
Analysis of Memory Sensitive SPEC CPU2006 Integer
Benchmarks for Big Data Benchmarking

Kathlene Hurt and Eugene John
Department of Electrical and Computer Engineering

University of Texas at San Antonio
San Antonio, United States

kathlene.hurt@gmail.com, eugene.john@utsa.edu

ABSTRACT
Benchmarking for Big Data is done at the system level, but with
processors now being designed specifically for Cloud Computing
and Big Data applications, optimization can now be done at the
node level. The purpose of this work is to analyze three SPEC
CPU2006 Integer benchmarks (libquantum, h264ref and hmmer)
that were deemed "highly memory sensitive" in other works to
determine their potential as Big Data processor benchmarks.
Program characteristics like instruction count, instruction mix,
locality, and memory footprint were analyzed. Through this
preliminary analysis, these benchmarks were determined to be
potential Big Data node-level benchmarks, but more analysis will
have to be done in future work.

General Terms
Performance.

Keywords
SPEC, cache, memory, Big Data, benchmarks.

1. INTRODUCTION
Big Data systems introduce many new challenges for system level
benchmarking. Big Data benchmarking generally involves
processing unstructured data using Hadoop or NoSQL across all
the nodes of a system. However, processors are now being
designed specifically for Cloud Computing and Big Data
applications, like IBM's POWER8 processor [9], but Big Data
workloads cannot be used for benchmarking at the node or
processor level. This introduces a need for benchmarks for
processor design that simulate the behavior of a Big Data systems,
and have the characteristics of Big Data workloads [11], like large
memory footprints and memory parallelism [8]. It is possible that
many benchmarks already exist with these characteristics.

In [2], the SPEC CPU2006 benchmark suite, a common
benchmark suite used in both academia and industry, was
analyzed to find the similarities and redundancies between each of
the programs. The work also explore the benchmarks' sensitivity

to certain performance characteristics, changes from previous
releases of the suite, and similarities between input sets. Of the 12
integer SPEC benchmarks, three were determined to be highly
sensitive to microarchitectural memory changes. The purpose of
this work is to discover what program characteristics make these
benchmarks more sensitive to memory changes than the rest of the
SPEC CPU2006 integer benchmark suite, and whether they
exhibit characteristics that would make them good candidates for
Big Data processor benchmarking. The instruction count,
instruction mix, locality, and memory footprint of each program
will be analyzed. The floating point benchmarks will not be
considered. Section 2 will give a brief overview of the behavior of
Big Data workloads. Section 3 will outline the details of how this
memory sensitivity ranking was determined. Section 4 will
describe the three highly sensitive benchmarks (libquantum,
h264ref. and hmmer) in more detail and describe their input sets.
In Section 5, the dynamic instruction count and instruction mix of
each benchmark will be analyzed. In Section 6, the locality
characteristics of each benchmark will be analyzed. In Section 7,
the cache behavior, with a focus on working sets, will be
analyzed. Section 8 will summarize the findings of this work, and
Sections 9 will be the concluding remarks and applications of this
work. Sections 10 and 11 contain acknowledgments and
references, respectively.

2. BIG DATA WORKLOAD BEHAVIOR
To determine whether these three SPEC benchmarks are suitable
for node-level Big Data benchmarking, a description of Big Data
benchmark behavior is necessary. Though this work will not make
any firm conclusions about their relationship, a more in-depth
analysis will be completed in future work.

At the node-level, Big Data workloads have very large memory
footprints, with some common Big Data benchmarks having
memory footprints between 10GB and 100GB [8][10]. They also
have high memory bandwidths, generally between 20 GB/s and 40
GB/s [8]. Some works have considered Big Data benchmarks to
have extremely cache friendly behavior, observing cache hit rates
around 80% in a 1GB cache [8]. This implies that a small
percentage of their memory footprint is re-referenced frequently,
which means these Big Data benchmarks have strong locality.

3. L1 D-CACHE SENSITIVITY RANKING
In [2], SPEC CPU2006 benchmarks were ranked based on their
sensitivity to L1 data cache (D-cache) configuration changes.
Simulations were run on five different machines with various
compiler and instruction set architectures to reduce the bias due to
program characteristics that are micro-architecturally dependant.
The programs were then ranked by the variance of their L1 D-
cache miss rates across the five machines. Programs with a high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PABS'15, February 1, 2015, Austin, TX, USA.
Copyright 2015 ACM 978-1-4503-3338-2/15/02…$15.00.
http://dx.doi.org/10.1145/2694730.2694732

11

variance were considered highly sensitive to L1 D-cache
characteristics, while programs with little to no variance were
considered not sensitive. The microarchitectural details of the five
machines has not been made available due to the researchers'
confidentiality agreement with SPEC. Table 1 summarizes the
resulting classifications of the 43 benchmark and input set
combinations from the work in [2]. The benchmark relevant to this
research have been bolded.

Many of the benchmarks have multiple input sets. For some
benchmarks, like gcc and h264ref, the behavior of the program can
be strongly affected by the input set, so multiple input sets are
included to simulate a wide range of behavior. For other
benchmarks, like libquantum and astar, the input does not strongly
affect the program characteristics, and therefore, only one input is
required. A reportable SPEC result for each benchmark must
include all of its input sets, but researchers often only use one input
set [2].

In Table 1, the various input sets are indicated by a number
following the benchmark name. For example, the hmmer
benchmark has two inputs: hmmer-1 and hmmer-2. Three
benchmarks, for a total of four benchmark/input set combinations,
have high L1 D-cache sensitivity: libquantum, h264ref-2, h264ref-
3, and hmmer-1. Two of the three input sets to h264ref (h264ref-2
and h264ref-3) and one of the two input set of hmmer (hmmer-1)
were considered highly sensitive. The other input set of hmmer
(hmmer-2) has a medium sensitivity. The third input set of
h264ref (h264ref-1) has low sensitivity. The effect of the different
inputs on the program behavior will be further explored in the
following sections.

Table 1. Sensitivity of SPEC CPU2006 Integer Programs to L1
D-Cache Miss-Rate

L1 D-cache
Sensitivty

Benchmarks

High
libquantum, h264ref-2, h264ref-3,
hmmer-1

Medium
hmmer-2, perlbench-2, perlbench-3,
gobmk-3, gcc-7

Low

gcc-8, xalancbmk, astar-2, perlbench-1,
astar, h264ref-1, gobmk, astar-1,
gobmk-4, omnetpp, mcf, gcc-9, gcc-3,
gobmk-2, bzip2-3, bzip2-5, gobmk-1,
gcc-6, gcc-5,bzip2-2, bzip2-6, gcc-2,
gcc-1, bzip2-1, bzip2, gcc-4, bzip2-4,
gobmk-5, sjeng

4. BENCHMARK SYNOPSES
All of the memory sensitive benchmarks are integer benchmarks in
the SPEC CPU2006 benchmark suite. These benchmarks have a
wide range of modern application areas including quantum
computing, Big Data, and biomedical research. They are all written
in C, and each have static instruction counts in the few trillion. The
following subsections describe the application area, general
behavior, and excepted input for each of the benchmarks. For
hmmer and h264ref, the various inputs will be compared.

4.1 libquantum
Libquantum, short for "library quantum", is a C library that
simulates a quantum computer. The quantum computer implements
an algorithm for the factorization of numbers called Shor's
factorization. It is able to model quantum registers, some quantum
gates, and decoherence, which is one of the many obstacles in fully
realizing quantum computers. The program accepts the number to
be factorized as an input, and outputs the factors of the number, or
an error if the factorization was unsuccessful. Unlike h264ref, and
hmmer, libquantum only has one input defined by the SPEC
benchmark suite.

4.2 h264ref
The h264ref benchmark simulates a modern video compression
standard used in Blu-ray Discs and video broadcasting. The
benchmark varies marginally from the original source code, with
only small changes made to ensure fairness across different
machines. The program accepts raw video data in YUV format
and a configuration file to tell the benchmark how to process the
video data.

In the SPEC benchmark suite, h264ref is executed with three
different configuration and video data combinations. The first two
configurations (h264ref-1 and h264ref-2) use the same video data:
a video of 120 frames and a resolution of 176x144 pixels. The
h264ref-1 benchmark uses the basic profile configuration, which
performs good compression with fast encoding, and decoding. The
h264ref-2 benchmark performs a higher quality compression used
in applications where no data can be lost. The third configuration
(h264ref-3) uses a sequence from a video game of 171 frames with
a resolution of 512x320 pixels and with good compression. Using
the same configuration, larger frames result in a larger dynamic
instruction count. The type of configuration also affects the
dynamic instruction count. Higher quality compressions, which
result in less data loss during decompression, have a higher
dynamic instruction count [3]. Since h264ref's input sets had
different D-cache memory sensitivity rankings, these programs
will be compared to each other in the rest of this work to determine
what makes h264ref-2 and h264ref-3 more sensitive.

4.3 hmmer
Short for "Profile Hidden Markov Model", hmmer is a program
that statistically models multiple sequence alignments, which are
used to search for patterns in DNA sequences in protein sequence
analysis. Essentially, this benchmark searches a database for
patterns, which has applications in many fields. hmmer can accept
a workload and database as inputs, or a workload and parameters
to randomly generate a database.

In the SPEC benchmark suite, hmmer is executed with each type of
input set. hmmer-1 and hmmer-2 search for different sequence
patterns, and obtain the database to search in different ways.
hmmer-1 uses a database and sequence pattern to search for.
hmmer-2 randomly generates a database, and searches for a less
complex sequence pattern than hmmer-1. hmmer-1 also searches
for a more complex sequence pattern than hmmer-2. Only the
length and number of sequences being searched significantly affect
the program behavior [3]. The dynamic instruction count increases
as the length and number of sequences increases, which means that
hmmer-1 has a higher dynamic instruction count than hmmer-2. As
with h264ref, since hmmer's two input sets were ranked differently,
their program behavior will be compared to investigate D-cache
memory sensitivity.

12

5. DYNAMIC INSTRUCTION COUNT AND
INSTRUCTION MIX
Figure 1 shows the dynamic instruction count and instruction mix
of the SPEC CPU2006 integer benchmarks. The dynamic
instruction count is on the y-axis and the instruction mix
breakdown can be observed within each bar. The benchmarks are
in descending order based on the number of load instructions.
These characteristics were collected on a system using the Intel
C/C++ compiler [2].

Libquantum, h264ref, and hmmer have the three highest dynamic
instruction counts out of all of the integer benchmarks. Each of
the benchmarks have over three trillion dynamic instructions,
while the benchmark with the next highest count, bzip2, has only
about 2.5 trillion dynamic instructions. This indicates that these
benchmarks are either manipulating large amounts of data or
executing very complex algorithms. Manipulating large amounts
of data requires room in the D-cache for all of the data, and
executing complex algorithms requires room in the D-cache for
intermediate values to be stored. This assumption is consistent
with the behavior of the three benchmarks. Libquantum performs
a complex algorithm using quantum gate simulation. The h264ref
benchmark accesses, and manipulates very large matrices of data.
Lastly, hmmer accesses a large database, and performs complex
databases searches.

Libquantum, h264ref, and hmmer also have the highest number of
dynamic load instructions of all of the integer benchmarks. All
three benchmarks have over 1.2 trillion load instructions, while
the other nine integer benchmarks have, on average, about half a
trillion loads. This further supports that these benchmarks access
and manipulate a large amount of data, which could contributes to
their L1 D-cache sensitivity. However, bzip2 has about 900
billion load instructions, only 300 billion less than libquantum,
but was classified as having a low memory sensitivity. The high
load counts of the three memory sensitive benchmarks can be
misleading, because a benchmark with a large number of load
instructions does not necessarily have a large memory footprint.
The memory footprint of a benchmark is based on how many
distinct memory accesses occur. For example, if a load instruction
is repeated, the load count will increase, but the memory footprint
is unchanged. A large memory footprint will put pressure on the
D-cache, causing conflict and capacity cache misses, resulting in
poor D-cache behavior. The memory footprints of these
benchmarks will be further explored in Section 6.

6. LOCALITY CHARACTERISTICS
According to [2], all three of the memory sensitive benchmarks
have high locality, meaning that a majority of the dynamic
instructions are spent in a few of subroutines. A summary of their
findings can be found in Appendix I. The table shows what
percentage of the dynamic instruction count is spent in its
"hottest", or most frequently called, subroutine, and its 5, 10, and
20 hottest subroutines. Programs with high locality tend to have
better performance, because a cache can exploit the programs
temporal locality, but there are other microarchitectural
characteristics to take into account. For example, if a loop is too
large to fit into the I-cache, or includes a larger number of data
accesses than the D-cache can handle, then caching will not
increase performance. Instruction cache (I-cache) size, D-cache
size, memory latencies, replacement algorithms and the presence
of prefetching are all other factors that can effect memory

performance. Since the details of the five machines used to
determine the SPEC benchmarks' memory sensitivity ranking are
not available, it will be challenging to conclude the effect that
locality has on the L1 D-cache miss rate of these benchmarks.

Figure 1. Dynamic Instruction Count and Instruction Mix of
SPEC CPU2006 Integer Benchmarks

The hmmer benchmark has remarkable locality, with almost all
(>95%) of its dynamic instructions belonging to a single
subroutine. Libquantum also has good locality, with 98.38% of its
dynamic instructions spent in the top five subroutines. The
h264ref benchmark has the worst locality of the three
benchmarks, requiring 20 subroutines to account for at least 90%
of its dynamic instructions. The h264ref-2 benchmark has the
worst locality of the three h264ref benchmarks, which is expected,
since it simulates a higher quality compression. In comparison to
the other SPEC CPU2006 integer benchmarks, all three
benchmarks have above average locality [2]. While high locality
can decrease I-cache misses [5], memory access patterns are more
complex. However, it is likely that higher locality could lead to a
smaller memory footprint, since some loads are likely to be
repeated, thus decreasing memory sensitivity. Decoding data
memory access patterns is a research area of great interest
[2][5][6].

Though the static length of these hot subroutines is included in
Appendix I, it is not helpful in drawing conclusions about the D-
cache behavior. The length of each loop would only affect the I-
cache performance, not the D-cache performance. However, since
these three benchmarks have a significantly large amount of loads
compared to other integer benchmarks, these hot subroutines most
likely contain a large amount of D-cache accesses. To make a firm
conclusions about this though, more analysis would need to be
done to confirm a high number of D-cache accesses in each loop.

7. CACHE BEHAVIOR
To investigate the memory footprint of the three memory sensitive
benchmarks, simulation were run to analyze the effect of D-cache
size on D-cache miss rate. This experiment can give some insight
into the memory footprint of the benchmarks. This data was
collected using SimpleScalar 3.0, with all simulations were run by
fast forwarding 100 billion instructions and then collecting
performance metrics for an additional 2 million instructions.

13

Table 2 summarizes the SimpleScalar configuration used for the
simulations. The I-cache was increased to a size sufficient to not
hinder the performance of the D-cache. Figures 2, 3 and 4 show
the results of these simulations for libquantum, hmmer, and
h264ref, respectively. The y-axis is the D-cache miss rate and the
x-axis is the D-cache size in kilobytes.

What is interesting to note in these figures is when a steep
decrease occurs from one data point to the next. Though the trends
can indicate whether a program has cache friendly behavior, a
steep drop in cache miss rate can give insight into the number and
size of a program's working sets. A working set is the memory
that a program accesses. Each large drop in cache miss rate
implies that one of the working sets can now fit into the cache [7],
thus reducing conflict misses. A program with a high locality
should see a few, steep drops in D-cache miss rate, as the working
set size associated with each function is accommodated.

Libquantum's behavior is very interesting, because it does not
show an increase in cache performance as the cache size is
increased, but instead, only shows one steep decrease in the D-
cache miss rate when the D-cache is 64B (annotated as 1/16 in
Figure 2). In other works, libquantum has been found to have a
very large working set, and require a 32MB cache to reduce the
miss rate to nearly zero [7]. This is why this data does not show
its miss rate approaching zero like with h264ref and hmmer.
Further simulations with larger D-cache sizes would need to be
run for a complete understanding of libquantum's working sets.
However, from the data that is available, and considering what is
known about libquantum's locality, it is likely that libquantum's
most common functions have a high number of D-cache accesses.
Libquantum spend more than 98% of its dynamic instructions in 5
functions, and about 65% of its dynamic instructions in one single
function. Increasing the cache size incrementally results in a 50%
reduction in the cache miss rate, which implies that one of
libquantum's working sets can now fit into the cache. It is likely
that this working set is from one of libquantum's most frequently
references functions. This behavior could have contributed to
libquantum's high memory sensitivity ranking, because different
sized caches could result in very different performance. Though
more data is needed to confirm this, libquantum's memory
sensitivity is likely caused by having a few, very large working
sets.

Table 2. SimpleScalar Configuration for Cache Behavior
Simulations

L1 cache (Data/Instruction) branch predictor

Size 4/16KB
Line size 32
Associativity 1/4
Repl. Policy LRU
Latency 1 cycle

2K-entry bimodal with
512 entry BTB
(direct-mapped)

L2 cache (Data/Instruction) micro-architecture

Size varied/64KB
Line size 32
Associativity 1/8
Repl. Policy LRU
Latency 6 cycles

fetch/issue/decode 4
functional units 4

memory

Latency 18 cycles

Figure 2. D-Cache Miss Rate for Varying D-Cache Size
for Libquantum Benchmark

Figure 3. D-Cache Miss Rate for Varying D-Cache Size
for h264ref Benchmark

Figure 4. D-Cache Miss Rate for Varying D-Cache Size
for Hmmer Benchmark

14

Since the h264ref and hmmer benchmarks have multiple input
sets with different memory sensitivities, comparing their behavior
across input sets can provide insight into what makes a benchmark
memory sensitive. For h264ref, h264ref-1 had a low sensitivity,
while h264ref-2 and h264ref-3 have a high sensitivity. In Figure
3, h264ref-3 has slightly different behavior, while h264ref-1 and
h264ref-2 are very similar, though h264ref-2 has a slightly larger
working set size. All three input sets share a steep drop at 128B
(1/8), but h264ref-3 requires a larger D-cache to achieve a miss
rate of less than 0.1. This is consistent with what we know of
h264ref-3's input set characteristics. The h264ref-3 benchmark's
input is video data that has a higher resolution and more frames
than h264ref-1 and h264ref-2, which means that its working set is
larger. This could explain h264ref-3's high memory sensitivity,
but what about h264ref-2? The different memory behavior could
be attributed to the slight differences in locality and working set
size. The h264ref-2 benchmark has the worst locality of the three,
and a larger working set size than h264ref-2 would which make
its memory footprint larger than h264ref-1 and closer to the
memory behavior of h264ref-3. Therefore, h264ref-2's memory
sensitivity can be attributed to its poor locality, therefore
increasing its overall memory footprint. Since h264ref-2 simulates
a higher quality compression than h264ref's other two input sets,
this result makes sense.

The hmmer benchmark has two inputs: hmmer-1 with a high
memory sensitivity and hmmer-2 with a medium memory
sensitivity. In Figure 4, hmmer-1 has fairly friendly cache
memory behavior, with some steep drops, and hmmer-2 exhibits
similar behavior, but with a significant steep drop in miss rate at
128B (1/8). The hmmer benchmark has incredible locality and
spends most of its time in one function. That would imply that it
has a smaller memory footprint than the benchmarks with lower
localities. This assumes though that each iteration of the function
accesses the same data each time, which may not be true. Take for
example, a function that accesses rows for a matrix. While each
loop may look the same, the data that it accessing will be different
every iteration. This may be the case with hmmer. The hmmer
benchmark looks up patterns in a database, so each iteration of its
main function is probably accessing a different entries in the
database. Unlike with h264ref-2, whose poor locality was a
contributing factor of its memory sensitivity, the opposite is likely
true for hmmer. If every iteration of its loop is different, its
memory footprint would be quite large. As for the difference
between hmmer-1 and hmmer-2, hmmer-1's input data is, which
increases its dynamic instruction count. If it's true that each
iteration of its main loop contributes to its memory sensitivity,
then hmmer-1 would have a larger memory footprint than hmmer-
2, and thus, be more sensitive to memory changes.

8. SUMMARY
Libquantum, h264ref-2, h264ref-3 and hmmer-1 were deemed to
have a high L1 D-cache memory sensitivity [2]. For h264ref and
hmmer, their other inputs, h264ref-1 and hmmer-2, had a low and
medium sensitivity, respectively. Having multiple input sets with
different memory sensitivities made it easier to draw conclusions
about their behavior, since the input sets could be compared.
Libquantum, h263ref and hmmer have the highest dynamic
instruction count, as well as the highest total number of load
instructions of all of the SPEC CPU2006 integer benchmarks.
They had varying localities and memory footprints.

Libquantum's high memory sensitivity ranking can be attributed to
having a few, very large working sets. This would explain why a
large variance in L1 D-cache behavior was observed across the
five machines, resulting in libquanutm receiving a high memory
sensitivity ranking. Even if the memory systems in these machines
were very similar in size, as shown in Figure 2, a small increase in
cache size can result in a dramatic decrease in cache miss rate.
From what is known of libquantum's locality, it is likely that a
majority of D-cache accesses were made in its most frequently re-
referenced functions.

Like libquantum, the h264ref benchmark's h264ref-2 and h264ref-
3 also have a high memory sensitivity, because of their large
memory footprint. The h264ref-2 benchmark has a large memory
footprint, because it simulates a very high quality compression,
which reduces the amount of data lost during compression. This
not only increases the memory footprint, but decreases the
locality, which also contributes even more to the memory
footprint. The h264ref-3 benchmarks has a high memory footprint
simply because it modifies the largest amount of data; it video
data input has more frames and a higher resolution than the other
two h264ref benchmarks.

The hmmer benchmark can also attribute its high memory
sensitivity ranking to a large memory footprint. The hmmer
programs had the best locality, with 99% of hmmer-1's dynamic
instruction being spent in one function. For hmmer-2, it spent
96% of its dynamic instructions in one function. Based on what is
known of hmmer's behavior of accessing a large database
repeatedly, it was concluded that its largest function must access
different data during every iteration, thus contributing to its
overall memory footprint. Since hmmer-1 has a more complex
input than hmmer-2, it has a higher memory sensitivity.

9. CONCLUSION AND FUTURE WORK
In this work, the L1 D-cache sensitivities of three SPEC CPU2006
benchmarks, libquantum, h264ref, and hmmer, were evaluated, as
they are possible Big Data processor benchmarks. The memory
footprint of each benchmark were deemed to be the source of their
high sensitivity to memory changes, but for different reasons.
Libquantum has a few, large working sets, while h264ref and
hmmer simply access a lot of unique data. While h264ref's poor
locality increased its memory footprint, hmmer's exceptionally
high locality contributed to it.

Since all three benchmarks have large memory footprints, they
show potential as Big Data benchmarks. However, libquantum
shows the most promise. Typical Big Data benchmarks have
memory footprints greater than 10GB and working sets around
1GB [8]. Though the memory footprint was not explicitly
determined in this work, libquantum's working set size is the only
benchmark of the three to be larger than 64KB. In future work, the
memory footprint of these benchmarks will be determined. The
strong locality of libquantum, h264ref, and hmmer also makes
them good candidates for Big Data benchmarking.

Though most optimization is currently done at the system-level,
cores are now being designed specifically for Cloud Computing
and Big Data applications [9][11], so node-level optimization is in
the near future. In future work, the role of these memory sensitive
benchmarks in designing processors for Big Data applications will
be further explored. More work needs to be done to understand
their memory access patterns, parallelism, and memory footprint.

15

10. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation under award number CNS-1063106.

11. REFERENCES
[1] "SPEC CPU2006." Internet: http://www.spec.org/cpu2006/,

Sept.7, 2011 [April 8, 2014].

[2] A. Phansalkar et al., "Analysis of Redundancy and
Application Balance in the SPEC CPU2006 Benchmark
Suite," in ISCA, 2007.

[3] V. Escuder and R. Rico, "Reduced input data sets selection for
SPEC CPUnt2006," Universidad de Alcala, Spain, Rep. TR-
HPC-02-2009, April 2009.

[4] K. Hoste. SPEC CPU2006 command lines [Online].
Available:
http://boegel.kejo.be/ELIS/spec_cpu2006/spec_cpu2006_com
mand_lines.html

[5] G. Thompson, B. Nelson and J. Flanangan, "Transaction
Processing Workloads - A Comparison to the SPEC
Benchmarks Using Memory Performance Studies, " in
MASCOTS, 1996.

[6] Y. Chen and Y. Liu, "Dual-addressing memory architecture
for two-dimensional memory access patterns, " in DATE,
2013.

[7] A. Jaleel. "Memory Characterization of Workloads Using
Instrumentation-Driven Simulation, " to be published in 2015.
[Online]. Available:
http://http://www.glue.umd.edu/~ajaleel/workload/

[8] M. Dimitrov et al., "Memory System Characterization of Big
Data Workloads, "in Big Data, 2013

[9] OVH Launches Cloud Service Based on IBM POWER8
Processor [Online]. Available: http://www.hpcwire.com/off-
the-wire/ovh-launches-cloud-service-based-ibm-power8-
processor/

[10] F. Liang et al., "Performance Characterization of Hadoop and
Data MPI Based on Amdahl's Second Law, " in ICNAS,
2014.

[11] W. Buros et al. "Understanding Systems and Architecture for
Big Data, " IBM Research Report, 2013.

[12] W. Xiong, "A Characterization of Big Data Benchmarks, " in
ICBD, 2013.

Appendix 1. Subroutine Profile Summary of Memory Sensitive SPEC CPU2006
Cumulative Hottest Subroutine 5 Hot Subroutines 10 Hot Subroutines 20 Hot Subroutines

Benchmark
Percentage
Dynamic

Static
Count

Percentage
Dynamic

Static
Count

Percentage
Dynamic

Static
Count

Percentage
Dynamic

Static
Count

hmmer-1 99.10% 11080 99.76% 143630 99.91% 385550 99.96% 993103
hmmer-2 96.79% 11080 99.76% 220363 99.99% 458965 100.00% 711948
libquantum 65.18% 901 98.38% 12897 100.00% 39182 100.00% 89909
h264ref-1 41.21% 63541 75.28% 360800 90.46% 733452 96.06% 1281878
h264ref-2 35.20% 63541 65.66% 263448 81.81% 632195 91.08% 1103854
h264ref-3 36.20% 63541 71.16% 263448 83.30% 638070 92.28% 1162685

16

