
A Constraint Programming Based Hadoop Scheduler for 
Handling MapReduce Jobs with Deadlines on Clouds 

 

Norman Lim 
Dept. of Systems and Computer 

Engineering 
Carleton University 

Ottawa, ON, Canada 

nlim@sce.carleton.ca 

Shikharesh Majumdar 
Dept. of Systems and Computer 

Engineering 
Carleton University 

Ottawa, ON, Canada 

majumdar@sce.carleton.ca 

Peter Ashwood-Smith 
Huawei, Canada 

Kanata, ON, Canada 
 

 

ABSTRACT 

A novel MapReduce constraint programming based matchmaking 

and scheduling algorithm (MRCP) that can handle MapReduce 

jobs with deadlines and achieve high system performance is 

devised. The MRCP algorithm is incorporated into Hadoop, which 

is a widely used open source implementation of the MapReduce 

programming model, as a new scheduler called the CP-Scheduler. 

This paper originates from the collaborative research with our 

industrial partner concerning the engineering of resource 

management middleware for high performance. It describes our 

experiences and the challenges that we encountered in designing 

and implementing the prototype CP-based Hadoop scheduler. A 

detailed performance evaluation of the CP-Scheduler is conducted 

on Amazon EC2 to determine the CP-Scheduler’s effectiveness as 

well as to obtain insights into system behaviour and performance. 

In addition, the CP-Scheduler’s performance is also compared 

with an earliest deadline first (EDF) Hadoop scheduler, which is 

implemented by extending Hadoop’s default FIFO scheduler. The 

experimental results demonstrate the effectiveness of the CP-

Scheduler’s ability to handle an open stream of MapReduce jobs 

with deadlines in a Hadoop cluster.  

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems. C.4 [Performance of Systems]: performance attributes, 

modeling techniques.  

Keywords 

Resource management on clouds; MapReduce with deadlines; 

Hadoop scheduler; Constraint programming. 

1. INTRODUCTION 
 Cloud computing has rapidly gained popularity and is now 

being used extensively by various types of users including 

enterprises as well as engineering and scientific institutions 

around the world. Some of the attractive features of the cloud that 

make it desirable to use include the “pay-as-you-go” model, 

scalability, and elasticity that lets a user dynamically increase or 

shrink the number of resources allocated. In cloud computing, 

hardware resources (including computing, storage, and 

communication), as well as software resources are exposed as on-

demand services, and can be accessed by users over a network 

such as the Internet. 

 

 Cloud computing environments that provide resources on 

demand are of great importance and interest to service providers 

and consumers as well as researchers and system builders. Cloud 

service providers (e.g. Amazon) deploy large pools of resources 

that include computing, storage, and communication resources for 

consumers to acquire on demand. An effective resource 

management technique needs to be deployed for harnessing the 

power of the underlying resource pool, and efficiently provide 

resources on demand to consumers. Effective management of the 

resources on a cloud is also crucial for achieving user satisfaction 

and high system performance leading to high revenue for the 

cloud service provider. The important operations performed by a 

resource manager in a cloud include: matchmaking and 

scheduling. The matchmaking operation, when given a pool of 

requests, determines the resource or resources to be allocated to 

each request. Once a number of requests are allocated to a specific 

resource, a scheduling algorithm is used to determine the order in 

which each of the requests are to be executed for achieving the 

desired system objectives. Both matchmaking and scheduling are 

performed in a single step in Hadoop [1] by an entity referred to 

as the Hadoop scheduler in the literature [2]. A further discussion 

of Hadoop is provided in Section 2.2. Since such a single step 

operation is performed by the resource manager described in this 

paper, we refer to it as a Hadoop scheduler. 

 Two important components of performance engineering are 

performance optimization and performance modeling. One of the 

goals of this research is to engineer resource management 

middleware that can make resource management decisions that 

achieve high system performance, while also maintaining a low 

processing overhead. This paper describes how optimization 

theory and constraint programming (CP) [3] is used to devise a 

matchmaking and scheduling algorithm. Particular emphasis is 

placed on discussing our design and implementation experience 

and the performance implications of various system and workload 

parameters. CP is a well-known theoretical technique used to 

solve optimization problems, and is capable of finding optimal 

solutions with regards to maximizing or minimizing an objective 

function (see Section 2.1 for a further discussion). 

 A majority of the existing research on resource management 

on clouds has focused mainly on workloads that are characterized 

by requests requiring a best effort service. In this paper, 

workloads that comprise of requests with an associated quality of 

service often specified in a service level agreement (SLA) are 

considered. Most of the research on resource management for 

requests characterized by an SLA has only considered: (1) 

requests requiring service from a single resource and (2) a batch 

workload comprising a fixed number of requests. The focus of 

this research is on requests that need to be processed by multiple 

resources (called multi-stage requests) with SLAs specifying a 

required execution time, an earliest start time (release time), and 

an end-to-end deadline. Note that in line with the existing Hadoop 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for components of this work owned by others 

than ACM must be honored. Abstracting with credit is permitted. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from Permissions@acm.org.  

ICPE'15, Jan. 31–Feb. 4, 2015, Austin, TX, USA 

Copyright 2015 ACM 978-1-4503-3248-4/15/01…$15.00 

http://dx.doi.org/10.1145/2668930.2688058 

111



scheduler [2], the earliest start time of a job is set to its arrival 

time in this research. Meeting an end-to-end deadline for requests 

that require processing by multiple system resources increases the 

complexity of the problem significantly. In addition, this paper 

considers a workload comprising an open stream of request 

arrivals (and not a workload with a fixed number of requests) that 

characterizes typical workloads on cloud data centres. Both the 

matchmaking and scheduling operations are well known to be 

computationally hard problems when they need to satisfy user 

requirements for a quality of service while also considering 

system objectives, such as high resource utilization and adequate 

revenue for the service provider. 

 A popular multi-stage application that is deployed by 

enterprises and institutions for processing and analyzing very 

large and complex data sets (for performing Big Data analytics for 

example) is MapReduce [4]. MapReduce, proposed by Google, is 

a programming model whose purpose is to simplify performing 

massively distributed parallel processing so that very large data 

sets can be processed and analyzed efficiently. In such cases, it is 

necessary to distribute the computation among multiple machines 

to facilitate parallel processing and reduce the total processing 

time. One of the benefits of MapReduce is that it provides an 

abstraction to hide the complex details and issues of 

parallelization. As its name suggests, the MapReduce 

programming model has two key functions [4]: map and reduce. 

The map function accepts a set of input key/value pairs and 

generates a new set of intermediate key/value pairs. These 

intermediary key/value pairs are grouped together and then passed 

to the reduce function, which is typically called the shuffle phase. 

The reduce function processes these intermediate key/value pairs 

to generally produce a smaller set of values.  

 A typical MapReduce application (or job) is comprised of 

multiple map tasks and multiple reduce tasks as illustrated in 

Figure 1. Reduce tasks cannot complete their execution until all 

the map tasks have finished. Many computations can be expressed 

using the MapReduce programming model. For example, a 

MapReduce application can be developed to process the logs of 

web servers to count the number of distinct URL accesses. This 

type of application is often referred to as a WordCount 

application. In this case, the input into the map function would be 

the logs of the web servers, and the map function would produce 

the following intermediate key/value pairs: {URL, 1}. This 

key/value pair indicates that one instance of a URL is found. Note 

that the intermediate data set may contain many duplicate 

key/value pairs (e.g. {www.google.com, 1} can appear multiple 

times). The reduce function sums all the values with the same key 

to emit the new data set: {URL, total count}.  

t1

t2

t3
t5

t4

Output

Map Tasks Reduce 
Tasks

Input

Shuffling

 
Figure 1. Directed Acyclic Graph for a MapReduce job. 

 More recently, resource management on clusters that execute 

MapReduce jobs with an associated completion time guarantee 

(deadline) has begun receiving attention from researchers (e.g., 

see [5] to [9]). Executing MapReduce jobs that have an associated 

end-to-end deadline is required for latency-sensitive applications 

such as live business intelligence, personalized advertising, 

spam/fraud detection, and real-time event log analysis 

applications [5]. By allowing users to specify deadlines, the 

system can also prioritize jobs and ensure that time-critical jobs 

are completed on time. Developing an efficient resource 

management middleware on such an environment is the focus of 

attention for this research performed in collaboration with our 

industrial partners Huawei, Canada. 

 More specifically, in this paper we focus on devising a 

scheduler for Hadoop [1] that can effectively perform 

matchmaking and scheduling of an open stream of MapReduce 

jobs with SLAs comprising an execution time for the map and 

reduce tasks, an earliest start time, and an end-to-end deadline. 

Hadoop is a widely used open source implementation of the 

MapReduce programming model (discussed in more detail in 

Section 2.2). The formulation of the matchmaking and scheduling 

problem of MapReduce jobs with SLAs is achieved using 

constraint programming (CP) as discussed in Section 3. In our 

preliminary work [10], a detailed comparison of different resource 

management approaches based on CP as well as linear 

programming is presented. The results of the investigation showed 

the superiority of the CP-based approach implemented and solved 

using IBM ILOG CPLEX [11], including its more intuitive and 

simple formulation of constraints, lower processing overhead, and 

its ability to handle larger workloads.  

 In addition, our previous work [12] describes a novel 

MapReduce Constraint Programming based Resource 

Management (MRCP-RM) algorithm that can effectively perform 

matchmaking and scheduling of an open stream of MapReduce 

jobs with end-to-end deadlines. Using simulation a performance 

evaluation of MRCP-RM was conducted that demonstrated its 

effectiveness in generating a schedule where there is a low 

number of late jobs. The strong performance of MRCP-RM in 

simulation experiments has motivated this research that focuses 

on devising a revised version of the MRCP-RM algorithm and 

implementing the algorithm on a real system (i.e. Hadoop). A new 

CP-based Hadoop scheduler, named CP-Scheduler, which can 

handle matchmaking and scheduling an open stream of 

MapReduce jobs with deadlines is devised and implemented. To 

the best of our knowledge, there is no existing research describing 

a CP-based scheduler for Hadoop that can handle matchmaking 

and scheduling an open stream of MapReduce jobs with 

deadlines. The devising of the CP-Scheduler is based on the 

objective of providing user satisfaction while achieving high 

system performance. The main contributions of this paper include: 

 A prototype CP-based Hadoop scheduler (called CP-

Scheduler) for matchmaking and scheduling an open stream 

of MapReduce jobs with end-to-end deadlines. 

o A discussion of our experiences and challenges that were 

encountered in designing and implementing the CP-

Scheduler is provided. 

 A detailed performance evaluation of the CP-Scheduler was 

conducted on Amazon EC2. Insights into system behavior 

and performance are described.  

o This includes a discussion of the impact of various 

system and workload parameters on performance and a 

performance comparison of the CP-scheduler compared 

to an earliest deadline first (EDF) based Hadoop 

scheduler, which was implemented by extending 

Hadoop’s default FIFO scheduler. 

 Experimental demonstration of the effectiveness of the CP-

Scheduler’s ability to handle an open stream of MapReduce 

jobs with deadlines in a Hadoop cluster for a number of 

different workloads. 

The results of this research will be of interest to researchers, cloud 

providers, as well as developers of resource management 

middleware for clouds and Hadoop-based systems. 

112



 The rest of the paper is organized as follows. In Section 2, 

background information is provided and related work is discussed. 

Section 3 discusses the problem formulation and how the 

MapReduce Constraint Program (MRCP) is devised. The focus of 

Section 4 is on the design and implementation of the Hadoop EDF 

and CP based schedulers, and includes a discussion of our 

experiences and challenges. In Section 5, the results of the 

experiments performed on Amazon EC2 to evaluate the EDF-

Scheduler and CP-Scheduler are presented. Insights into system 

behavior and performance are described. Lastly, Section 6 

concludes the paper and provides directions for future work.  

2. BACKGROUND AND RELATED WORK 
 A brief overview of constraint programming (CP), Hadoop, 

and Amazon EC2 are provided in Sections 2.1 to 2.3, respectively. 

In addition, related research is discussed in Section 2.4. 

2.1 Constraint Programming (CP) 
 CP is a theoretical technique for solving optimization 

problems that was developed by computer science researchers in 

the mid-1980s using knowledge from artificial intelligence, logic 

and graph theory, and computer programming languages [3]. A 

typical CP problem consists of three key parts: decision variables, 

objective function, and constraints. The decision variables are the 

variables in the CP problem that need to be assigned values. The 

objective function is a mathematical function that generates the 

value that needs to be optimized (i.e. minimized or maximized). 

Lastly, the constraints are a set of mathematical formulas that 

restrict the values that the decision variables can be assigned. In 

summary, when solving a CP problem, a solver will assign values 

to the decision variables that optimize the objective function, 

while ensuring that none of the constraints are violated. 

2.2 Apache Hadoop 
 Apache Hadoop [1][13] is an open-source software 

framework (written in Java) that implements the MapReduce 

programming model, and is aimed at data-intensive distributed 

computing applications. Hadoop’s software framework contains 

three sub-frameworks: Hadoop Common, Hadoop Distributed File 

System (HDFS), and Hadoop MapReduce. Hadoop Common 

provides utility functions including remote procedure call (RPC) 

and object serialization libraries. HDFS and Hadoop MapReduce 

are based on Google’s MapReduce programming model [4] and 

Google’s File System (a distributed file system implementation), 

respectively. 

 A typical Hadoop cluster comprises a single master node and 

one or more slave nodes. In Hadoop 1.2.1, which implements the 

MapReduce version one (MRv1) architecture, the master node 

comprises of two entities (which are often called Hadoop 

daemons): NameNode and JobTracker. Each slave node also 

consists of two Hadoop daemons: a DataNode and a TaskTracker. 

The NameNode and DataNodes are the Hadoop daemons in 

charge of managing HDFS. Each file that is written to HDFS is 

split into blocks (64MB by default) and each block is stored on 

the storage device where a DataNode is running. Each block is 

replicated multiple times (by default three times) and stored on 

different DataNodes. It is the job of NameNode to keep track of 

which DataNode stores the blocks of a particular file (which is 

called the metadata of the HDFS). Another important function of 

NameNode is to direct DataNodes (slaves) to perform HDFS I/O 

operations (read, write, delete). DataNodes keep in constant 

contact with NameNode to receive I/O instructions. 

 JobTracker is the link between user applications and the 

Hadoop cluster. In addition, JobTracker is the Hadoop daemon 

responsible for managing TaskTrackers. Some of the main 

responsibilities of JobTracker include: initialize jobs and prepare 

them for execution, determine when the map and reduce tasks of 

jobs should be executed and which TaskTrackers should execute 

them (i.e. perform matchmaking and scheduling), as well as 

monitor all tasks that are currently running. TaskTrackers function 

as the JobTracker’s slaves, and their primary purpose is to execute 

the map or reduce tasks that they are assigned. Another 

responsibility of TaskTracker is to periodically send polling/ 

update messages (called heartbeats) to JobTracker. If JobTracker 

does not receive a heartbeat message from a TaskTracker within a 

specified time period (by default one minute), JobTracker will 

assume that the TaskTracker has been lost, and re-map all the 

tasks that was assigned to the lost TaskTracker. 

2.3 Amazon EC2 
 Amazon Elastic Compute Cloud (abbreviated Amazon EC2) 

is a public cloud that provides Infrastructure-as-a-Service (IaaS). 

Amazon EC2 allows consumers to launch virtual machines (VMs) 

called instances. After launching these instances, consumers can 

connect to the instance, and deploy and run their own 

applications. Amazon EC2 also provides various instance types, 

which are pre-configured VMs that have various predetermined 

CPU, memory, storage, and networking capacity. The cost of 

running the instance depends on the type of instance deployed, 

and users are charged by the hour. As expected, Amazon EC2 

provides the benefits of cloud computing including elasticity 

(scale up/scale down computing capacity dynamically), and pay-

as-you-go (no upfront investment). 

2.4 Related Work 
 The focus of this research is on developing resource 

management techniques for handling MapReduce applications, 

which are used by many companies and institutions to facilitate 

Big Data analytics [14]. A representative set of related work is 

provided next. 

 In [15] a MapReduce framework for heterogeneous and load-

imbalanced environments is described. The research presented in 

[16] and [17] focuses on a formulation of the MapReduce 

matchmaking and scheduling problem using linear programming. 

In these works, the objective is to find a schedule that minimizes 

the completion time of jobs in the cluster. In [5] the authors 

present a resource allocation policy based on earliest deadline first 

(EDF) that attempts to allocate to each job the minimum number 

of task slots required for completing the job before its deadline. 

Dong et al. [6], describe a technique that can handle scheduling of 

MapReduce workloads that contain best-effort jobs as well as jobs 

with deadlines. Similar to [5], the proposed technique executes 

jobs at their minimum degree of parallelism to meet its deadline 

(i.e. attempts to use all of a job’s slack time). Mattess et al. [7], 

propose an approach that uses a cloud to dynamically provision 

resources to execute MapReduce jobs that cannot meet their 

deadlines on a local set of resources. Investigation of resource 

management algorithms for minimizing the cost of allocating 

virtual machines to execute MapReduce applications with 

deadlines is presented in [8]. The authors of [9] describe an 

execution cost model for MapReduce that considers the following 

job attributes: execution time of the map and reduce tasks, and the 

size of input data. A scheduler for Hadoop that could handle 

scheduling a fixed number of jobs was developed based on this 

concept.  

 The approaches described in [15], [16], and [17] do not 

consider jobs with end-to-end deadlines and focus on other 

aspects of MapReduce jobs. Furthermore, the works described in 

[5] to [9], which do consider MapReduce jobs with deadlines, use 

heuristic-based techniques for matchmaking and scheduling the 

113



jobs. Handling of workloads comprising an open stream of 

MapReduce jobs with deadlines is not considered by [6] to [9], 

which the CP-Scheduler can effectively handle. The existing 

default schedulers for Hadoop that handle a fixed number of 

resources do not consider jobs with deadlines. To the best of our 

knowledge, no existing paper has proposed a CP-based Hadoop 

scheduler that can effectively perform matchmaking and 

scheduling of an open stream of MapReduce jobs with end-to-end 

deadlines on a cluster with a fixed number of processing 

resources, which is described in this paper. 

3. MAPREDUCE CONSTRAINT 

PROGRAM (MRCP) 
 The MapReduce Constraint Program (MRCP) is a model of 

the MapReduce matchmaking and scheduling problem formulated 

using constraint programming. MRCP was discussed in full detail 

in our previous work [10]. In this section, a brief summary of 

MRCP is provided, along with a discussion of the new 

modifications made in this paper to improve MRCP and make it 

work with Hadoop. The objective of MRCP is to meet SLAs 

while achieving high system performance. 

 Table 1 shows the formulation of the improved MRCP. The 

inputs required include: a set of MapReduce jobs, J and a set of 

resources, R, on which to map J. Each job j in J has the following: 

an earliest start time (sj), a set of map tasks (Tj
mp), a set of reduce 

tasks (Tj
rd), and a deadline (dj). The tasks t in each job has an 

estimated execution time in seconds (et), and resource capacity 

requirement (qt) that specifies the number of resources the task 

requires to execute (typically set to one for most map and reduce 

tasks). Note that the estimated task execution times includes the 

time required to read the input data, and exchange data (e.g. 

intermediate keys) between the map and reduce phases. The 

resources are modelled after Hadoop’s TaskTrackers. Each 

resource r in R has a map task capacity (no. of map slots), cr
mp, 

and a reduce task capacity (no. of reduce slots), cr
rd. The map and 

reduce task capacity specifies the number of map tasks and reduce 

tasks, respectively, that the resource can execute in parallel 

simultaneously.  

 The decision variables of MRCP are outlined below. Note that 

the set T contains the tasks for all the jobs in J. 

 Matchmaking, xtr: a binary variable. If task t is assigned to 

resource r, xtr=1, otherwise xtr=0. Each task t in T has an xtr 

variable for each resource r in R  

 Scheduling, at: an integer variable. Each task t in T, has an at 

variable that specifies the assigned start time of t. 

 Nj: a binary variable. If a job j misses its deadline Nj is set to 

one. Each job j in J has an Nj that is initialized to zero. 

 Cj (new): an integer variable that stores the completion time of 

job j. Each job j in J has a Cj variable. 

The objective function of MRCP has been modified from previous 

work that focused only on the minimization of late jobs. The first 

part of the objective function minimizes the number of late jobs; 

whereas, the second part of the objective function minimizes the 

maximum turnaround time of all jobs. The net effect of the second 

part of the objective function is to distribute the tasks more evenly 

among the resources (i.e. load balancing). This is confirmed to be 

achieved by examining the output schedule generated after MRCP 

is solved.  

 A summary of the purpose of each of MRCP’s constraints 

outlined in Table 1 is provided. Constraint (1) states that each task 

t in the set of tasks, T, can only be assigned to one resource. The 

second constraint ensures that each job’s map task has an assigned 

start time that is after the job’s earliest start time. Constraint (3) 

enforces that each job’s reduce tasks are scheduled to start after 

all of the job’s map tasks are completed. The fourth constraint, 

which is a new constraint that was not described in previous work 

states that the completion time of the job is set to the completion 

time of the job’s latest finishing reduce task. Constraint (5) makes 

sure that Nj for all the jobs that miss their deadlines is set to one. 

The next two constraints (6) and (7) are the resource capacity 

constraints, and enforce that the map and reduce task capacities of 

each resource are not violated at any point in time. Note that 

constraints (6) and (7) make use of CP’s global constraint function 

cumulative. Lastly, constraints (8)-(10) specify the valid values 

that the decision variables can be assigned. 

Table 1. MapReduce Constraint Program (MRCP) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (∑ 𝑁𝑗

𝑗∈𝐽

+ 1) × 𝑚𝑎𝑥𝑗∈𝐽(𝐶𝑗 − 𝑠𝑗) 

such that 

∑ 𝑥𝑡𝑟

𝑟∈𝑅

= 1       ∀ 𝑡 ∈ 𝑇 (1)

(𝑎𝑡 ≥ 𝑠𝑗            ∀𝑡 ∈ 𝑇𝑗
𝑚𝑝

)         ∀ 𝑗 ∈ 𝐽 (2) 

(𝑎𝑡′ ≥  max
𝑡 ∈ 𝑇𝑗

𝑚𝑝
 (𝑎𝑡 + 𝑒𝑡)      ∀𝑡′ ∈ 𝑇𝑗

𝑟𝑑)  ∀𝑗 ∈ 𝐽 (3) 

(𝐶𝑗 =  max
𝑡 ∈ 𝑇𝑗

𝑟𝑑
 (𝑎𝑡 + 𝑒𝑡))  ∀𝑗 ∈ 𝐽 (4) 

(𝐶𝑗 > 𝑑𝑗   ⟹ 𝑁𝑗 = 1 )     ∀𝑗 ∈ 𝐽 (5) 

(𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒((𝑎𝑡|𝑥𝑡𝑟 = 1), (𝑒𝑡|𝑥𝑡𝑟 = 1), (𝑞𝑡|𝑥𝑡𝑟 = 1),

𝑐𝑟
𝑚𝑝

)  ∀𝑡 ∈ 𝑇𝑗
𝑚𝑝

)∀𝑟 ∈ 𝑅 
(6) 

( 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒((𝑎𝑡|𝑥𝑡𝑟 = 1), (𝑒𝑡|𝑥𝑡𝑟 = 1), (𝑞𝑡|𝑥𝑡𝑟 = 1),

 𝑐𝑟
𝑟𝑑)  ∀𝑡 ∈ 𝑇𝑗

𝑟𝑑) ∀𝑟 ∈ 𝑅 
(7) 

(𝑥𝑡𝑟 ∈ {0, 1}       ∀ 𝑡 ∈ 𝑇)   ∀𝑟 ∈ 𝑅   (8) 
𝑁𝑗 ∈ {0, 1}          ∀ 𝑗 ∈ 𝐽 (9) 

𝑎𝑡 ∈ ℤ                  ∀ 𝑡 ∈ 𝑇 (10) 

3.1 Implementing and Solving MRCP 
 The software chosen to solve MRCP is IBM ILOG CPLEX 

Optimization Studio v12.5 [11] (abbreviated CPLEX). CPLEX is 

used because in our preliminary work [10] it was found that it was 

the most effective (had lower overhead and able to handle larger 

workloads) in solving MRCP. Before MRCP can be solved by 

CPLEX’s CP solving engine, called the CP Optimizer [18], 

MRCP needs to be implemented (modelled) using CPLEX’s 

Optimization Programming Language (OPL) [11]. OPL is an 

algebraic language that is specifically designed for developing and 

expressing optimization models. Note that the implementation of 

MRCP using OPL is referred to as the OPL model. 

4. HADOOP EDF-SCHEDULER AND CP-

SCHEDULER  
 As indicated in Section 1, a Hadoop scheduler performs both 

matchmaking and scheduling. This section discusses the design 

and implementation of two new Hadoop schedulers that can 

handle matchmaking and scheduling of an open stream of 

MapReduce jobs with deadlines. The first is the earliest deadline 

first scheduler, EDF-Scheduler, which was devised by extending 

Hadoop’s default FIFO scheduler (see Section 4.2). The second is 

a more advanced constraint programming based scheduler, called 

CP-Scheduler (see Sections 4.3-4.4), that performs matchmaking 

and scheduling by solving MRCP, which was discussed in Section 

3.1. Our experiences and challenges in implementing these 

schedulers are discussed. The main challenge encountered is 

114



understanding the Hadoop source code and determining which of 

the Hadoop classes need to be modified to implement the 

schedulers. A summary of the challenges encountered is provided. 

 Determining the Hadoop classes that need to be modified to: 

(1) support user-specified job deadlines (discussed in Section 

4.1), and (2) allow users to define the estimated task execution 

times of their jobs (see Section 4.3.2). 

 Determining how to implement a custom scheduler for 

Hadoop’s JobTracker (see Section 4.2.1). Examining the source 

code of Hadoop’s default FIFO scheduler to learn the 

intricacies of how job scheduling in Hadoop is performed 

(discussed in Section 4.2.2). 

 The main challenges of implementing the Hadoop CP-

Scheduler include: (1) determining how to create the input data 

for MRCP from Hadoop classes (see Section 4.3.1), (2) 

integrating IBM CPLEX into Hadoop (see Section 4.3.3), (3) 

investigating how to handle IBM CPLEX’s lack of support for 

long values to represent timestamps (see Section 4.4.2 and 

4.3.1), and (4) developing an approach to ensure that a specific 

TaskTracker executes the task it has been assigned in the 

MRCP solution (see Section 4.4.1). 

 During testing a bug was discovered where the reduce tasks 

would stall and take a very long time to complete (discussed in 

Section 4.4.1.1). 

4.1 Adding Support for Job Deadlines in 

Hadoop 
 This section discusses the Hadoop classes that were modified 

to support user-specified job deadlines. First, in Hadoop’s org. 

apache.hadoop.mapred.JobInProgress class a new private 

field, long deadline, was added to store a job’s deadline. The 

value stored in the deadline field represents the number of 

milliseconds elapsed from midnight, January 1, 1970 UTC. The 

JobInProgress (JIP) class represents a MapReduce job that is 

being tracked by JobTracker. The JIP class maintains all the 

information for a MapReduce job including: the job’s map and 

reduce tasks, its state (e.g. running, succeeded, failed), as well as 

accounting information (e.g. launch time and finish time). JIP’s 

deadline field is initialized via the JIP constructor by invoking 

conf.getJobDeadline() where conf is an object that is an 

instance of the org.apache.hadoop.mapred.JobConf class, and 

getJobDeadline() is a new method that was implemented in the 

JobConf class to retrieve the job’s deadline. 

 The JobConf class represents a MapReduce job configuration. 

It is an interface for users to specify the properties (e.g. job name 

and number of map and reduce tasks) for their MapReduce job 

before submission to the Hadoop cluster. Two new methods are 

added to the JobConf class:  getJobDeadline() and setJob 

Deadline(). The method setJobDeadline(long deadline) sets 

the job configuration property, mapred.job.deadline, to the 

supplied parameter. Similarly, the getJobDeadline() method is 

used to retrieve the value assigned to the mapred.job.deadline 

property. 

 The last Hadoop class that needs to be modified to support 

user-specified job deadlines is the org.apache.hadoop. 

mapreduce.Job class. The Job class is the main user API that is 

used to create and submit jobs to the Hadoop cluster (more 

specifically JobTracker). The Job class is the user’s view of the 

MapReduce job, and it provides methods to allow the user to 

create, configure, and submit a job, as well as control its 

execution, and obtain status information (e.g. state of the job). 

Similar to the JobConf class, the two new methods added to the 

Job class are: setJobDeadline(), and getJobDeadline(). These 

two methods in turn invoke conf.setJobDeadline() and 

conf.getJobDeadline(), respectively, where conf is an instance 

of a JobConf object.  Note that conf is one of the private fields of 

the Job class and is initialized when a Job object is created. The 

sequence of calls for setting the deadline of a job is illustrated in 

the sequence diagram shown in Figure 2. 

:Job :JobConf

setJobDeadline

(deadline)

setJobDeadline

(deadline)

Note: deadline=System.currentTime()+20000

set key �mapred.job.deadline 

 to value deadline

 
Figure 2. Sequence diagram for setJobDeadline().  

4.2 Hadoop EDF-Scheduler  
 An earliest deadline first scheduler called EDF-Scheduler is 

implemented by extending Hadoop’s default FIFO (first-in-first-

out) scheduler. This is done to investigate if the naïve solution of 

using the commonly known EDF policy is effective for handling 

an open stream of MapReduce jobs with deadlines (see Section 5). 

This section briefly discusses the key classes that were modified 

to implement the EDF-Scheduler, but first an overview of how to 

implement a custom scheduler for Hadoop is discussed in Section 

4.2.1, and in Section 4.2.2, a discussion of the key classes of 

Hadoop’s FIFO Scheduler is provided.  

4.2.1 Implementing a Custom Hadoop Scheduler 
 Hadoop provides a pluggable scheduler framework [2] that 

allows developers to implement custom schedulers using their 

own scheduling logic and algorithms. The key to implementing a 

custom scheduler for Hadoop is to extend Hadoop’s abstract class 

org.apache.hadoop.mapred.TaskScheduler and implement the 

abstract method List<Task> assignTasks(TaskTracker tt). 

The assignTasks() method returns a list of tasks (including both 

map and reduce tasks) that the supplied TaskTracker should 

execute as soon as it receives the list. Note that the returned list 

can be empty meaning that there are no new tasks to assign to the 

TaskTracker at the moment.  

 The Hadoop org.apache.hadoop.mapred.JobTracker class 

implements the Hadoop JobTracker daemon, which is responsible 

for scheduling the tasks of the MapReduce jobs that are 

submitted. The JobTracker class has a TaskScheduler private 

field named taskScheduler which stores the reference to the 

scheduler (e.g. FIFO, EDF or CP) that is used to assign and 

schedule tasks on TaskTrackers. More specifically, the 

JobTracker class invokes taskScheduler.assignTasks() each 

time JobTracker receives and processes a heartbeat message from 

a TaskTracker (i.e. within the JobTracker class’ heartbeat() 

method). Recall that heartbeats are the periodic status messages 

that TaskTrackers send to JobTracker. 

4.2.2 Hadoop FIFO Scheduler 
 Hadoop’s default FIFO scheduler is implemented in the 

org.apache.hadoop.mapred.JobQueueTaskScheduler class 

(abbreviated JQTS), which extends Hadoop’s TaskScheduler 

abstract class. The JQTS class keeps jobs that are ready to execute 

in priority order and by default, this order is FIFO. There are two 

other key classes required by JQTS: (1) JobQueueJobIn 

ProgressListener (JQ-JIPL) and (2) EagerTaskInitialization 

Listener (ETIL). The JQ-JIPL class represents the job queue 

manager, and by default, it sorts the jobs in the queue in FIFO 

order, but it is possible to implement a custom ordering strategy 

such as EDF. JQ-JIPL extends Hadoop’s abstract class JobIn 

115



ProgressListener (JIPL), which is a class that is used by the 

JobTracker class to listen for when a job's lifecycle in JobTracker 

changes. The JIPL class has three key methods: jobAdded(), 

jobRemoved(), and jobUpdated(), which are invoked when 

JobTracker sees that a job is added, removed, or updated, 

respectively. For example, when a user submits a job to 

JobTracker, JQ-JIPL’s jobAdded() method  is invoked by the 

JobTracker class to add the submitted job to JQ-JIPL’s queue. 

 The ETIL class prepares a submitted job for execution by 

initializing/creating the job’s tasks. A thread pool with four 

worker threads is deployed by the ETIL class to concurrently 

initialize jobs. Similar to JQ-JIPL, the ETIL class also extends the 

JIPL abstract class. Thus, as soon as a job is submitted to 

JobTracker, ETIL places the submitted job into its job 

initialization queue called jobInitQueue (sorted using FIFO by 

default). The job remains in the queue until there is a worker 

thread available to initialize the job.  

4.2.3 Implementation of Hadoop EDF-Scheduler 
 The EDF-Scheduler is implemented in a class called 

EDF_Scheduler (stored in the package org.apache.hadoop. 

mapred), and is based closely on the implementation of Hadoop’s 

FIFO scheduler (discussed in Section 4.2.2). The major changes 

that are made are in the JQ-JIPL and ETIL classes. More 

specifically, in the ETIL class the resortInitQueue() method is 

modified to sort the queue with priority given to the jobs with an 

earlier deadline (i.e. earliest deadline first). Moreover, the JQ-

JIPL class’ JobSchedulingInfo Comparator was also modified 

to place jobs with an earlier deadline first.  In Java, a Comparator 

is an interface used by Java collection objects to sort elements of 

the collection in a specified order. The JobSchedulingInfo is a 

static nested class of JQ-JIPL that assembles all the necessary job-

related information (e.g. job id and deadline) for the EDF-

Scheduler to schedule jobs. 

4.3 Hadoop CP-Scheduler 
 Figure 3 shows an overview of the CP-Scheduler being 

deployed on a Hadoop cluster. There is a single master node and 

m slave nodes (defined in Section 2.2). Users submit jobs to 

JobTracker which uses the CP-Scheduler to schedule the jobs onto 

TaskTrackers. CP-Scheduler uses  three IBM CPLEX Java library 

packages (discussed in Section 4.3.3), and performs matchmaking 

and scheduling by creating a MRCP OPL model  and using 

CPLEX’s CP Optimizer (a CP solving engine) to solve the OPL 

Model (discussed in detail in Section  4.4). 

CPLEX CP 

Optimzer

ilog.concert

ilog.opl

ilog.cp

OPL Model

Master Node

NameNode
JobTracker

CP-Scheduler

<<uses>>

<<create>>
<<solves>>

Slave Node 1

DataNode TaskTracker

Submit jobs

Users

Slave Node m

DataNode TaskTracker

Cloud

...

 
Figure 3. Overview of a Hadoop cluster deploying the CP-

Scheduler. 

 Similar to the EDF-Scheduler the implementation of the CP-

Scheduler starts with creating a class, called CP_Scheduler (in the 

package org.apache.hadoop.mapred) which extends Hadoop’s 

TaskScheduler abstract class. In addition, The CP-Scheduler also 

has two classes: JobQueueManager and JobInitializer that 

extend Hadoop’s JIPL class, and have similar functionality as the 

EDF-Scheduler’s JQ-JIPL and ETIL classes, respectively. 

4.3.1 Entity Classes 
 The CP_Scheduler class also uses three entity classes: 

Job_CPS, Task_CPS, and Resource_CPS. These classes represent 

how the CP-Scheduler views MapReduce jobs, tasks, and 

TaskTrackers (resources), respectively, and stores the necessary 

information required by MRCP (discussed in Section 3) for 

scheduling the MapReduce tasks onto TaskTrackers. An 

abbreviated class diagram showing the important attributes and 

methods of the three entity classes is presented in Figure 4. Note 

that a discussion of the key attributes and methods of the 

CP_Scheduler class is provided in Section 4.3.  

+ Resource_CPS(tts : TaskTrackerStatus)
+ addScheduledTask(t : Task_CPS) : void 
+ removeScheduledTask(t : Task_CPS) : void 
+ scheduledTaskCompleted(t : Task_CPS): void

- id : String
- numMapSlots : int
- numReduceSlots : int

Resource_CPS

CP_Scheduler

+ Job_CPS(jip:JobInProgress)
+ normalizeAndConvertTimes(baseTime : 
long) : void

- id : JobID
- releaseTime : long 
- deadline : long 
- origReleaseTime : long
- isTimeNormalized : boolean 

Job_CPS

+ Task_CPS(tip:TaskInProgress, 
parentJob:Job_CPS, execTime:int)

- id : TaskID
- executionTime : int
- isReduceTask : boolean
- numSlotsReq : int
- scheduledStart : int
- isExecuting : boolean

Task_CPS

 1..*

parentJob

mapTasks

0..*
assignedResource

schedMapTasks

 0..*

jobsToSchedule

 0..*resources

0..*

parentJob

reduceTasks

0..*
assignedResource

schedRedTasks

 
Figure 4. Class diagram (abbreviated) of CP-Scheduler’s 

entity classes.  

 The Job_CPS class contains information required by the 

CP_Scheduler to map jobs onto TaskTrackers (resources). This 

information is retrieved from Hadoop’s JobInProgress class, and 

includes the job’s: id, release time, deadline, map tasks, and 

reduce tasks. Note that both the release time and deadline fields 

store the number of milliseconds elapsed from midnight, January 

1, 1970 UTC. Since the release time field is constantly updated 

depending on when the job is being scheduled (discussed in 

Section 4.4), the origReleaseTime field stores the time of when 

the job is first received by JobTracker. The isTimeNormalized 

field indicates if the following calculations have been performed: 

releaseTime = releaseTime – REFERENCE_TIME, and deadline 

= deadline - REFERENCE_TIME (referred to as time 

normalization). REFERENCE_TIME is a field in the CP_Scheduler 

class that stores a timestamp which is taken when the CP-

Scheduler maps a job for the first time. The job’s release time and 

deadline have to be normalized because CPLEX does not support 

values of type long (only int is supported). Normalization of the 

times is discussed in more detail in Section 4.4.2. 

 The Task_CPS class holds the information that the 

CP_Scheduler uses for matchmaking and scheduling tasks 

including: the task’s id, estimated execution time (in seconds), 

task type, and the number of slots (resource capacity) required. 

This information, except the estimated task execution times 

(discussed in Section 4.3.2), is retrieved from Hadoop’s 

TaskInProgress class. Once a task has been mapped, its 

assignedResource and scheduledStart fields are initialized to 

the resource that the task is scheduled to execute on, and the time 

the task is to start running, respectively. The isExecuting field is 

set to true if the task is currently executing.  

 The Resource_CPS class contains TaskTracker information 

(retrieved from Hadoop’s TaskTrackerStatus class), including: 

116



id, the number of map slots, and the number of reduce slots. The 

tasks that are assigned to the resource are placed in either the 

schedMapTasks list or the schedRedTasks list, depending on the 

task type. Note that both these lists keep tasks sorted by earliest 

scheduled start time. The methods addScheduledTask() and 

removeScheduledTask() are used to add, and remove tasks from 

the scheduled tasks lists, respectively.  The last method, 

schedTaskCompleted(), is called when a task has completed its 

execution. Completed tasks are moved from the scheduled tasks 

lists to the completed tasks lists.  

4.3.2 Adding Support for Estimated Task Execution 

Times 
 One of the inputs that MRCP (discussed in Section 3) requires 

is the estimated task execution times. Note that the estimation of 

task execution times can be accomplished by analyzing historical 

data such as system logs, and workload traces of previously 

executed tasks (discussed in Section 5.1.2). Similar to how 

support for job deadlines was added to Hadoop (discussed in 

Section 4.1),  support to allow users to specify the estimated task 

execution times of their submitted jobs is accomplished by adding 

two new methods: setEstimatedTaskExecutionTimes() and 

getEstimatedTaskExecutionTimes() (abbreviated setET and 

getET, respectively) to Hadoop’s Job and JobConf classes.  

 The setET method accepts two parameters: a comma 

delimitated string of task execution times in seconds (e.g. 

“2,2,3”), and the task type (map or reduce). Depending on the task 

type, the setET method assigns either the mapred.job.mapTask 

ExecTimes property or the mapred.job.reduceTaskExecTimes 

property to the supplied string. The getET method accepts a single 

parameter the task type (map or reduce), and returns a string array 

containing the values assigned to the corresponding property. 

4.3.3 Integration of IBM CPLEX 
 As discussed in Section 3.1, MRCP is solved using IBM 

CPLEX. Therefore, to model and solve MRCP, the CP-Scheduler 

requires importing IBM CPLEX’s Java libraries to make use of 

the following Java APIs [11]: ILOG Concert Technology 

(abbreviated Concert), ILOG OPL, and ILOG CP. These APIs 

allow the CP-Scheduler to embed CPLEX’s CP Optimizer solving 

engine and the MRCP OPL model into the CP_Scheduler class. 

To use these APIs, the following CPLEX Java library packages 

need to be imported: ilog.concert, ilog.opl, and ilog.cp.   

 Before being able to import the required CPLEX Java 

libraries, IBM CPLEX v12.5 was installed on the machine where 

the master node executes. The IBM CPLEX v12.5 JAR (Java 

archive) file, named oplall12.5.jar, was placed in Hadoop’s 

/hadoop/lib folder. In addition, a modification is made to 

Hadoop’s /hadoop/bin/hadoop script so that the JobTracker 

would be able to locate the CPLEX libraries. More specifically, 

the java.library.path variable of the hadoop script is modified 

to include the folder <IBM_CPEX_Install_dir>/opl/bin/x86-

64_sles10_4.1.  

 Two additional classes that are used by the CP_Scheduler for 

aiding in the integration of CPLEX are: OPLModelSource and 

OPLModelData. The former stores the implementation of MRCP 

written in CPLEX’s Optimization Programming Language (OPL), 

which is referred to as the OPL model. The latter class is used by 

the CP_Scheduler class to create the input data for the OPL 

model. OPLModelData extends the OPL APIs ilog.opl.Ilo 

CustomOplDataSource class [11]  and converts the 

CP_Scheduler’s resources and jobsToSchedule lists to a format 

that the OPL model can read (i.e. generates the OPL model’s 

input sets: Jobs, Tasks, and Resources). 

4.4 CP-Scheduler Algorithm 
 This section provides details on the CP-Scheduler algorithm. 

A class diagram of the CP_Scheduler showing its key fields and 

methods is presented in Figure 5. Note that these fields and 

methods are discussed in Sections 4.4.1-4.4.3. 

+ CP_Scheduler()
+ assignTasks(tt : TaskTracker) : List<Task>
- generateAndSolve() : void
- createNewModelDefinition() :  void
- addConstraints(modelText:String, r:Resource_CPS,  
                               t:Task_CPS) : void
- extractSolution(keepLateTasks : boolean) : void
- createResourcesForCP() : void
- createJobsToScheduleForCP() : void
- removeTask(Task_CPS t) : void

- REFERENCE_TIME : long 
- jobQueueManager : JobQueueManager
- jobInitializer : JobInitializer
- oplFactory : IloOplFactory 
- settings : IloOplSettings 
- modelDefinition : IloOplModelDefinition 
- cpSolver : IloCP 
- oplModel : IloOplModel 

CP_Scheduler

 
Figure 5. Abbreviated class diagram of CP_Scheduler. 

4.4.1 assignTasks() 
 Table 2 shows the CP-Scheduler algorithm which is 

implemented in the CP_Scheduler class’ assignTasks() method. 

The input required by the algorithm is a TaskTracker to assign 

tasks to. The algorithm returns a list of tasks for the supplied 

TaskTracker to execute (includes both map and reduce tasks). The 

first step (line 1) is to calculate the currently available map and 

reduce slots of the supplied TaskTracker (e.g. availMapSlots = 

mapCapacity – runningMaps). The next step (lines 2-3) is to 

create the Resource_CPS list (called resources) and Job_CPS list 

(called jobsToSchedule), which are required as input to the OPL 

model. The createResourcesForCP() method (abbreviated CR) 

invokes the JobTracker class’ activeTaskTrackers() method to 

return a collection of TaskTrackerStatus  (TTS) objects. The CR 

method then uses the TTS objects to create Resource_CPS objects 

via its constructor (recall Figure 4). The createJobsToSchedule 

ForCP() method (abbreviated CJ) checks the JobQueueManager’s 

jobQueue  (a collection of JobInProgress objects) for new jobs 

in the running state (i.e. setup is complete and tasks are 

initialized), and creates a new Job_CPS object for each one. If 

there are new jobs or resources, the CP_Scheduler’s hasNewJob 

and hasNewResources flags are set to true. 

 The next step is to check if CP_Scheduler’s jobsToSchedule 

list is empty. If this condition is true, then an empty task list is 

returned (line 4). If either hasNewJobs or hasNewResources flags 

are true CP_Scheduler’s generateAndSolve() method (discussed 

in Section 4.4.2) is invoked (see lines 5-7). The two flags are used 

to prevent unnecessarily invoking generateAndSolve()when a 

MRCP solution for the same input (jobs and resources) has 

already been found. Once a solution is found, the next step (line 8) 

is to retrieve the assigned map and reduce tasks from the 

Resource_CPS object in resources (named res) that has the same 

id as the supplied TaskTracker.  

 In lines 9-19, each available map slot of the supplied 

TaskTracker is assigned the map task with the earliest scheduled 

start time. This is accomplished by first retrieving the task (a 

Task_CPS object) from res, as well as retrieving the task’s 

corresponding TaskInProgress (TIP) (lines 10 and 11). Before 

assigning the task, TIP is checked to see if the task has completed, 

and if true, the CP_Scheduler’s removeTask() method is invoked 

(lines 12-13). The removeTask() method performs a number of 

operations including: moving the task from its assigned resource’s  

scheduled tasks list to the completed tasks list, and moving the 

task from its parent job’s tasks to schedule lists to the completed 

task lists. Recall that a task’s assigned resource and parent job are 

117



Resource_CPS and Job_CPS objects, respectively. Furthermore, 

removeTask() also checks if the job’s mapTasks and 

reduceTasks lists are empty (i.e. job has completed executing). If 

this is true, the job’s release time is reset to its original release 

time, and the job is moved from the CP_Scheduler’s 

jobsToSchedule list to the completedJobs list. Otherwise, if the 

task has not completed executing, the task is assigned to a 

TaskTracker for execution (lines 14-18). This is accomplished by 

invoking a new method named obtainSpecificMapTask() 

(abbreviated OSMT) that is implemented in Hadoop’s 

JobInProgress class. As the name suggests, given a 

TaskInProgress object, OSMT returns the corresponding Task 

object (i.e. Task that has the same id). The task that is returned by 

OSMT is added to the assignedTasks list. 

Table 2. CP-Scheduler algorithm (implemented in 

CP_Scheduler::assignTasks()). 

Input: TaskTracker tt 
Output: List of Tasks for the supplied TaskTracker to execute, 
named assignedTasks. 

1: Get currently available map and reduce slots of tt. 
2: call createResourcesForCP() 
3: call createJobsToScheduleForCP() 
4: if no jobs to schedule return empty list 
5: if new jobs to schedule or new resources in cluster then 
6:   call generateAndSolve() 
7: end if 
8: res  get Resource_ CPS object from resources with same 

id as tt 
9: for each available map slot in tt  do 
10:  Task_CPS t get scheduled map task with earliest start 

   time from res 
11:   tip  t.getTaskInProgress() 
12:   if tip is complete then 
13:    call removeTask() 
14:  else 
15:    jip  t.getParentJob().getJobInProgress() 
16:    call jip.obtainSpecificMapTask(tip)  returning 

      mapTask 
17:    Add mapTask to assignedTasks. 
18:  end if 
19: end for  
20: Repeat lines 9 to 19 but this time for reduce slots and 

reduce tasks with one change to Line 14: the new 
condition is “else if all map tasks of t’s parent job are 
completed then”  

21: return assignedTasks 

 Next, the same logic is executed for the TaskTracker’s 

reduce slots (line 20), except with one change to the else 

statement (line 14). The else statement is changed to an else if 

statement, which checks if all the map tasks of the job has 

completed before assigning reduce tasks (see Section 4.4.1.1). A 

new obtainSpecificReduceTask() method is implemented in 

JobInProgress that returns the reduce task (Task object) with the 

same id as the supplied TIP. Lastly, the assignedTasks list which 

now contains the tasks that the supplied TaskTracker should 

execute is returned (line 16). 

4.4.1.1 Reduce Task Stalling Problem 
 During preliminary testing it was found that in some 

situations the reduce tasks of a job j would take a very long time 

to complete because its map tasks were not being executed in a 

timely fashion. This can be caused, for example, when the CP-

Scheduler schedules the map tasks of a job with an earlier 

deadline before j’s tasks. It was observed that the reason j’s 

reduce task could not finish executing is because not all of j’s map 

task were finished executing. In fact, it was discovered that 

Hadoop permits reduce tasks of a job to start executing once a few 

of its map tasks have finished executing (and does not wait until 

all the job’s map tasks have completed).   

 One approach to solve this problem is to give execution 

priority to all of j’s map tasks so that they can execute before 

other tasks. Initially, this approach was used, and implemented by 

adding constraints to the OPL model that stated that these task 

should be scheduled to execute at their originally scheduled times 

(and not be rescheduled). However, further testing showed that 

this solution is not ideal when it comes to minimizing the number 

of late jobs because jobs that have an earlier deadline may have to 

wait for execution. On the other hand, a problem with not 

ensuring that j’s reduce tasks can complete its execution in a 

timely manner, is that j’s reduce tasks will remain idle and 

unnecessarily consume reduce task slots of TaskTrackers. This 

can in turn also delay the execution of jobs that already have their 

map tasks completed. The solution that was used to avoid these 

problems is to prevent the CP-Scheduler from assigning reduce 

tasks to TaskTrackers until all the job’s map tasks are completed 

(recall Section 4.4.1). This guarantees that reduce tasks assigned 

to a TaskTracker can complete its execution. 

4.4.2 generateAndSolve() 
 Table 3 presents CP-Scheduler’s generateAndSolve() 

algorithm whose purpose is to generate the MRCP OPL model, 

and solve it. The first step is to initialize the CP_Scheduler’s 

REFERENCE_TIME (abbreviated RT) if it has not already been done, 

and initialize the mrcpCurrentTime variable to zero (line 1-3). 

Recall that RT is required to normalize the Job_CPS’ release time 

and deadline fields as discussed in Section 4.3.1. If RT has already 

been initialized, then the mrcpCurrentTime variable is set to the 

current time minus RT, and the value is converted into seconds 

(lines 4-7). As the name suggests, mrcpCurrentTime is the current 

time value used when solving MRCP. Recall from Section 4.3.1 

that OPL does not support values of type long. 

Table 3. CP-Scheduler algorithm, generateAndSolve(). 

Input: none. Output: none. 

1: if REFERENCE_TIME = -1 then  
2:   REFERENCE_TIME  System.currentTimeMillis() 
3:   mrcpCurrentTime   0 
4: else 
5:   mrcpCurrentTime   System.currentTimeMillis() – 

     REFERENCE_TIME 
6:   Convert mrcpCurrentTime  to seconds. 
7: end if 
8: for each job j in jobsToSchedule do 
9:  call j. normalizeAndConvertTimes (REFERENCE_ 
10:        TIME) 
11:  if mrcpCurrentTime  > j.getReleaseTime() then  

  j.setTempReleaseTime(mrcpCurrentTime  ) 
12: end for 
13: call createNewModelDefinition() 
14: Create a new OPL model and attach the data source 

containing jobsToSchedule and resources. 
15: Generate and solve the OPL model. 
16: call extractSolution()  

 In the next steps (lines 8-12), each job (a Job_CPS object) in 

CP_Scheduler’s jobsToSchedule list has its release time and 

deadline normalized by invoking Job_CPS’ normalizeAnd 

ConvertTimes() method (discussed in Section 4.3.1). In addition, 

each job’s release time is updated to mrcpCurrentTime because a 

job cannot start before mrcpCurrentTime. In line 13, a new OPL 

model definition is created by invoking CP_Scheduler’s 

118



createNewModelDefinition() method, which is discussed in 

Section 4.4.3. After a new model definition has been created, a 

new OPL model is produced (line 14), and then solved (line 15) 

using CPLEX. After a solution is found, it is extracted by 

invoking CP_Scheduler’s extractSolution() (line 16). This 

method retrieves values from MRCP’s decision variables: xtr and 

at (discussed in Section 3), and assigns the values to the Task_CPS 

objects’ assignedResource and scheduledStart fields, 

respectively. In addition, the tasks (Task_CPS objects) that are 

assigned to a particular resource r (a Resource_CPS object) are 

added to r’s scheduledMapTasks or scheduledRedTasks lists 

depending on its task type. 

4.4.3 createNewModelDefinition() 
 Table 4 presents the CP-Scheduler’s createNewModel 

Definition() algorithm. The first step is to initialize the variable 

modelSrc with a string value containing the OPL model’s source 

code, which is obtained from OPLModelSource (discussed in 

Section 4.3.3) The next step is to process all scheduled tasks 

(Task_CPS objects) to check the state of the task’s corresponding 

TaskInProgress (TIP) object (lines 2 to 11). If the task’s TIP 

state is running then the Task_CPS’ isExecuting field is set to 

true, and the CP_Scheduler’s addConstraints() method is 

called (line 11). This method, as the name suggests, adds a new 

constraint to modelSrc that specifies the assigned start time, end 

time, and assigned resource of the task that is currently executing. 

The purpose of the new constraint is to prevent the solver from 

scheduling new tasks on the same resource slot during the same 

time interval. In addition, the task’s isExecuting field is also set, 

which will be passed on to the OPL model (via OPLModelData 

class), to tell the CP solver that enforcing Constraint 2 is not 

required for tasks that are already executing. Conversely, if the 

task’s TIP state is completed then the CP_Scheduler’s remove 

Task() method (discussed in Section 4.4.1) is invoked (line 9). 

The final step (line 13) is to create the new OPL model definition 

object from the updated OPL model source, modelSrc. 

Table 4. CP-Scheduler algorithm, 

createNewModelDefinition(). 

Input: none. Output: none. 

1: modelSrc  OPLModelSource.getSource() 
2: for each resource r  in resources do 
3:   for each task t in r.getAllScheduledTasks() do 
4:    tip  t.getTaskInProgress() 
5:    if tip is currently executing then 
6:    t.setCurrentlyExecuting(true) 
7:    call addConstraints(modelSrc, t, r) 
8:    else if tip is finished executing then 
9:     call removeTask(t) 
10:   end if 
11:   end for 
12: end for 
13: modelDefinition   Create new OPL model definition using 

the updated OPL model source, modelSrc. 

5. PERFORMANCE EVALUATION 
 This section describes the experiments that were conducted to 

evaluate the performance of the CP-Scheduler and EDF-Scheduler 

developed for Hadoop. In addition, a discussion of the 

experimental results and insights into system performance and 

behavior are provided.  

5.1 Experimental Setup 

5.1.1 System 
 The experiments were performed on an Amazon EC2 Hadoop 

cluster comprising one master node, and four slave nodes 

configured to have one map and one reduce slot each. Recall from 

Section 2.2 and Figure 3 the definitions of the master and slave 

nodes. Each node is an Amazon EC2 m3.medium instance. The 

m3.medium instances are fixed performance instances that 

provide a good balance of compute, memory, and network 

resources. Each m3.medium instance is launched with a 2.5GHz 

Intel Xeon E5-2670 v2 (Ivy Bridge) CPU, 3.75 GB of RAM, and 

runs Ubuntu 13.04. The cost of running an m3.medium instance is 

$0.07 per hour. Our experiments were performed on this cluster 

because it allowed us to confirm the functionality of the new 

prototype Hadoop CP-Scheduler by viewing the output of 

JobTracker and each TaskTracker in real-time. In addition, the 

chosen cluster fits within our current experimental budget. For 

future work, the plan is to perform experiments on a cluster with 

more nodes.  

 Initially, our experiments used Amazon’s t2 instances; 

however, it was discovered that t2 instances are susceptible to 

performance degradation over time if the CPU usage is 

continuously high. This is because t2 instances are burstable 

performance instances and do not provide a fixed (consistent) 

performance. The t2 instances continuously receive CPU Credits 

at a fixed rated depending on the instance size. A CPU Credit 

supplies the instance with the performance of a full CPU core for 

one minute. If the instance is idle, it accumulates CPU Credits 

whereas the instance consumes CPU Credits when it is active. As 

a result of this, the m3.medium fixed performance instances are 

used in the experiments. 

5.1.2 Workload 
 A Hadoop WordCount application (as discussed in Section 1) 

with three different input data sizes (i.e. job size) were used in the 

experiments: small: 3 files (~3MB), med: 10 files (~5MB), and 

large: 20 files (~10MB), to investigate the impact of different 

workload sizes on the performance of the system. The files are e-

books (in plain text format) that are obtained from Project 

Gutenberg (www.gutenberg.org). Note that each job size has a 

number of map tasks that corresponds to the number of files it 

has, and one reduce task. For example, the medium workload job 

comprises ten map tasks and one reduce task. In these 

experiments, our goal is to use workloads with real input data, 

which is why e-books from Project Gutenberg were chosen. The 

number of files in each job was selected so that the cluster could 

execute the MapReduce job within a reasonable amount of time 

(small: ~50s, med: ~80s, large: ~100s) when there is no 

contention for resources. The reasonable execution time of these 

jobs results in a reasonable run time when conducting experiments 

with an open stream of job arrivals. The Hadoop/MapReduce 

framework is used with a variety of different data intensive 

applications. These include Big Data applications as well as 

applications processing data with sizes of 10s of megabytes (see 

[19] for example). This is in line with the size of data files we 

have experimented with. Analyzing the performance of the CP-

Scheduler with other workloads characterized by large volumes of 

data forms a direction for future research. 

 A JobSubmitter (which runs on its own m3.medium 

instance) was implemented in Java to submit an open stream of 

WordCount jobs at a specified arrival rate (λ) to the Amazon 

EC2 Hadoop cluster. The arrival of jobs was generated using a 

Poisson process. The earliest start time (sj) of the jobs is equal to 

its arrival time, and the job’s deadline (dj) is calculated as the sum 

of sj and the maximum execution time of the job multiplied by an 

execution time multiplier (em). The purpose of em is to give the job 

slack time, and it is generated using a uniform distribution within 

the interval [1, 5]. These parameters for the jobs are generated in a 

119



similar manner to [5]. Note that the sample execution times of the 

jobs are obtained by performing a dry run—executing the jobs on 

the cluster when there is no resource contention. 

 Four different types of experiments were performed and each 

experiment type was conducted for the CP-Scheduler as well as 

for the EDF-Scheduler. In the first three experiment types, the 

JobSubmitter was configured to submit only a single job type: 

small, medium, or large. In the fourth experiment type, the 

JobSubmitter submits a mix of the three job types with each job 

type having an equal probability of being submitted. Note that the 

JobSubmitter is initialized with a predetermined seed for its 

random number generator so that the same sequence of jobs is 

submitted during the CP-Scheduler experiments and EDF-

Scheduler experiments. Each experiment was run for at least five 

hours so that the system reached steady state. 

5.1.3 Performance Metrics 
 The performance metrics that are considered in each 

experiment to evaluate the effectiveness and performance of the 

schedulers include: 

 Proportion of late jobs (P):  calculated as the ratio of the 

number of late jobs (N) and the number of jobs executed (NE). 

Recall that a job j is considered late if its completion time (Cj) 

is after its deadline (dj). 

 Average job turnaround time (T): calculated as  ∑ (𝐶𝑗 − 𝑠𝑗)𝑗∈𝐽  

divided by NE.  

 Average matchmaking and scheduling time of a job (O): 

calculated as the total time required to perform matchmaking 

and scheduling of jobs during an experiment divided by NE. 

Note that O is a measure of the schedulers’ processing 

overhead. 

5.2 Experimental Results 

5.2.1 Mixed Workload 
 Figure 6 and Figure 7 demonstrate that CP is able to 

effectively handle a complex workload with different types of 

jobs. CP outperforms EDF by a large margin in terms of P (up to 

91%) and T (up to 57%). The CP-Scheduler is able to effectively 

interleave the execution of the tasks of multiple jobs such that 

jobs do not miss their deadlines. The EDF-Scheduler’s poor 

performance in terms of P and T can be attributed to its focus on 

only scheduling a single job at a time (i.e. the job with the earliest 

deadline), and not interleaving the execution of jobs.  

 
Figure 6. Mixed Workload: P. 

 The results in Figure 7 show that CP’s O is larger (changing 

from 590ms to 3.5s as λ increases), compared to EDF’s O which 

remains close to 12ms for all λ. CP’s O is higher and is observed 

to increase with λ because the CP-Scheduler requires generating 

an OPL model that represents MRCP, and solving the OPL model 

using IBM’s CP Optimizer (see Section 4.4). When there are more 

jobs in the OPL model’s input, more time is required to generate 

and solve the OPL model because of the higher number of 

decision variables and constraints that need to be processed by the 

CP Optimizer. On the other hand, EDF’s O tends not to change 

significantly with λ because the EDF-Scheduler selects the job to 

schedule by retrieving the first job in its job queue (i.e. the job 

with the earliest deadline). Although, CP’s O is high, the O/T ratio 

which is an indication of a scheduler’s processing overhead in 

relation to the average job turnaround time, is still relatively low 

in all cases (less than 0.393%). 

  
Figure 7. Mixed Workload: T and O. 

5.2.2 Small Workload 
 The experimental results using the small workload are 

presented in Figure 8 and Figure 9. As shown in Figure 8, CP 

achieves a much lower P compared to EDF. When λ<1/17.5job/s 

it is observed, that CP achieves a P of less than 0.07 which is 

close to the lower bound of zero. At 1/22.5 job/s P is zero for both 

systems; however, at higher arrival rates CP outperforms EDF and 

is observed to have a 100% decrease in P. At λ=1/15 job/s, both 

systems exhibit a high P due to high system load (average 

utilization of resources is 0.92) resulting in a high contention for 

resources. However, CP still has an approximately 50% lower P 

compared to EDF. As discussed, the lower P and T of CP can be 

attributed to MRCP interleaving the execution of jobs to minimize 

the number of late jobs; whereas, EDF simply schedules the job 

with the earliest deadline. 

 
Figure 8. Small Workload: P. 

 
Figure 9. Small Workload: T and O. 

 Figure 9 shows that CP’s T is up to 80% lower than EDF’s T, 

except for when λ=1/22.5 job/s. At the lowest arrival rate, CP has 

a slightly higher (10%) T because of its higher O. When focusing 
on O it is observed that EDF achieves a much lower O compared 

to CP. EDF’s O is approximately 5ms for all λ, whereas CP’s O 

increases with λ, changing from 350ms to 2.3s. As discussed, the 

reason for CP’s higher O is due to the processing overhead of 
having to generate and solve MRCP. In comparison to the EDF-
Scheduler, the CP-Scheduler puts more effort into deciding which 
jobs to map in order to minimize P. The benefits of this are 
captured in the superior performance demonstrated by CP with its 
lower P while still maintaining an O/T ratio of less than 0.6%.  

120



5.2.3 Medium Workload 
 Due to the longer execution times of the jobs resulting in a 

higher load on the system, the λ values used in these experiments 

are lower than those used for the small workload. Similar to the 

results of the small workload, CP achieves up to 100% lower P 

compared to EDF (see Figure 10). In fact, it is observed that CP 

outperforms EDF by a larger margin when using the medium 

workload (88% on average) compared to the small workload 

(78% on average). This shows that the CP-Scheduler is capable of 

handling jobs with a higher number of tasks more effectively. 

 In Figure 11, performance trends that are similar to the small 

workload results are observed: CP has lower T but a higher O 

compared to EDF. As expected, the O for both the schedulers 

increase when compared to the small workload case due to the 

higher number of map tasks in each job. EDF’s O increases from 

5ms (from the small workload) to approximately 10ms in the 

medium workload for all λ. On the other hand, CP’s O changes 

from 1.1s to 1.5s as λ increases for the medium workload, 

compared to 0.3s to 2.3s when the small workload is used. The 

only case where using the small workload (compared to the 

medium workload) resulted in a higher O for CP is when λ is at 

its highest value (1/15 job/s for the small workload and 1/37.5 

job/s for the medium workload). This can be attributed to the 

small workload case having a higher system load (average 

resource utilization, U is 0.92) compared to the medium workload 

case where U is 0.89.  

 
Figure 10. Medium Workload: P. 

 
Figure 11. Medium Workload: T and O. 

 Another difference between the medium and small workload 

results is observed when analyzing the cases where P=0 (i.e. λ

=1/22.5 job/s for the small workload, and λ=1/45 job/s for the 

medium workload). In the medium workload case, CP achieves a 

lower T compared to EDF, but in the small workload case, the 

opposite is true. This can be attributed to the fact that in the small 

workload case, the CP-Scheduler can quickly determine a 

schedule that minimizes P (the primary objective) without 

focusing on T (O=352ms). Conversely, for the medium workload 

case, the CP-Scheduler needs to ensure jobs are executed in a 

more timely manner in order to minimize P (O=1.1s).  

5.2.4 Large Workload 
 The results of the large workload (see Figure 12 and Figure 

13) show CP’s largest performance improvement in terms of P 

and T over EDF. In all cases, CP is able to achieve a P of zero; 

even when λ= 1/70 job/s where the P that EDF achieves is 0.49. 

Furthermore, CP’s performance improvement in terms of T is 

observed to increase from 32% to 100% as λ increases. The cause 

of the poor performance of EDF is due to the larger workload 

comprising jobs with more tasks, which results in longer job 

execution times. Since the EDF-Scheduler does not interleave the 

execution of jobs, scheduling jobs that have more tasks tends to 

lead to more late jobs because multiple jobs with closer deadlines 

can arrive on the system during the execution of the initial job. 

This shows that the EDF-Scheduler is more suited to handle a 

fixed number of jobs (closed workload) and cannot effectively 

handle an open stream of job arrivals. The CP-Scheduler, on the 

other hand, does interleave the execution of jobs and always 

attempts to create a new schedule that minimizes the number of 

late jobs when new jobs arrive on the system. 

 The performance trend of O when using the large workload is 

similar the other workloads. CP’s O (which increases from 529ms 

to 765ms with λ) is higher than EDF’s O (approximately 16ms 

for all λ). It is observed that EDF’s O increases with the size of 

the workload because larger workloads comprise jobs with more 

tasks, and more time is required to map a job with a higher 

number of tasks compared to a job with fewer tasks. This shows 

that EDF’s O has a direct relationship with the number of tasks in 

a job (called the job size). Conversely, CP’s O does not show a 

similar trend when the size of the workload increases. CP’s O 

depends on the job size, but is also influenced by λ. This can be 

seen by comparing the results of the medium and large workloads. 

For all values of λ experimented with, CP’s O is observed to be 

higher for the medium workload in comparison to the large 

workload. This can be attributed to the higher system load. More 

specifically, in the medium workload the average resource 

utilization (U) varies from 0.74 to 0.89 as λ increases from 1/45 

to 1/37.5 jobs/s, compared to the large workload where U changes 

from 0.34 to 0.37 as λ increases from 1/77.5 to 1/70 jobs/s. Note 

that the values of U in the large workload case are lower because 

of the lower values of λ used in the experiments. 

 
Figure 12. Large Workload: P. 

 
Figure 13. Large Workload: T and O. 

6. CONCLUSIONS AND FUTURE WORK 
 The focus of this paper is on engineering resource 

management middleware that can effectively handle matchmaking 

and scheduling an open stream of MapReduce jobs with SLAs 

each of which is characterized by an execution time, an earliest 

start time, and an end-to-end deadline.  The key objective of this 

research is to achieve high system performance while minimizing 

121



resource management overhead. More specifically, a MapReduce 

constraint programming based matchmaking and scheduling 

algorithm (MRCP) is devised and solved using IBM CPLEX. 

Furthermore, a new constraint programming based scheduler for 

Hadoop, which is a popular open source implementation of the 

MapReduce programming model, is devised and implemented. 

The new scheduler for Hadoop, called CP-Scheduler, generates 

and solves an MRCP model to perform matchmaking and 

scheduling of an open stream of MapReduce jobs with deadlines. 

Our experiences and the challenges that we encountered in 

devising the CP-Scheduler and implementing the algorithm in 

Hadoop are described in this paper. A performance evaluation of 

the CP-scheduler is conducted on an Amazon EC2 cluster running 

Hadoop and its performance is compared with that of an EDF-

Scheduler, which is implemented by extending Hadoop’s default 

FIFO scheduler. The experimental results demonstrate the CP-

Scheduler’s effectiveness to map an open stream of MapReduce 

jobs with deadlines in a Hadoop cluster. Some of the key insights 

into system behaviour and performance are summarized:  

 In all the experiments, the CP-Scheduler generated a schedule 

that leads to a lower or equal P compared to the EDF-

Scheduler, and close to the lower bound of zero when the 

system utilization is reasonable. The best performance observed 

is in the large workload experiments where the CP-Scheduler 

generated a P of zero in all cases. In other experiments, the 

percentage improvement of the CP-Scheduler’s P compared to 

the EDF-Scheduler’s P is observed to be as low as 48% and as 

high as 100%.  

 In most cases, the CP-Scheduler generated a schedule with a 

lower T compared to the EDF-Scheduler. The CP-Scheduler is 

outperformed by the EDF-Scheduler by a small margin when 

the system is lightly loaded (i.e. small workload and small 

arrival rate, which can be attributed to the CP-Scheduler’s O 

having a larger impact on T.  

 Although, the CP-Scheduler demonstrates a much superior P 

and T in comparison to EDF-Scheduler, this performance 

improvement is accompanied by an increase in O. However, it 

is still observed that the ratio O/T for the CP-Scheduler is still 

very small in all cases experimented with (less than 0.69%). 

o The CP-Scheduler’s O depends on the number of tasks in a 

job (i.e. job size), as well as the job arrival rate, and thus for 

a given workload type O increases as the job arrival rate 

increases. Conversely, the EDF-Scheduler’s O increases 

with job size, and remains relatively the same as job arrival 

rate increases.  

Overall, the experimental results show that the CP-Scheduler can 

effectively perform matchmaking and scheduling of an open 

stream of MapReduce jobs with deadlines in a Hadoop cluster 

leading to a schedule with a small proportion of late jobs. The 

EDF-Scheduler; however, seems to be more suited to handle a 

fixed (closed) workload because of the fact that it does not 

interleave the execution of jobs, which can lead to very poor 

performance on an open system. This can happen, for example, 

when the execution times of jobs are long and multiple jobs arrive 

on the system with earlier deadlines (see Section 5.2.4). 
 For future research, we plan to perform more extensive 

experiments, which includes experiments that use larger 

workloads and more nodes. Moreover, techniques for estimating 
task execution times and handling errors associated with the 

estimated times warrants further investigation. 

7. ACKNOWLEDGMENTS 
We are grateful to Huawei, Canada and the Government of 

Ontario for supporting this research. 

8. REFERENCES 
[1] The Apache Software Foundation. Hadoop. Available: 

http://hadoop.apache.org. 

[2] Jones, M. 2011. Scheduling in Hadoop. Available: 
http://www.ibm.com/developerworks/library/os-hadoop-
scheduling/ 

[3] Rossi, F., Beek, P., and Walsh, T. 2008. Chapter 4: Constraint 
Programming. Handbook of Knowledge Representation (2008). 
181-211. 

[4] Dean, J. and Ghemawat, S. 2004. MapReduce: Simplified data 
processing on large clusters. Int’l Symp. on Operating System 
Design and Implementation (Dec. 2004). 137–150. 

[5] Verma, A., Cherkasova, L., Kumar, V.S., and Campbell, R.H. 
2012. Deadline-based workload management for MapReduce 
environments: Pieces of the performance puzzle. In Proc. of 
Network Operations and Management Symposium (16-20 April 
2012). 900-905. 

[6] Dong, X., Wang, Y., and Liao, H. 2011. Scheduling Mixed Real-
Time and Non-real-Time Applications in MapReduce 
Environment. Int’l Conf. on Parallel and Distributed Systems (7-
9 Dec. 2011). 9-16. 

[7] Mattess, M., Calheiros, R.N., and Buyya, R. 2013. Scaling 
MapReduce Applications Across Hybrid Clouds to Meet Soft 
Deadlines. Int’l Conf. on Advanced Information Networking and 
Applications (25-28 March 2013). 629-636. 

[8] Hwang, E. and Kim, K. H. 2012. Minimizing Cost of Virtual 
Machines for Deadline-Constrained MapReduce Applications in 
the Cloud. Int’l Conf. on Grid Computing (20-23 Sept. 
2012).130-138.  

[9] Kc, K., and Anyanwu, K. 2010. Scheduling Hadoop Jobs to 
Meet Deadlines. Int’l Conf. on Cloud Computing Technology 
and Science (Nov. 30 2010-Dec. 3 2010). 388-392. 

[10] Lim, N., Majumdar, S., and Ashwood-Smith, P. 
2014.Engineering Resource Management Middleware for 
Optimizing the Performance of Clouds Processing MapReduce 
Jobs with Deadlines. Int’l Conf. on Performance Engineering 
(Mar. 24-26 2014). 161-172.  

[11] IBM. IBM ILOG CPLEX Optimization Studio V12.5 Reference 
Manual. Available: http://pic.dhe.ibm.com/ infocenter/cosinfoc/ 
v12r5/index.jsp 

[12] Lim, N., Majumdar, S., and Ashwood-Smith, P. 2014. A 
Constraint Programming-Based Resource Management 
Technique for Processing MapReduce Jobs with SLAs on 
Clouds. Int’l Conf. on Parallel Processing (Sept 9-12 2014).  

[13] White, T. 2011. Hadoop: The Definitive Guide, 2
nd

 Edition. 
O’Reilly Media, Inc., Sebastopol, CA, USA. 

[14] Apache. Hadoop Wiki. Available: http://wiki.apache.org/ 
hadoop/PoweredBy 

[15] Fadika, Z., Dede, E., Hartog, J., and Govindaraju, M. 2012. 
MARLA: MapReduce for Heterogeneous Clusters. IEEE/ACM 
Int’l Symp. on Cluster, Cloud and Grid Computing (13-16 May 
2012). 49-56. 

[16] Chang, H., Kodialam, M., Kompella, R.R., Lakshman, T.V. Lee, 
M., and Mukherjee, S. 2011. Scheduling in mapreduce like 
systems for fast completion time. IEEE INFOCOM (10-15 April 
2011). 3074-3082. 

[17] Gao, X., Chen, Q., Chen, Y., Sun, Q., Liu, Y., and Li, M. 2012. 
A Dispatching-Rule-Based Task Scheduling Policy for 
MapReduce with Multi-type Jobs in Heterogeneous 
Environments. ChinaGrid Annual Conference (20-23 Sept. 
2012). 17 -24.  

[18] IBM. 2010. Detailed Scheduling in IBM ILOG CPLEX 
Optimization Studio with IBM ILOG CPLEX CP Optimizer. 
White Paper. IBM Corporation (2010). 

[19] Zujie, R., Wan, J., Shi, W., Xu, X., and Zhou, M. 2014. 
Workload Analysis, Implications, and Optimization on a 
Production Hadoop Cluster: A Case Study on Taobao. IEEE 
Transactions Services Computing (vol.7, no.2, April-June 2014). 
307-321. 

122


	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1 Constraint Programming (CP)
	2.2 Apache Hadoop
	2.3 Amazon EC2
	2.4 Related Work

	3. MAPREDUCE CONSTRAINT PROGRAM (MRCP)
	3.1 Implementing and Solving MRCP

	4. HADOOP EDF-SCHEDULER AND CP-SCHEDULER
	4.1 Adding Support for Job Deadlines in Hadoop
	4.2 Hadoop EDF-Scheduler
	4.2.1 Implementing a Custom Hadoop Scheduler
	4.2.2 Hadoop FIFO Scheduler
	4.2.3 Implementation of Hadoop EDF-Scheduler

	4.3 Hadoop CP-Scheduler
	4.3.1 Entity Classes
	4.3.2 Adding Support for Estimated Task Execution Times
	4.3.3 Integration of IBM CPLEX

	4.4 CP-Scheduler Algorithm
	4.4.1 assignTasks()
	4.4.1.1 Reduce Task Stalling Problem

	4.4.2 generateAndSolve()
	4.4.3 createNewModelDefinition()


	5. PERFORMANCE EVALUATION
	5.1 Experimental Setup
	5.1.1 System
	5.1.2 Workload
	5.1.3 Performance Metrics

	5.2 Experimental Results
	5.2.1 Mixed Workload
	5.2.2 Small Workload
	5.2.3 Medium Workload
	5.2.4 Large Workload


	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES



