us to conclude
that using variable-level synchronization locks does not lead to
higher speedups when compared with rule-level synchroniza-
tion locks. Possible explanations include a significantly increased
overhead of locking on the variable level and greater difficulty to
find an optimal schedules for rule executions.

The results of experiments for computing an optimal symbiotic
schedule are shown in Table 4 for 10 independent runs of subject
RAPs with schedules that are randomly permuted. These results
suggest that it is possible to identify an optimal schedule among
rules that concurrently access resources that are protected by using
synchronization objects. Obtaining sample runs for computing a
symbiotic schedule with different permuted schedules can be done
during testing of RAPs. Of course, more research is needed to in-
vestigate this issue, and we report preliminary results in this paper.

Summary. Based on our experimental results, we can answer af-
firmatively to RQ1 that PERLATO is effective in increasing speedup
for subject RAPs and to RQ3 that symbiotic scheduling is effective
in obtaining higher speedup for RAPs. However, our answer is neg-
ative to RQ2, since we determined that a finer granularity locking
strategy is not more effective in speeding up RAPs.

6. RELATED WORK
Related work to PERLATO consists of two sections: research on

detecting and eliminating races in multithreaded applications and
research for improving reliability of rule-driven applications. We
believe that our work is the first at the intersection of these two
important areas.

There is a multitude of research in detecting and preventing races
in multithreaded applications and we concentrate on related work
that goes beyond race detection in multithreaded Java and C++

applications. There is an excellent survey for race detection and
prevention techniques [9], however, it does not discuss RAPs. Nei-
ther does a paper on taxonomy of race conditions mentions REMPs
[37]. Our ideas of fast and large-scale race detection are related to
RacerX [20], however, it is unclear how RacerX can be applied
to RAPs. Recent work includes partial detection and prevention
of certain races in Ajax applications [1], file systems [73], work-
flow applications [72], relational databases [28, 40], and web ser-
vices [79], however, no work is done in rule-driven applications.
CARISMA is a recent work that is related to PERLATO, where
dynamic race detectors explore multiple thread schedules of a mul-
tithreaded program over the same input to detect data races [78]. In
contrast, PERLATO uses a combination of static and dynamic anal-
ysis among rules in RAPs, however, ideas of CARISMA are com-
plementary to PERLATO. An interesting use of thread scheduling
for executing multiple replicas of the program may lead to pre-
vention of data races, and we may research the application of this
approach to RAPs in future work [74].

The contribution of the software engineering community to rule-
based programming is limited. Weyuker et al published one of
first papers where an algorithm is presented for reliability testing
of rule-based systems [3]. Same authors published a paper eight
years later on estimating CPU utilization in rule-based systems [4].
Some approaches on testing knowledge systems use the ideas of
rule-based development [54, 44, 34, 6], however, we know of no
papers that investigated races in RAPs using the fundamental no-
tion of separation of concern like we do in PERLATO. A related
area of research investigates checking consistency and complete-
ness of rule-based expert systems [57, 50, 19]. An idea of using
control and data flow in testing RAPs was proposed by Barr [7],
but it was never applied to deal with races. Some approaches deal
with error checking and bug finding in RAPs[66]. However, these
approaches do not address races in RAPs.

7. CONCLUSION
RulE Management Platforms (REMPs) are widely used in enter-

prise applications in which programming logic is represented using
rules, which are executed sequentially by REMPs. We created a
novel solution that is based on obtaining a rule execution model that
is used at different layers of REMPs to enhance the performance
of rule-driven applications while maintaining their reliability and
adaptability. First, using this model, possible races are detected
statically among rules, and we evaluate an implementation of our
abstraction of algorithms for automatically preventing races among
rules. Next, we use the sensitivity analysis to find better sched-
ules among simultaneously executing rules to improve the overall
performance of the application. We implemented our solution for
JBoss Drools and we evaluated it on three applications. The results
suggest that our solution is effective, since we achieved over 225%
speedup on average.

Acknowledgments
This work is supported by NSF CCF-1217928, CCF-1017633, and
Microsoft SEIF. We warmly thank Chen Fu and Andrea Bonisiol
for their contributions at the initial stage of the project.

8. REFERENCES
[1] T. J. Albert, K. Qian, and X. Fu. Race condition in

ajax-based web application. ACM-SE 46, pages 390–393,
New York, NY, USA, 2008. ACM.

196

[2] A. Arcuri and L. C. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In ICSE, pages 1–10, 2011.

[3] A. Avritzer, J. P. Ros, and E. J. Weyuker. Reliability testing
of rule-based systems. IEEE Softw., 13(5):76–82, Sept. 1996.

[4] A. Avritzer, J. P. Ros, and E. J. Weyuker. Estimating the cpu
utilization of a rule-based system. WOSP ’04, pages 1–12,
New York, NY, USA, 2004. ACM.

[5] M. Bali. Drools JBoss Rules 5.0 Developer’s Guide. Packt
Publishing, 2009.

[6] V. Barr. Applications of rule-base coverage measures to
expert system evaluation. In Journal of Knowledge Based
Systems, pages 411–416. Press/ MIT Press, 1998.

[7] V. Barr and D. V. Barr. Rule-based system testing with
control and data flow techniques, 1996.

[8] D. S. Batory, R. Goncc alves, B. Marker, and J. Siegmund.
Dark knowledge and graph grammars in automated software
design. In SLE, pages 1–18, 2013.

[9] N. E. Beckman. A survey of methods for preventing race
conditions, 2006.

[10] A. Ben-David. Rule effectiveness in rule-based systems: A
credit scoring case study. Expert Syst. Appl.,
34(4):2783–2788, May 2008.

[11] J. Bornholt, T. Mytkowicz, and K. S. McKinley.
Uncertain<t>: A first-order type for uncertain data. In
ASPLOS, pages 239–248, 2014.

[12] E. A. Brewer. Towards robust distributed systems (abstract).
PODC ’00, pages 7–, New York, NY, USA, 2000. ACM.

[13] P. Browne. JBoss Drools Business Rules. Packt Publishing,
2009.

[14] B. G. Buchanan and R. O. Duda. Principles of rule-based
expert systems. Technical report, Stanford University,
Stanford, CA, USA, 1982.

[15] S. Carr, J. Mayo, and C.-K. Shene. Race conditions: a case
study. J. Comput. Sci. Coll., 17(1):90–105, Oct. 2001.

[16] L. Chung, K. Cooper, and A. Yi. Developing adaptable
software architectures using design patterns: An nfr
approach. Comput. Stand. Interfaces, 25(3):253–260, June
2003.

[17] R. Dazeley, P. Warner, S. Johnson, and P. Vamplew. The
ballarat incremental knowledge engine. In Proceedings of the
11th PKAW, PKAW’10, pages 195–207, Berlin, Heidelberg,
2010. Springer-Verlag.

[18] B. Demsky and M. C. Rinard. Goal-directed reasoning for
specification-based data structure repair. IEEE Trans.
Software Eng., 32(12):931–951, 2006.

[19] R. Djelouah, B. Duval, and S. Loiseau. Validation and
reparation of knowledge bases. In Proceedings of the 13th
ISMIS ’02, ISMIS ’02, pages 312–320, London, UK, UK,
2002. Springer-Verlag.

[20] D. Engler and K. Ashcraft. Racerx: effective, static detection
of race conditions and deadlocks. SOSP ’03, pages 237–252,
New York, NY, USA, 2003. ACM.

[21] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Architecture support for disciplined approximate
programming. In ASPLOS, pages 301–312, 2012.

[22] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Neural acceleration for general-purpose approximate
programs. In MICRO, pages 449–460, 2012.

[23] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Neural acceleration for general-purpose approximate
programs. IEEE Micro, 33(3):16–27, 2013.

[24] S. Eyerman and L. Eeckhout. Probabilistic job symbiosis
modeling for smt processor scheduling. In ASPLOS, pages
91–102, 2010.

[25] M. Fayad and M. P. Cline. Aspects of software adaptability.
Commun. ACM, 39(10):58–59, Oct. 1996.

[26] M. Fowler. Should i use a rules engine? martinfowler.com,
Jan. 2009.

[27] H. Gaur and M. Zirn. Oracle Fusion Middleware Patterns.
Packt Publishing, 2010.

[28] S. Ghandeharizadeh and J. Yap. Gumball: a race condition
prevention technique for cache augmented sql database
management systems. DBSocial ’12, pages 1–6, New York,
NY, USA, 2012. ACM.

[29] J. C. Giarratano and G. Riley. Expert Systems: Principles
and Programming. Brooks/Cole Publishing Co., Pacific
Grove, CA, USA, 1989.

[30] J. C. Giarratano and G. D. Riley. Expert Systems: Principles
and Programming. Brooks/Cole Publishing Co., Pacific
Grove, CA, USA, 2005.

[31] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi,
S. Crespi-Reghizzi, D. Poshyvanyk, C. Fu, Q. Xie, and
C. Ghezzi. An empirical investigation into a large-scale java
open source code repository. In ESEM, 2010.

[32] A. Gupta, C. Forgy, A. Newell, and R. Wedig. Parallel
algorithms and architectures for rule-based systems. In
Proceedings of ISCA, ISCA ’86, pages 28–37, Los Alamitos,
CA, USA, 1986. IEEE Computer Society Press.

[33] K. Harris-Ferrante and S. Forte. Hype cycle for p&c
insurance. Gartner, July 2009.

[34] R. Hartung and A. Hρ akansson. Automated testing for
knowledge based systems. KES’07/WIRN’07, pages
270–278, Berlin, Heidelberg, 2007. Springer-Verlag.

[35] D. Heckerman and E. Horvitz. The myth of modularity in
rule-based systems. CoRR, abs/1304.3090, 2013.

[36] J. Hedberg, K. Weare, and M. la Cour. MCTS: Microsoft
BizTalk Server 2010 (70-595) Certification Guide. Packt
Publishing, 2012.

[37] D. P. Helmbold and C. E. McDowell. A taxonomy of race
conditions. Technical report, University of California at
Santa Cruz, Santa Cruz, CA, USA, 1994.

[38] S. D. Hendrick. Worldwide business rules management
systems 2009-Ű2013 forecast update and 2008 vendor
shares. IDC, Oct. 2009.

[39] E. F. Hill. Jess in Action: Java Rule-Based Systems. Manning
Publications Co., Greenwich, CT, USA, 2003.

[40] J. M. Hughes and H. Bolinder. Testing a database for race
conditions with quickcheck: none. Erlang ’11, pages 72–77,
New York, NY, USA, 2011. ACM.

[41] P. Jackson. Introduction to Expert Systems, 3rd Edition.
Addison-Wesley, 1999.

[42] R. J. K. Jacob and J. N. Froscher. A software engineering
methodology for rule-based systems. IEEE Trans. on Knowl.
and Data Eng., 2(2):173–189, June 1990.

[43] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated
atomicity-violation fixing. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’11, pages 389–400, New York, NY,
USA, 2011. ACM.

[44] J. D. Kiper. Structural testing of rule-based expert systems.
ACM Trans. Softw. Eng. Methodol., 1(2):168–187, Apr. 1992.

197

[45] L. Lahav. Hobbes framework: An adaptable solution to
web-driven applications. Comput. Stand. Interfaces,
25(3):271–274, June 2003.

[46] B. A. Lieberman. Requirements for rule engines. IBM
DeveloperWorks, Nov. 2012.

[47] L. Lin, S. M. Embury, and B. C. Warboys. Facilitating the
implementation and evolution of business rules. ICSM ’05,
pages 609–612, Washington, DC, USA, 2005. IEEE
Computer Society.

[48] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug
characteristics. SIGPLAN Not., 43(3):329–339, Mar. 2008.

[49] S. Lu, S. Park, and Y. Zhou. Finding atomicity-violation bugs
through unserializable interleaving testing. IEEE Trans.
Softw. Eng., 38(4):844–860, July 2012.

[50] S. Lukichev. Improving the quality of rule-based
applications using the declarative verification approach. Int.
J. Knowl. Eng. Data Min., 1(3):254–272, Dec. 2011.

[51] S. Luypaert. Rule engines in java: Jboss drools. Java, JBoss
Drools, July 2010.

[52] A. Mccallum, K. Schultz, and S. Singh. Factorie:
Probabilistic programming via imperatively defined factor
graphs. In In Advances in Neural Information Processing
Systems 22, pages 1249–1257, 2009.

[53] D. W. McCoy. Taking the mystery out of business rule
representation. Gartner, Mar. 2009.

[54] T. Menzies and B. Cukic. On the sufficiency of limited
testing for knowledge based systems. ICTAI ’99, pages 431–,
Washington, DC, USA, 1999. IEEE Computer Society.

[55] C. Moran. Does your project need a rule engine? Java
Developer’s Journal, June 2004.

[56] R. H. B. Netzer and B. P. Miller. What are race conditions?:
Some issues and formalizations. ACM Lett. Program. Lang.
Syst., 1(1):74–88, Mar. 1992.

[57] T. A. Nguyen, W. A. Perkins, T. J. Laffey, and D. Pecora.
Checking an expert systems knowledge base for consistency
and completeness. IJCAI’85, pages 375–378, San Francisco,
CA, USA, 1985. Morgan Kaufmann Publishers Inc.

[58] Oracle. Oracle fusion middleware user’s guide for oracle
business rules. Oracle Documentation,http:
//docs.oracle.com/cd/E21764_01/
integration.1111/e10228/intro.htm, May
2011.

[59] S. Purohit and K. Jamdaade. Rule based system to facilitate
the immunity of hiv/aids patients using ayurveda therapy.
CUBE ’12, pages 226–234, New York, NY, USA, 2012.
ACM.

[60] redhat. Why use a rule engine? Customer
Portal,https://access.redhat.com/site/
documentation/en-US/JBoss_Enterprise_
SOA_Platform/4.2/html/JBoss_Rules_
Manual/sect-JBoss_Rules_Reference_
Manual-Why_use_a_Rule_Engine.html, Feb.
2013.

[61] D. Roy. Probabilistic-programming.org. http://
probabilistic-programming.org/wiki/Home,
Feb. 2014.

[62] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni,
D. Gatelli, M. Saisana, and S. Tarantola. Global Sensitivity
Analysis: The Primer. Wiley-Interscience, Hoboken, NJ,
Feb. 2008.

[63] W. Schulte and J. Sinur. Rule engines and event processing.
Gartner, Mar. 2009.

[64] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. C. Rinard. Managing performance vs. accuracy trade-offs
with loop perforation. In SIGSOFT FSE, pages 124–134,
2011.

[65] J. Sinur. The art and science of rules vs. process flows.
Gartner, Mar. 2009.

[66] C. Sinz, T. Lumpp, J. Schneider, and W. Küchlin. Detection
of dynamic execution errors in {IBM} system automation’s
rule-based expert system. Information and Software
Technology, 44(14):857 – 873, 2002.

[67] S. Smith and A. Kandel. Verification and Validation of
Rule-Based Expert Systems. CRC Press, Inc., Boca Raton,
FL, USA, 1994.

[68] A. Snavely, D. M. Tullsen, and G. M. Voelker. Symbiotic
jobscheduling with priorities for a simultaneous
multithreading processor. In SIGMETRICS, pages 66–76,
2002.

[69] stackoverflow. Rules engine - pros and cons.
stackexchange,http:
//stackoverflow.com/questions/250403/
rules-engine-pros-and-cons/398389#398389,
Dec. 2008.

[70] stackoverflow. When should you not use a rules engine?
stackexchange,http:
//stackoverflow.com/questions/775170/
when-should-you-not-use-a-rules-engine,
Nov. 2011.

[71] N. Subramanian and L. Chung. Software architecture
adaptability: An nfr approach. IWPSE ’01, pages 52–61,
New York, NY, USA, 2001. ACM.

[72] X. Sun, A. Agarwal, and T. S. E. Ng. Attendre: mitigating ill
effects of race conditions in openflow via queueing
mechanism. ANCS ’12, pages 137–138, New York, NY,
USA, 2012. ACM.

[73] P. Uppuluri, U. Joshi, and A. Ray. Preventing race condition
attacks on file-systems. SAC ’05, pages 346–353, New York,
NY, USA, 2005. ACM.

[74] K. Veeraraghavan, P. M. Chen, J. Flinn, and
S. Narayanasamy. Detecting and surviving data races using
complementary schedules. SOSP ’11, pages 369–384, New
York, NY, USA, 2011. ACM.

[75] C.-C. Wu. Parallelizing a clips-based course timetabling
expert system. Expert Syst. Appl., 38(6):7517–7525, June
2011.

[76] R. M. Wygant. Clips - a powerful development and delivery
expert system tool. Comput. Ind. Eng., 17(1):546–549, Nov.
1989.

[77] M. G. Yunusoglu and H. Selim. A fuzzy rule based expert
system for stock evaluation and portfolio construction: An
application to istanbul stock exchange. Expert Syst. Appl.,
40(3):908–920, Feb. 2013.

[78] K. Zhai, B. Xu, W. K. Chan, and T. H. Tse. Carisma: a
context-sensitive approach to race-condition sample-instance
selection for multithreaded applications. ISSTA 2012, pages
221–231, New York, NY, USA, 2012. ACM.

[79] J. Zhang, S. Su, and F. Yang. Detecting race conditions in
web services. AICT-ICIW ’06, pages 184–, Washington, DC,
USA, 2006. IEEE Computer Society.

198

