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ABSTRACT 
Benchmarking for Big Data is done at the system level, but with 
processors now being designed specifically for Cloud Computing 
and Big Data applications, optimization can now be done at the 
node level. The purpose of this work is to analyze three SPEC 
CPU2006 Integer benchmarks (libquantum, h264ref and hmmer) 
that were deemed "highly memory sensitive" in other works to 
determine their potential as Big Data processor benchmarks. 
Program characteristics like instruction count, instruction mix, 
locality, and memory footprint were analyzed. Through this 
preliminary analysis, these benchmarks were determined to be 
potential Big Data node-level benchmarks, but more analysis will 
have to be done in future work.   

General Terms 
Performance. 
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1. INTRODUCTION 
Big Data systems introduce many new challenges for system level 
benchmarking. Big Data benchmarking generally involves 
processing unstructured data using Hadoop or NoSQL across all 
the nodes of a system. However, processors are now being 
designed specifically for Cloud Computing and Big Data 
applications, like IBM's POWER8 processor [9], but Big Data 
workloads cannot be used for benchmarking at the node or 
processor level. This introduces a need for benchmarks for 
processor design that simulate the behavior of a Big Data systems, 
and have the characteristics of Big Data workloads [11], like large 
memory footprints and memory parallelism [8]. It is possible that 
many benchmarks already exist with these characteristics.    

In [2], the SPEC CPU2006 benchmark suite, a common 
benchmark suite used in both academia and industry, was 
analyzed to find the similarities and redundancies between each of 
the programs. The work also explore the benchmarks' sensitivity 

to certain performance characteristics, changes from previous 
releases of the suite, and similarities between input sets. Of the 12 
integer SPEC benchmarks, three were determined to be highly 
sensitive to microarchitectural memory changes. The purpose of 
this work is to discover what program characteristics make these 
benchmarks more sensitive to memory changes than the rest of the 
SPEC CPU2006 integer benchmark suite, and whether they 
exhibit characteristics that would make them good candidates for 
Big Data processor benchmarking. The instruction count, 
instruction mix, locality, and memory footprint of each program 
will be analyzed. The floating point benchmarks will not be 
considered. Section 2 will give a brief overview of the behavior of 
Big Data workloads. Section 3 will outline the details of how this 
memory sensitivity ranking was determined. Section 4 will 
describe the three highly sensitive benchmarks (libquantum, 
h264ref. and hmmer) in more detail and describe their input sets. 
In Section 5, the dynamic instruction count and instruction mix  of 
each benchmark will be analyzed. In Section 6, the locality 
characteristics of each benchmark will be analyzed. In Section 7, 
the cache behavior, with a focus on working sets, will be 
analyzed. Section 8 will summarize the findings of this work, and 
Sections 9 will be the concluding remarks and applications of this 
work. Sections 10 and 11 contain acknowledgments and 
references, respectively.  

2. BIG DATA WORKLOAD BEHAVIOR 
To determine whether these three SPEC benchmarks are suitable 
for node-level Big Data benchmarking, a description of Big Data 
benchmark behavior is necessary. Though this work will not make 
any firm conclusions about their relationship, a more in-depth 
analysis will be completed in future work.   

At the node-level, Big Data workloads have very large memory 
footprints, with some common Big Data benchmarks having 
memory footprints between 10GB and 100GB [8][10]. They also 
have high memory bandwidths, generally between 20 GB/s and 40 
GB/s [8]. Some works have considered Big Data benchmarks to 
have extremely cache friendly behavior, observing cache hit rates 
around 80% in a 1GB cache [8]. This implies that a small 
percentage of their memory footprint is re-referenced frequently, 
which means these Big Data benchmarks have strong locality.      

3. L1 D-CACHE SENSITIVITY RANKING 
In [2], SPEC CPU2006 benchmarks were ranked based on their 
sensitivity to L1 data cache (D-cache) configuration changes. 
Simulations were run on five different machines with various 
compiler and instruction set architectures to reduce the bias due to  
program characteristics that are micro-architecturally dependant. 
The programs were then ranked by the variance of their L1 D-
cache miss rates across the five machines. Programs with a high 
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variance were considered highly sensitive to L1 D-cache 
characteristics, while programs with little to no variance were 
considered not sensitive. The microarchitectural details of the five 
machines has not been made available due to the researchers' 
confidentiality agreement with SPEC. Table 1 summarizes the 
resulting classifications of the 43 benchmark and input set 
combinations from the work in [2]. The benchmark relevant to this 
research have been bolded.  

Many of the benchmarks have multiple input sets. For some 
benchmarks, like gcc and h264ref, the behavior of the program can 
be strongly affected by the input set, so multiple input sets are 
included to simulate a wide range of behavior. For other 
benchmarks, like libquantum and astar, the input does not strongly 
affect the program characteristics, and therefore, only one input is 
required. A reportable SPEC result for each benchmark must 
include all of its input sets, but researchers often only use one input 
set [2]. 

In Table 1, the various input sets are indicated by a number 
following the benchmark name. For example, the hmmer 
benchmark has two inputs: hmmer-1 and hmmer-2. Three 
benchmarks, for a total of four benchmark/input set combinations, 
have high L1 D-cache sensitivity: libquantum, h264ref-2, h264ref-
3, and hmmer-1. Two of the three input sets to h264ref (h264ref-2 
and h264ref-3) and one of the two input set of hmmer (hmmer-1) 
were considered highly sensitive. The other input set of hmmer 
(hmmer-2) has a medium sensitivity. The third input set of 
h264ref (h264ref-1) has low sensitivity. The effect of the different 
inputs on the program behavior will be further explored in the 
following sections. 

Table 1. Sensitivity of SPEC CPU2006 Integer Programs to L1 
D-Cache Miss-Rate 

L1 D-cache 
Sensitivty 

Benchmarks 

High 
libquantum, h264ref-2, h264ref-3, 
hmmer-1 

Medium 
hmmer-2, perlbench-2, perlbench-3, 
gobmk-3, gcc-7 

Low 

gcc-8, xalancbmk, astar-2, perlbench-1, 
astar, h264ref-1, gobmk, astar-1, 
gobmk-4, omnetpp, mcf, gcc-9, gcc-3, 
gobmk-2, bzip2-3, bzip2-5, gobmk-1, 
gcc-6, gcc-5,bzip2-2, bzip2-6, gcc-2, 
gcc-1, bzip2-1, bzip2, gcc-4, bzip2-4, 
gobmk-5, sjeng 

 

4. BENCHMARK SYNOPSES 
All of the memory sensitive benchmarks are integer benchmarks in 
the SPEC CPU2006 benchmark suite. These benchmarks have a 
wide range of modern application areas including quantum 
computing, Big Data, and biomedical research. They are all written 
in C, and each have static instruction counts in the few trillion. The 
following subsections describe the application area, general 
behavior, and excepted input for each of the benchmarks. For 
hmmer and h264ref, the various inputs will be compared.   

4.1 libquantum  
Libquantum, short for "library quantum", is a C library that 
simulates a quantum computer. The quantum computer implements 
an algorithm for the factorization of numbers called Shor's 
factorization. It is able to model quantum registers, some quantum 
gates, and decoherence, which is one of the many obstacles in fully 
realizing quantum computers. The program accepts the number to 
be factorized as an input, and outputs the factors of the number, or 
an error if the factorization was unsuccessful. Unlike h264ref, and 
hmmer, libquantum only has one input defined by the SPEC 
benchmark suite.    

4.2 h264ref 
The h264ref benchmark simulates a modern video compression 
standard used in Blu-ray Discs and video broadcasting. The 
benchmark varies marginally from the original source code, with 
only small changes made to ensure fairness across different 
machines. The program accepts  raw video data in YUV format 
and a configuration file to tell the benchmark how to process the 
video data.  

In the SPEC benchmark suite, h264ref is executed with three 
different configuration and video data combinations. The first two 
configurations (h264ref-1 and h264ref-2) use the same video data: 
a video of 120 frames and a resolution of 176x144 pixels. The 
h264ref-1 benchmark uses the basic profile configuration, which 
performs good compression with fast encoding, and decoding. The 
h264ref-2 benchmark performs a higher quality compression used 
in applications where no data can be lost.  The third configuration 
(h264ref-3) uses a sequence from a video game of 171 frames with 
a resolution of 512x320 pixels and with good compression. Using 
the same configuration, larger frames result in a larger dynamic 
instruction count. The type of configuration also affects the 
dynamic instruction count. Higher quality compressions, which 
result in less data loss during decompression, have a higher 
dynamic instruction count [3]. Since h264ref's input sets had 
different D-cache memory sensitivity rankings, these programs 
will be compared to each other in the rest of this work to determine 
what makes h264ref-2 and h264ref-3 more sensitive.   

4.3 hmmer 
Short for "Profile Hidden Markov Model", hmmer is a  program 
that statistically models multiple sequence alignments, which are 
used to search for patterns in DNA sequences in protein sequence 
analysis. Essentially, this benchmark searches a database for 
patterns, which has applications in many fields. hmmer can accept 
a workload and database as inputs, or a workload and parameters 
to randomly generate a database.  

In the SPEC benchmark suite, hmmer is executed with each type of 
input set. hmmer-1 and hmmer-2 search for different sequence 
patterns, and obtain the database to search in different ways. 
hmmer-1 uses a database and sequence pattern to search for. 
hmmer-2 randomly generates a database, and searches for a less 
complex sequence pattern than hmmer-1. hmmer-1 also searches 
for a more complex sequence pattern than hmmer-2. Only the 
length and number of sequences being searched significantly affect 
the program behavior [3]. The dynamic instruction count increases 
as the length and number of sequences increases, which means that 
hmmer-1 has a higher dynamic instruction count than hmmer-2. As 
with h264ref, since hmmer's two input sets were ranked differently, 
their program behavior will be compared to investigate D-cache 
memory sensitivity.   
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5. DYNAMIC INSTRUCTION COUNT AND 
INSTRUCTION MIX  
Figure 1 shows the dynamic instruction count and instruction mix 
of the SPEC CPU2006 integer benchmarks. The dynamic 
instruction count is on the y-axis and the instruction mix 
breakdown can be observed within each bar. The benchmarks are 
in descending order based on the number of load instructions. 
These characteristics were collected on a system using the Intel 
C/C++ compiler [2].  

Libquantum, h264ref, and hmmer have the three highest dynamic 
instruction counts out of all of the integer benchmarks. Each of 
the benchmarks have over three trillion dynamic instructions, 
while the benchmark with the next highest count, bzip2, has only 
about 2.5 trillion dynamic instructions. This indicates that these 
benchmarks are either manipulating large amounts of data or 
executing very complex algorithms. Manipulating large amounts 
of data requires room in the D-cache for all of the data, and 
executing complex algorithms requires room in the D-cache for 
intermediate values to be stored. This assumption is consistent 
with the behavior of the three benchmarks. Libquantum performs 
a complex algorithm using quantum gate simulation. The h264ref 
benchmark accesses, and manipulates very large matrices of data. 
Lastly, hmmer accesses a large database, and performs complex 
databases searches.       

Libquantum, h264ref, and hmmer also have the highest number of 
dynamic load instructions of all of the integer benchmarks. All 
three benchmarks have over 1.2 trillion load instructions, while 
the other nine integer benchmarks have, on average, about half a 
trillion loads. This further supports that these benchmarks access 
and manipulate a large amount of data, which could contributes to 
their L1 D-cache sensitivity. However, bzip2 has about 900 
billion load instructions,  only 300 billion less than libquantum, 
but was classified as having a low memory sensitivity. The high 
load counts of the three memory sensitive benchmarks can be 
misleading, because a benchmark with a large number of load 
instructions does not necessarily have a large memory footprint. 
The memory footprint of a benchmark is based on how many 
distinct memory accesses occur. For example, if a load instruction 
is repeated, the load count will increase, but the memory footprint 
is unchanged. A large memory footprint will put pressure on the 
D-cache, causing conflict and capacity cache misses, resulting in 
poor D-cache behavior. The memory footprints of these 
benchmarks  will be further explored in Section 6. 

6. LOCALITY CHARACTERISTICS  
According to [2], all three of the memory sensitive benchmarks 
have high locality, meaning that a majority of the dynamic 
instructions are spent in a few of subroutines. A summary of their 
findings can be found in Appendix I. The table shows what 
percentage of the dynamic instruction count is spent in its 
"hottest", or most frequently called, subroutine, and its 5, 10, and 
20 hottest subroutines. Programs with high locality tend to have 
better performance, because a cache can exploit the programs 
temporal locality, but there are other microarchitectural 
characteristics to take into account. For example, if a loop is too 
large to fit into the I-cache, or includes a larger number of data 
accesses than the D-cache can handle, then caching will not 
increase performance. Instruction cache (I-cache) size, D-cache 
size, memory latencies, replacement algorithms and the presence 
of prefetching are all other factors that can effect memory 

performance. Since the details of the five machines used to 
determine the SPEC benchmarks' memory sensitivity ranking are 
not available, it will be challenging to conclude the effect that 
locality has on the L1 D-cache miss rate of these benchmarks.  

 
Figure 1. Dynamic Instruction Count and Instruction Mix of 
SPEC CPU2006 Integer Benchmarks 

The hmmer benchmark has remarkable locality, with almost all 
(>95%) of its dynamic instructions belonging to a single 
subroutine. Libquantum also has good locality, with 98.38% of its 
dynamic instructions spent in the top five subroutines. The 
h264ref benchmark has the worst locality of the three 
benchmarks, requiring 20 subroutines to account for at least 90% 
of its dynamic instructions. The h264ref-2 benchmark has the 
worst locality of the three h264ref benchmarks, which is expected, 
since it simulates a higher quality compression. In comparison to 
the other SPEC CPU2006 integer benchmarks, all three 
benchmarks have above average locality [2]. While high locality 
can decrease I-cache misses [5], memory access patterns are more 
complex. However, it is likely that higher locality could lead to a 
smaller memory footprint, since some loads are likely to be 
repeated, thus decreasing memory sensitivity. Decoding data 
memory access patterns is a research area of great interest 
[2][5][6].  

Though the static length of these hot subroutines is included in 
Appendix I, it is not helpful in drawing conclusions about the D-
cache behavior. The length of each loop would only affect the I-
cache performance, not the D-cache performance. However, since 
these three benchmarks have a significantly large amount of loads 
compared to other integer benchmarks, these hot subroutines most 
likely contain a large amount of D-cache accesses. To make a firm 
conclusions about this though, more analysis would need to be 
done to confirm a high number of D-cache accesses in each loop.  

7. CACHE BEHAVIOR 
To investigate the memory footprint of the three memory sensitive 
benchmarks, simulation were run to analyze the effect of D-cache 
size on D-cache miss rate. This experiment can give some insight 
into the memory footprint of the benchmarks. This data was 
collected using SimpleScalar 3.0, with all simulations were run by 
fast forwarding 100 billion instructions and then collecting 
performance metrics for an additional 2 million instructions. 
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Table 2 summarizes the SimpleScalar configuration used for the 
simulations. The I-cache was increased to a size sufficient to not 
hinder the performance of the D-cache. Figures 2, 3 and 4 show 
the results of these simulations for libquantum, hmmer, and 
h264ref, respectively. The y-axis is the D-cache miss rate and the 
x-axis is the D-cache size in kilobytes.  

What is interesting to note in these figures is when a steep 
decrease occurs from one data point to the next. Though the trends 
can indicate whether a program has cache friendly behavior, a 
steep drop in cache miss rate can give insight into the number and 
size of a program's working sets. A working set is the memory 
that a program accesses. Each large drop in cache miss rate 
implies that one of the working sets can now fit into the cache [7], 
thus reducing conflict misses. A program with a high locality 
should see a few, steep drops in D-cache miss rate, as the working 
set size associated with each function is accommodated.     

Libquantum's behavior is very interesting, because it does not 
show an increase in cache performance as the cache size is 
increased, but instead, only shows one steep decrease in the D-
cache miss rate when the D-cache is 64B (annotated as 1/16 in 
Figure 2). In other works, libquantum has been found to have a 
very large working set, and require a 32MB cache to reduce the 
miss rate to nearly zero [7]. This is why this data does not show 
its miss rate approaching zero like with h264ref and hmmer. 
Further simulations with larger D-cache sizes would need to be 
run for a complete understanding of libquantum's working sets. 
However, from the data that is available, and considering what is 
known about libquantum's locality, it is likely that libquantum's 
most common functions have a high number of D-cache accesses. 
Libquantum spend more than 98% of its dynamic instructions in 5 
functions, and about 65% of its dynamic instructions in one single 
function. Increasing the cache size incrementally results in a 50% 
reduction in the cache miss rate, which implies that one of 
libquantum's working sets can now fit into the cache. It is likely 
that this working set is from one of libquantum's most frequently 
references functions. This behavior could have contributed to 
libquantum's high memory sensitivity ranking, because different 
sized caches could result in very different performance. Though 
more data is needed to confirm this, libquantum's memory 
sensitivity is likely caused by having a few, very large working 
sets.  

Table 2. SimpleScalar Configuration for Cache Behavior 
Simulations 

L1 cache (Data/Instruction) branch predictor 

Size                                   4/16KB 
Line size                                    32 
Associativity                            1/4 
Repl. Policy                           LRU 
Latency                              1 cycle 

2K-entry bimodal with 
512 entry BTB  
(direct-mapped) 
 

L2 cache (Data/Instruction) micro-architecture 

Size                           varied/64KB 
Line size                                    32 
Associativity                            1/8 
Repl. Policy                           LRU 
Latency                            6 cycles 

fetch/issue/decode     4 
functional units         4  
 

memory 

Latency        18 cycles 

 
Figure 2. D-Cache Miss Rate for Varying D-Cache Size 
for Libquantum Benchmark 

 
Figure 3. D-Cache Miss Rate for Varying D-Cache Size 
for h264ref Benchmark 

 
Figure 4. D-Cache Miss Rate for Varying D-Cache Size 
for Hmmer Benchmark  
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Since the h264ref and hmmer benchmarks have multiple input 
sets with different memory sensitivities, comparing their behavior 
across input sets can provide insight into what makes a benchmark 
memory sensitive. For h264ref, h264ref-1 had a low sensitivity, 
while h264ref-2 and h264ref-3 have a high sensitivity. In Figure 
3, h264ref-3 has slightly different behavior, while h264ref-1 and 
h264ref-2 are very similar, though h264ref-2 has a slightly larger 
working set size. All three input sets share a steep drop at 128B 
(1/8), but h264ref-3 requires a larger D-cache to achieve a miss 
rate of less than 0.1. This is consistent with what we know of 
h264ref-3's input set characteristics. The h264ref-3 benchmark's 
input is video data that has a higher resolution and more frames 
than h264ref-1 and h264ref-2, which means that its working set is 
larger. This could explain h264ref-3's high memory sensitivity, 
but what about h264ref-2? The different memory behavior could 
be attributed to the slight differences in locality and working set 
size. The h264ref-2 benchmark has the worst locality of the three, 
and a larger working set size than h264ref-2 would which make 
its memory footprint larger than h264ref-1 and closer to the 
memory behavior of h264ref-3. Therefore, h264ref-2's memory 
sensitivity can be attributed to its poor locality, therefore 
increasing its overall memory footprint. Since h264ref-2 simulates 
a higher quality compression than h264ref's other two input sets, 
this result makes sense.  

The hmmer benchmark has two inputs: hmmer-1 with a high 
memory sensitivity and hmmer-2 with a medium memory 
sensitivity. In Figure 4, hmmer-1 has fairly friendly cache 
memory behavior, with some steep drops, and hmmer-2 exhibits 
similar behavior, but with a significant steep drop in miss rate at 
128B (1/8). The hmmer benchmark has incredible locality and 
spends most of its time in one function. That would imply that it 
has a smaller memory footprint than the benchmarks with lower 
localities. This assumes though that each iteration of the function 
accesses the same data each time, which may not be true. Take for 
example, a function that accesses rows for a matrix. While each 
loop may look the same, the data that it accessing will be different 
every iteration. This may be the case with hmmer. The hmmer 
benchmark looks up patterns in a database, so each iteration of its 
main function is probably accessing a different entries in the 
database. Unlike with h264ref-2, whose poor locality was a 
contributing factor of its memory sensitivity, the opposite is likely 
true for hmmer. If every iteration of its loop is different, its 
memory footprint would be quite large. As for the difference 
between hmmer-1 and hmmer-2, hmmer-1's input data is, which 
increases its dynamic instruction count. If it's true that each 
iteration of its main loop contributes to its memory sensitivity, 
then hmmer-1 would have a larger memory footprint than hmmer-
2, and thus, be more sensitive to memory changes.    

8. SUMMARY 
Libquantum, h264ref-2, h264ref-3 and hmmer-1 were deemed to 
have a high L1 D-cache memory sensitivity [2]. For h264ref and 
hmmer, their other inputs, h264ref-1 and hmmer-2, had a low and 
medium sensitivity, respectively. Having multiple input sets with 
different memory sensitivities made it easier to draw conclusions 
about their behavior, since the input sets could be compared. 
Libquantum, h263ref and hmmer have the highest dynamic 
instruction count, as well as the highest total number of load 
instructions of all of the SPEC CPU2006 integer benchmarks. 
They had varying localities and memory footprints. 

Libquantum's high memory sensitivity ranking can be attributed to 
having a few, very large working sets. This would explain why a 
large variance in L1 D-cache behavior was observed across the 
five machines, resulting in libquanutm receiving a high memory 
sensitivity ranking. Even if the memory systems in these machines 
were very similar in size, as shown in Figure 2, a small increase in 
cache size can result in a dramatic decrease in cache miss rate. 
From what is known of libquantum's locality, it is likely that a 
majority of D-cache accesses were made in its most frequently re-
referenced  functions.  

Like libquantum, the h264ref benchmark's h264ref-2 and h264ref-
3 also have a high memory sensitivity, because of their large 
memory footprint. The h264ref-2 benchmark has a large memory 
footprint, because it simulates a very high quality compression, 
which reduces the amount of data lost during compression. This 
not only increases the memory footprint, but decreases the 
locality, which also contributes even more to the memory 
footprint. The h264ref-3 benchmarks has a high memory footprint 
simply because it modifies the largest amount of data; it video 
data input has more frames and a higher resolution than the other 
two h264ref benchmarks.   

The hmmer benchmark can also attribute its high memory 
sensitivity ranking to a large memory footprint. The hmmer 
programs had the best locality, with 99% of hmmer-1's dynamic 
instruction being spent in one function. For hmmer-2, it spent 
96% of its dynamic instructions in one function. Based on what is 
known of hmmer's behavior of accessing a large database 
repeatedly, it was concluded that its largest function must access 
different data during every iteration, thus contributing to its 
overall memory footprint. Since hmmer-1 has a more complex 
input than hmmer-2, it has a higher memory sensitivity.       

9. CONCLUSION AND FUTURE WORK  
In this work, the L1 D-cache sensitivities of three SPEC CPU2006 
benchmarks, libquantum, h264ref, and hmmer, were evaluated, as 
they are possible Big Data processor benchmarks. The memory 
footprint of each benchmark were deemed to be the source of their 
high sensitivity to memory changes, but for different reasons. 
Libquantum has a few, large working sets, while h264ref and 
hmmer simply access a lot of unique data. While h264ref's poor 
locality increased its memory footprint, hmmer's exceptionally 
high locality contributed to it.    

Since all three benchmarks have large memory footprints, they 
show potential as Big Data benchmarks. However, libquantum 
shows the most promise. Typical Big Data benchmarks have 
memory footprints greater than 10GB and working sets around 
1GB [8]. Though the memory footprint was not explicitly 
determined in this work, libquantum's working set size is the only 
benchmark of the three to be larger than 64KB. In future work, the 
memory footprint of these benchmarks will be determined. The 
strong locality of  libquantum, h264ref, and hmmer also makes 
them good candidates for Big Data benchmarking.     

Though most optimization is currently done at the system-level, 
cores are now being designed specifically for Cloud Computing 
and Big Data applications [9][11], so node-level optimization is in 
the near future. In future work, the role of these memory sensitive 
benchmarks in designing processors for Big Data applications will 
be further explored. More work needs to be done to understand 
their memory access patterns, parallelism, and memory footprint.   
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Appendix 1. Subroutine Profile Summary of Memory Sensitive SPEC CPU2006 
Cumulative Hottest Subroutine 5 Hot Subroutines 10 Hot Subroutines 20 Hot Subroutines 

Benchmark  
Percentage 
Dynamic  

Static 
Count 

Percentage 
Dynamic  

Static 
Count  

Percentage 
Dynamic  

Static 
Count  

Percentage 
Dynamic  

Static 
Count  

hmmer-1 99.10% 11080 99.76% 143630 99.91% 385550 99.96% 993103 
hmmer-2 96.79% 11080 99.76% 220363 99.99% 458965 100.00% 711948 
libquantum 65.18% 901 98.38% 12897 100.00% 39182 100.00% 89909 
h264ref-1 41.21% 63541 75.28% 360800 90.46% 733452 96.06% 1281878 
h264ref-2 35.20% 63541 65.66% 263448 81.81% 632195 91.08% 1103854 
h264ref-3 36.20% 63541 71.16% 263448 83.30% 638070 92.28% 1162685 
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