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ABSTRACT
Smart meter devices are used to monitor and control energy
consumption and are interlinked with smart grids. Their
growing use leads to an extensive amount of available data to
be processed and causes smart grids to evolve to large-scale
systems of systems. Guaranteeing appropriate scalability
and performance characteristics is a tremendous challenge.
In this paper, we focus on the provisioning of sufficient com-
puting capacity to efficiently analyze the produced data in
such a distributed system. For this purpose, we show the use
of performance models to plan and simulate this distributed
computation in smart grid systems. It demonstrates how
different system architectures can be evaluated and required
capacities can be estimated to cope with the occurring data
volume. We analyze response times for time-critical tasks
and assess the scalability of smart grid systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques
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1. INTRODUCTION
Smart meter devices are replacing conventional energy

meters in several countries and form the basis to manage
and monitor energy consumption [10]. These devices are in-
terlinked as part of smart grids and allow two-way communi-
cation via interfaces so data can be automatically exchanged
between smart meters and energy management operators. A
smart grid connects smart energy devices such as smart me-
ters to a distributed energy delivery network that allows for
automatic communication and management of devices [10].
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In order to built up a smart grid, an advanced metering
infrastructure (AMI) is necessary to manage smart meter
devices. It is responsible for connecting distributed smart
meters and storing their data [11].

In realistic scenarios, often more than hundred thousand
devices are managed by a few central systems and data is
continuously exchanged. Hence, the produced data volume
is enormous and can easily cause performance issues. The
responsibility of these systems (called smart grids) is to store
the data produced by smart meter devices and manage them.
An additional time-critical task is to calculate optimized en-
ergy plans based on the collected data. Therefore, they must
combine analytic capabilities with real-time processing [3].
As we consider here large distributed systems, the distribu-
tion of this processing is important and has not been consid-
ered before. Since the introduction of smart meter devices is
growing in many countries, these systems must also be able
to scale-up to continuously reach and comply with their per-
formance goals.

Performance models provide a common way to mirror sys-
tems and simulate their behavior to guarantee such non-
functional requirements [2]. They allow for predicting and
measuring performance metrics such as throughput, response
time and resource utilization. Performance models can be
used for capacity planning as well as to answer sizing ques-
tions. They also enable developers to examine design al-
ternatives of architectures and find optimized system con-
figurations. By being able to simulate different workloads
on such models, they also support to evaluate a system’s
scalability.

This paper shows how performance models can be used
to model large distributed smart grid systems and simu-
late hundreds of thousands connected smart meters. While
prior work on smart grid performance has mainly focused on
the networking aspects [7, 5, 9], we focus here on the com-
putation required for the analysis of the data in large dis-
tributed systems. We develop two prototype models present-
ing two different use cases. For each model, we implement
two infrastructure approaches and simulate them with vary-
ing amount of smart meter devices. Although both models
are kept as simple as possible, they involve the specifica-
tion of multiple parameters and allow us to already address
common problems in the smart grid context. Therefore,
we prioritize to analyze the performance metrics utilization,
throughput and scalability in this paper.

9



Household
EM

Operator

send measurement data

Figure 1: Read smart meters

EM

Operator
Household

send production forecasts

Service

Provider

send consumption forecasts

send production forecasts

send consumption forecasts

send schedule

Figure 2: Local optimization

2. USE CASE AND DESIGN OPTIONS
In order to model and evaluate smart meter devices in

smart grids we selected two common use cases for our per-
formance model - ’read smart meters’ and ’local optimiza-
tion’ - as depicted in Figures 1 and 2. These two use cases
are adapted from the E-Energy report [4]. The first use case
contains an energy manager (EM) operator and a household
as main actors. Smart meters of a household regularly send
their measurement data to the EM operator at an interval
of five to twenty minutes depending on the type of device.
Workload mainly appears at the EM operator who must be
able to handle and store the occurring data amount as well
as analyze information.

Figure 2 depicts the use case ’local optimization’. The
same actors are involved as in the first use case, but it ad-
ditionally includes a service provider. The latter sends its
energy production and consumption forecast data to the EM
operator who forwards the information to the household so
its smart devices can be locally optimized. Afterwards, the
household reports its schedule to the EM operator. In this
use case, the EM operator is also connected to the house-
hold, but must be able to cope with the data of a household
only once a day.

Usually, several thousand households are linked to the EM
operator resulting in huge, frequent data volumes. One of
the focus questions for the performance evaluation in this
paper is therefore the optimal design for an AMI architec-
ture with regard to performance. There are several aims to
regard for the operation of an AMI and different solutions
have to be weighed. A load reduction at the EM operator
as well as minimal hardware costs are desired, but also a
reliable solution that is able to cope with network failures
and scales up in future. We evaluate two design alternatives
for an AMI:

1. A centralized architecture in which an EM operator is
directly linked with households as shown in Figure 3.

2. A hierarchical, decentralized architecture similar to [8]
as presented in Figure 4. Here, an aggregation sys-
tem is directly interlinked with households and pre-
analyzes their measurement data before it sends them
to the EM operator.

3. PERFORMANCE MODEL AND
EXPERIMENT DESIGN

To depict and evaluate these design alternatives, we use
the Palladio Component Model (PCM) [1]. The PCM meta-
model is divided in several sub-models according to differ-
ent developer roles. Component developers model system
components and their behavior, software architects assemble
different components into a system, system deployers spec-
ify the resource environment and assign resources to differ-
ent components and, lastly, domain experts create a usage
model which describes the workload and usage scenario [1].

We use components to represent each actor of the two use
cases and specify their behavior and interfaces based on the
descriptions in the E-Energy report [4]. Since we are not
interested in investigating resources at households, only one
component is modeled as an abstraction that represents all
households and causes the same load as several thousand
households. For the use case ’read smart meters’, smart
meter devices send 1 kilobyte (KByte) of data every five to
twenty minutes to the EM operator in a centralized architec-
ture and to the aggregator in a decentralized architecture.
The aggregator reports the aggregation results in chunks of
100 megabytes (MBytes) to the EM operator four times a
day.

For the second use case, smart meters are locally opti-
mized once a day. Production and consumption forecast
data of the service provider comprise 10 MBytes. Both fore-
cast data from the EM provider in a centralized and from
the aggregation system in a decentralized architecture to
each household are sent as messages with a size of 1 KByte
each. Similar to the first use case, the aggregator reports
100 MBytes of pre-analyzed data to the EM operator after
it has received the schedule of all households.

For the CPU resource demands, the processing time is
specified relative to the amount of data that needs to be pro-
cessed. The EM operator requires 2 milliseconds (ms) CPU
time for each KByte, whereas one aggregator demands 1 ms
CPU time for each KByte. These demands are based on the
assumption that aggregation systems only aggregate data,
whereas the EM operator processes the data more inten-
sively using analytical algorithms. For the hard disk drive
(HDD) resource demands, both actors demand the full data
size of a message. In order to allow for a better comparison
between the EM operator and aggregation systems we spec-
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Table 1: Variant table
Workload System Hardware

Use Case Households architecture environment

Read smart meters 100,000 Centralized Constant
Read smart meters 100,000 Decentralized Constant
Read smart meters 150,000 Centralized Constant
Read smart meters 150,000 Decentralized Constant
Read smart meters 200,000 Centralized Constant
Read smart meters 200,000 Decentralized Constant
Local optimization 100,000 Centralized Constant
Local optimization 100,000 Decentralized Constant
Local optimization 150,000 Centralized Constant
Local optimization 150,000 Decentralized Constant
Local optimization 200,000 Centralized Constant
Local optimization 200,000 Decentralized Constant

ified the same hardware resources for all components. We
set the processing rate to 60 work units per simulation unit
for the CPU, 8,760 MBytes per simulation unit for the HDD
and 7,680 MBytes per simulation unit for the network. For
the simulation, we determined the simulation unit to be one
minute and simulated both use cases 24 hours.

In order to evaluate the modeled AMI and smart grid sys-
tem, we specify and simulate several different variants of
our model as shown in Table 1. Besides the two use cases,
the amount of households is alternated from 100,000 over
150,000 to 200,000. Furthermore, the system architecture
is also varied. For the decentralized architecture, we mod-
eled an amount of four aggregation systems which are evenly
distributed to households so, for instance, for an amount of
100,000 households each of the four aggregators is connected
to 25,000 households.

4. SIMULATION RESULTS
Figure 5 shows the predicted throughput of the EM oper-

ator in a centralized architecture and the combined through-
put of the four aggregation systems in a decentralized one for
the use case ’read smart meters’. Having four aggregation
systems in parallel, the throughput in a decentralized archi-
tecture is increased compared to a centralized one. Whereas
the centralized approach is only able to process 15,080,025
smart meter messages of 200,000 households within one day,
the decentralized approach can manage 21,655,736. The lat-
ter also scales better to higher load levels than a single EM
operator as aggregations systems only have to handle a quar-
ter of households.

Table 2 shows the predicted mean CPU utilization dur-
ing simulating the use case ’read smart meters’. Here, the
values at the EM operator are considerably higher than the
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Figure 5: Throughput for use case ’read smart me-
ters’

mean CPU utilization per aggregator. This has several rea-
sons. An aggregator has only to handle a quarter of the
workload compared to the EM operator. Furthermore, the
resource demand for the EM operator is increased compared
to the aggregator as it fully analyzes the data as described
in Section 3. Regarding scalability, both systems tend to
scale even with increasing user amount.

Table 2: Mean CPU utilization for use case ’read
smart meters’

User amount Centralized Decentralized
(EM operator) (Mean per aggregator)

100,000 21.10% 3.82%
150,000 28.73% 5.37%
200,000 34.91% 6.86%

Considering the use case ’local optimization’, we simu-
lated a time-critical scenario where the EM operator tries
to send all consumption forecasts as fast as possible to each
household. Here, response time is the most interesting met-
ric as listed as minute values in Table 3. Clearly, response
times in a decentralized architecture are faster than in a
centralized one due to four parallelized aggregation systems.
The response time between the EM operator and the four
aggregation systems is here not considered as it is negligibly
small. For 200,000 households the centralized architecture
needs 42.34 minutes to reach all households, which equals
12.70 milliseconds per household. The decentralized archi-
tecture only takes 7.62 minutes, which equals 2.29 millisec-
onds per household if aggregators are fully parallelized.

Answering our focus question, a decentralized approach
seems to allow for higher throughput and faster response
times. Having several smaller aggregations systems can also
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Table 3: Response time sending consumption fore-
casts for use case ’local optimization’

Households Centralized Decentralized
(EM operator) (Mean per aggregator)

100,000 21.62 minutes 5.79 minutes
150,000 31.98 minutes 6.81 minutes
200,000 42.34 minutes 7.62 minutes

distribute load in peak times and decrease utilizations of
the main system which may have cost advantages regarding
required hardware resources. Since we modeled two simple
use cases separately, however, it is not possible to predict
major impacts of both architectures on the overall system
performance. Thus, our model will serve as a basis for future
efforts to address several more complex scenarios.

5. RELATED WORK
Several approaches have been developed to model AMI

that allow for analyzing and simulating smart grids. How-
ever, most of them mainly focus on evaluating the network.
Mora et al. [7] modeled the network communication as
needed for smart grids, but did not consider hardware re-
sources such as CPU load for processing. Lin et al. [5] used
a similar approach, but with a co-simulation setup where
only network is simulated. This procedure is also not suit-
able to evaluate larger sets of scenarios as we intend to do
in this paper. Besides different network technologies, the
paper of Wang et al. [9] surveys architectures for various
smart grid scenarios, including discussion of requirements.
The paper does however not discuss how to distribute data
collection and analysis in such networks. From the EM op-
erator point of view required hardware, response times and
system scalability of smart grids are vital bottlenecks that
cannot be answered with the above mentioned models.

6. CONCLUSION AND FUTURE WORK
This paper shows how performance models can be ap-

plied to evaluate smart metering infrastructures including
the computation needed for data analysis. Although there
are several approaches available that model and analyze
smart grids, they specialize on network traffic and not on
predicting performance metrics such as resource utilization,
throughput and response times. The application of perfor-
mance models for this purpose allows for predicting such
performance metrics and supports EM operators while an-
swering sizing questions and evaluating different architecture
designs.

We implemented two common use cases for smart me-
tering infrastructures and evaluated them using a central-
ized and a decentralized architecture. Different amounts of
households have been applied to generate workload. There-
fore, response time, throughput and CPU utilization have
been predicted and evaluated for different parameter config-
urations. Regarding system performance the results indicate
advantages in response times and throughput of a decentral-
ized architecture over a centralized one.

One of the key challenges in this work was to run simula-
tions in scales of up to 200,000 households using the available
PCM simulation engines. Initially, we employed the process-
driven simulation engine SimuCom [1], which was not able

to scale up to this workload. Therefore, we switched to the
event-oriented PCM simulation engine EventSim [6]. Al-
though it was able to scale up to these loads, simulating way
beyond these load levels might require different approaches.

In future work, we plan to extend the models with resource
demand measurements for specific data analytic platforms.
Furthermore, we plan to include reliability evaluations in the
simulations. Afterwards, the creation of performance mod-
els for additional smart grid scenarios is planned, including
simulations of several smart grid use cases in parallel.
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[7] R. Mora, A. López, D. Román, A. Send́ın, and
I. Berganza. Communications architecture of smart
grids to manage the electrical demand. In Proceedings
of the 3rd Workshop on Power Line Communications,
2009.

[8] T. Overman and R. Sackman. High assurance smart
grid: Smart grid control systems communications
architecture. In Proceedings of the First IEEE
International Conference on Smart Grid
Communications, pages 19–24. IEEE, Oct 2010.

[9] W. Wang, Y. Xu, and M. Khanna. A survey on the
communication architectures in smart grid. Computer
Networks, 55(15):3604–3629, 2011.

[10] J. Zheng, D. Gao, and L. Lin. Smart meters in smart
grid: An overview. In Proceedings of the 5th IEEE
Conference on Green Technologies, pages 57–64.
IEEE, April 2013.

[11] J. Zheng, Z. Li, and A. Dagnino. Speeding up
processing data from millions of smart meters. In
Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE ’14,
pages 27–37, New York, NY, USA, 2014. ACM.

12




