
High-Volume Performance Test Framework using Big Data
Michael Yesudas

IBM Corporation
750 W. John Carpenter Frwy

Irving, TX 75039
United States of America

(+1) 469 549 8444

myesudas@us.ibm.com

Girish Menon S
IBM United Kingdom Limited

3 Furzeground Way, Stockley Park
Uxbridge, Middlesex, UB11 1EZ

United Kingdom
(+44) 208 867 8003

girishmenon@uk.ibm.com

Satheesh K Nair
IBM India Private Limited

Tower 'D', IBC Knowledge Park
Bannerghatta Road, Bangalore,

Karnataka, India
(+91) 803 090 6000

satheesht@in.ibm.com

ABSTRACT

The inherent issues with handling large files and complex

scenarios cause the data-driven approach [1] to be rarely used for

performance tests. Volume and scalability testing of enterprise

solutions typically requires custom-made test frameworks because

of the complexity and uniqueness of data flow. The generation,

transformation and transmission of large sets of data pose a

unique challenge for testing a highly transactional back-end

system like the IBM Sterling Order Management (OMS). This

paper describes a test framework built on document-oriented

NoSQL database, a design that helps validate the functionality and

scalability of the solution simultaneously. This paper also

describes various phases of planning, development, and testing of

the OMS solution that was executed for a large retailer in Europe

to test an extremely high online sales scenario. An out-of-the-box

configuration of the OMS with the feature support for database

sharding was used to drive scalability. The exercise was a success,

and it is the world’s largest IBM Sterling Order Management

benchmark in terms of sales order volume, to date.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems

– Design studies, Measurement techniques, Modeling techniques,

Performance attributes.

General Terms

Management, Measurement, Performance, Verification

Keywords

Load Testing, Big data, Test Harness, Rapid Prototyping, Test

Automation Tool, Document Oriented Storage, Order

Management

1. INTRODUCTION
Retailers across the world increasingly find that customers are

moving to multiple channels due to of the convenience they offer.

Customers want the benefit of being able to shop from anywhere

at trusted brands and get the best price along with flexible

delivery options offered by retailers. This distinct benefit to

consumers has resulted in a robust growth of online business in

recent years and still continues. Large retailers who operate in

verticals like groceries, general merchandise, and clothing would

look at a single order fulfillment system, to handle multi selling

channels. Such order fulfillment systems should have the

flexibility to support multiple fulfillment scenarios and at the

same time handle the volume of orders received by large retailers.

IBM Sterling Order Management System (OMS) [2] has been

successfully used by many of the biggest retailers across the

world. IBM was approached by a large retailer to confirm the

feasibility of replacing their legacy order fulfillment system with

OMS. The vision was to build a single order fulfillment platform

to support all the online business across all the channels. The IBM

team recommended using the database sharding feature because of

the extreme volume requirements.

The performance requirements for this platform exceeded any

published OMS benchmarks, and so the team decided to do a

volume Proof of Concept (POC) combining solution and

performance test. The objective of the volume POC was to

confirm that an out-of-the-box OMS that employed database

sharding would scale to meet the retailer’s peak hour volume

requirements. However, when the discussions started on the

performance test framework, the existing tools and methodology

seemed inadequate to generate the requisite volumes for the test.

1.1 The Product Solution
OMS is a J2EE application with a relational database back-end.

All the asynchronous interfaces are based on messaging systems

through which OMS interacts with other systems. The

synchronous calls are typically Web Services that can be directly

invoked through HTTP and HTTPS protocols. A typical solution

consists of product code with customer-specific configurations

and customized code.

The retailer’s online business had a performance target of

approximately 4 million order lines per hour with an average of

120 lines per order. The primary focus of the POC was the sales

impact since such volume was never tested in any previous

benchmarks. Therefore, this new benchmark should be for a

solution configured over out-of-the-box OMS modeled for the

retailer’s fulfillment process. The retailer also required the POC to

be done on a non-IBM hardware stack, operating system and

database software (for which there are no published benchmarks

available from IBM).

This POC should validate OMS’ scalability on the technical and

application capabilities to anticipate future growth of the retailer.

Additionally, the POC should be carried out by enabling the

sharding feature spreading the transaction load to four database

servers. The business processes encompassed testing the

fulfillment of orders and payment settlement and each state

change involved integration with retailer’s systems. The POC did

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

LT'15, February 01 2015, Austin, TX, USA

Copyright 2015 ACM 978-1-4503-3337-5/15/02…$15.00

http://dx.doi.org/10.1145/2693182.2693185

13

not need any inventory tracking. The item catalog was maintained

outside of the OMS as per the retailer’s business requirements.

1.2 The Big Performance Question
OMS is an Online transaction processing (OLTP) application with

majority of the transactions related to order or inventory

processing. The basic unit of processing in retail is an order line.

Each OMS transaction is a composite transaction to process a

single order line, a key differentiator with other transaction

processing systems like banking or stock exchange. Such a

transcation could involve several state changes, complex

operations such as order scheduling and inventory processing and

multiple database operations within order, inventory, statistics and

audit tables.The volume target set by the retailer for the order flow

was 4 million order lines per hour, which is about 20 times higher

than the average peak volumes observed in the industry. The

number of lines per order was 120 (a relatively larger number than

the industry average), and this meant dealing with a large XML

file for each order. An order XML would be around 50 Kb. Thus,

to achieve the target, OMS required processing about 1200 order

lines per second. Based on the initial sizing exercise, one test that

runs for 3 hours would generate about 500 GB of data in the

database.

The testing tool should be capable of generating test input files,

equal to or more than the POC volume to provide adequate test

coverage. Tools that typically drive performance tests for OMS

are IBM’s Rational Performance Tester [3] and HP’s LoadRunner

[4]. Open-source tools such as Apache’s JMeter [5] and Grinder

[6] also are widely used. Messaging services and Web Services

push in XML input messages into the OMS system. The inbound

data for OMS tests are primarily XML files that are generated by

the load generator application and are consumed by an appropriate

transaction in OMS. Create and transfer of a significant number of

large input XML files posed a unique problem to conduct a

performance test.

High cost of commercial performance tools has led many

researchers to seek a fitting alternative. The paper by Chen et al.,

‘Yet Another Performance Testing Framework’ [6] is an example

of such research. Conventional tools would require powerful test

servers and they provide limited flexibility. In their paper ‘Design

and Implementation of Cloud-based Performance Testing System

for Web Services’ [8], Zhang et al. describes a cloud-based

approach to performance testing of web services. The tool

provides a front-end to produce test cases that are executed in the

cloud and helps simulate concurrent user access.

Because of the strict budget and time constraints for this volume

POC, a conventional tool was not viable. Another feasible way

was to create XML messages in advance, store and feed into the

test system using scripts. The paper ‘CaPTIF: Comprehensive

Performance TestIng Framework’ [9] by Mayer et al. present a

similar approach. The paper states that ‘the framework allows for

the definition of well-defined test inputs and the subsequent

scheduling and execution of structured tests.’ Though the paper

suggests ways of test case generation, the creation and storage of

test data is a crucial aspect of the framework. According to the

paper, ‘CaPTIF stores the details on all modules and instances,

test configurations, test cases, test inputs, and test results for all

test runs in a relational database backend’. Using RDBMS as the

back-end, the CaPTIF team stored the entire test input as a

database blob for efficiency reasons. It is clear from the paper that

this was done to eliminate significant overheads due to database

joins when the test input was accessed. The paper continues to

explain that the test input was stored as JavaScript Object

Notation (JSON) [9] format to make it independent of the

underlying database schema.

Creation and storage of XML messages prior to the test poses two

issues. First, modification of a large XML file causes significant

disk and Java Virtual Machine (JVM) overheads. Second, the

tester may want to modify the order flow or create alternate flows

before or during the test, to ensure test coverage and

accommodate additional scenarios (by editing the XML

messages). There is no easy and quick way (like SQL in a

relational database) to locate an XML file during the test run

containing specific data and modify. Using a fast drive, e.g., SSD

for handling the XML files may not be feasible due to the cost.

Volume POC required creation of stubs to simulate systems

around OMS for a normal order flow. The messages also had to

be generated based on actual customer behavior and maintain the

randomness of orders and several other fields in OMS. Another

problem was failures during a performance test because of

functional or system level issues. Usually, such failures require

cleanup of the participating systems before the start of a new test

and could consume significant time and effort. To restart a test

from the exact point of failure is always difficult as the test

framework would also require a reset.

2. BIG DATA-BASED TEST FRAMEWORK
In short, a test framework was needed that would store messages

for several scenarios and quickly modify XML messages during

the run. The framework was expected to have a distributed storage

and should generate the peak-load without becoming a

performance bottleneck. It would also need to be installed and

scripted easily to meet the tight schedule set by the retailer.

2.1 Choice of MongoDB
MongoDB [10] is an open-source and a leading NoSQL database.

It supports document-oriented storage and document based-

querying, has MapReduce for aggregation and data processing.

MongoDB can be easily installed, set up quickly and can be

scripted using JavaScript. It allows to query data dynamically and

provides a query syntax that feels very similar to SQL. Other

popular NoSQL databases like Cassandra and HBase process full-

scale large data, while MongoDB fits well for files of a certain

size range, quickly and schema-free, that precisely matches the

POC requirements.

MongoDB is efficient in handling large files and real-time data

query. In their paper on ‘A Real-Time Log Analyzer Based on

MongoDB’ [11] Qi Lv et al. describes the features of MongoDB

for real-time applications. The article states that ‘MongoDB

provides well query performance, aggregation frameworks, and

distributed architecture that is suitable for real-time data query

and massive log analysis’. The paper continues to observe ‘Our

experimental results show that HBase performs best balanced in

all operations, while MongoDB provides less than 10ms query

speed in some operations that is most suitable for real-time

applications.’ In their paper ‘MongoDB vs Oracle-Database

Comparison’ [12] Boicea et al. concludes that MongoDB is a

more rapid database management system, a simple database that

responds very fast.

MongoDB could store large documents, of any type in JSON

format. Document storage of such proportion was ideal as the

tests primarily deal with XML files. Moreover, it was found that

the generation and manipulation of input and output XMLs were

up to ten times faster than conventional methods (when tested

14

internally using HP LoadRunner and Grinder). Since XMLs are

the drivers for the tests, it follows that the test logic can be built-in

the stored content, rather than in scripts thereby reducing the

requirement of scripting. Any of the quick scripting tools like Perl

or JavaScript or even a programming language like Java could be

used for data and content handling. Scripts can be written using

the mongo shell in JavaScript that can manipulate data in

MongoDB or perform administrative operations.

Usually, the test framework should also include a mechanism to

mimic any synchronous or asynchronous interfaces that might be

necessary. Such mimicking is achieved through the use of stubbed

scripts, and these stubs are logic-driven and not content driven.

The ease by which MongoDB allows document update, gives the

tester real-time control over stubs (response data, response time,

and data format), an edge over conventional static-data stubs.A

response document in real-time can be generated and sent back to

the system under test (SUT) with minimal system resources and

scripting effort, when MongoDB is used.

A MongoDB collection is roughly the equivalent of tables in a

relational database. MongoDB can maintain several test data

patterns in many collections through replication and minor

modification of the content. Multiple iterations of tests can thus be

planned in advance and executed within short intervals.

Comparing MongoDB collections help analyze patterns across

tests and thereby verify the test accuracy. Response times, errors

and other statistical data can be stored in real-time and analyzed

using standard big data analytical tools.

The output XML can also be stored and compared with the

expected results for functional validation of the OMS transactions.

Storage and live analysis of test results give better control over the

performance tests and helps detect errors in advance. If necessary

these tests can be re-run with minimal time and effort using the

MongoDB framework. Appropriate flags can be set in additional

columns for each MongoDB collection that can denote the current

position of the test. Scripts are to be written to check these flags

when a re-run is initiated.

The document storage capability of MongoDB can be further

utilized for storage of performance outputs like log files, heap,

thread dumps and statistical data. These files can be analyzed

side-by-side with test output data and other test results. Since data

is now stored and archived for various load scenarios, reusing

them in other OMS implementations is also possible with minimal

effort.

2.2 The Test Strategy
During the discovery phase of the POC, details on hardware,

network, interfaces, and business process were gathered. XML

templates were collected during this period and deployed in two

parts, one in the OMS system and the other in MongoDB. OMS

components were configured to have all the standard

functionality, configuration, web services, data loading, and item

catalog.The strategy was to use MongoDB as the substitute for all

external interfaces, custom functionality, load generation and

interface responses through stubs. This substitution required XML

data transformation and data modification.

A few input XML messages were created in the MongoDB

collections (load generator), and the scripts were run to initiate a

data flow. This way the solution prototype was functionally

validated. The functional test harness evolved into the

performance harness, by increasing the volume, with no additional

scripting and testing effort. Thus, the MongoDB component

operated as a functional, integration and performance harness that

could be used to drive all types of tests, a complete Test Harness.

All functional and performance tests were run by the same team in

a departure from established norms. The volume of messages is

the only difference between the functional and performance tests

in this framework. The functional test analysis was done with the

help of solution team involved in prototyping. The test framework

was developed side-by-side with the solution prototype, and the

test team could validate each step through continuous testing,

thereby reducing the cost of defects.

2.3 POC Hardware Configuration
The POC used OMS version 9.2.1, an out-of-the-box

configuration and with application audits enabled. The relational

database was Oracle Enterprise 11.2.0.3, application server

Apache JBoss EAP v5.1 and middleware TIBCO 6.1. The load

generator machine, a Red Hat Enterprise Linux (RHEL) box, was

installed with MongoDB 2.4.9 and required software. Table 2

shows the configuration of the load generator.

Table 1. Load generator machine

Component Details (for each LPAR)

One load generator

LPAR (MongoDB and

Perl /Grinder scripts)

E5-2637V2 @3.5GHz, 8 CPU Cores

24 GB RAM per server

Total of 1 Server

Table 3 describes the hardware specifications for the OMS

solution implementation. Application tiers, middleware, and the

database tier was designed after a detailed sizing exercise. Note

the total size of the load generation to the actual solution

infrastructure for the application under test; clearly the cost of test

server is a bare minimum.

Table 2. Solutioninfrastructure

Component Details (for each LPAR)

Five database LPARs
E5-2637V2 @3.5GHz, 8 CPU Cores

64 GB RAM per server

Eight batch processing

LPARs

E5-2637V2 @3.5GHz, 20 CPU Core

256 GB per server

One application LPAR
E5-2637V2 @3.5GHz, 8 CPU Core

64 GB RAM per server

One message queue

TIBCO LPAR

E5-2637V2 @3.5GHz, 8 CPU Core

64 GB RAM per server

TIBCO EMS version 6.1

Total of 15 Servers

2.4 Test Preparation and Execution
Test execution started with the preparation of test data. This

activity was to create multiple MongoDB collections and create

XMLs corresponding to a typical sales order transaction, for e.g.

create an order, modify or cancel an order. Once an XML

template document is available, duplicating it and updating the

columns for random attributes was relatively easy with

MongoDB’s powerful features. The input data for a full round of

functional test was created, followed by making multiple copies

for distributed storage. Various data profiles for several test

iterations were created by making copies of MongoDB

collections. Once the test data is ready, scripts were executed to

put XML documents from MongoDB to OMS and receive

response. For asynchronous interfaces, Perl scripts handled the

15

transfer and mashup of messages. Grinder was used to emulate

web service calls.

Perl and Grinder scripts were used to read from MongoDB and

write into the middleware or as POST messages. The output

messages are also read by Perl and written back to MongoDB,

thus recording the result of each of the transaction. The reads and

writes were done real-time and it was found to be multiple times

faster than the OMS system itself. For the integration stubs,

transformation scripts that would modify XMLs for the required

parameters would write into MongoDB. Each appropriate

message is then fed back into OMS, thereby emulating live-stubs.

After each test, the collections are marked and archived for later

analysis. As a last step in the execution, the log files, statistical

data, error tables and other essential tables are imported into

MongoDB for analysis. Figure 1 shows the MongoDB

performance harness illustrated.

Figure 1. Test execution setup

2.4.1 Test Results
See Table 4 for the primary outcomes of the POC when the

system reached a steady state. A typical test would last for 2 to 3

hours, and the results are taken for analysis. Multiple iterations of

the same data profile are done to arrive at an average performance

figure.

Table 3. POC Test Results

Component Name Test Results (Throughput/hour)

Order creation 7.1 Million Order lines

Order amendment 464k Order line changes

Order cancelation 420k Order line cancelations

Authorization 5.6 Million Order lines

Delivery updates 5.56 Million Order lines

Settlement 5.54 Million Order lines

Web Service calls
298k Invocations per hour

Average response time of 410 ms

The results of the POC also indicates the success of the MongoDB

test framework. The framework could generate message volumes

at even higher rates, but the tests were stopped when the OMS

reached the POC goals. The average size of an XML file was

about 35 to 50 Kb, and each MongoDB database operations (read,

insert and update) took between 10 to15 milliseconds to complete.

Each XML was modified for 5 to 8 fields and additional inserts to

MongoDB columns were done for each.

MongoDB test harness helped solve the particular challenges that

the volume performance test introduced. The ease of scripting,

low-cost maintenance, high performance and minimum hardware

requirements were the key wins of this approach. As the test logic

resides in content, functional and performance tests can also be

provided as a cloud-based service, although network security

issues need resolution.

3. ACKNOWLEDGMENTS
Thanks to IBM RSC Bangalore team members Kamala

Nagarajan, Nagalakshmi Vellaichamy and Anusha Dasari for their

support in the POC activities, MongoDB data modeling and

scripting.

4. REFERENCES
[1] Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø.,

Schieferdecker, I., & Williams, C. (2008). Data-Driven

Testing. In Model-Driven Testing (pp. 87-95). Springer

Berlin Heidelberg.

[2] “Sterling Order Management”, DOI= http://www-

03.ibm.com/software/products/en/order-management

[3] IBM: Rational Performance Tester. http://www-

01.ibm.com/software/awdtools/tester/performance

[4] Hewlett Packard: HP LoadRunner.

http://www8.hp.com/us/en/software-solutions/loadrunner-

load-testing/index.html

[5] Apache Software Foundation: Apache JMeter.

http://jmeter.apache.org/

[6] Aston, P.: The Grinder, a Java Load Testing Framework.

http://grinder.sourceforge.net/

[7] Chen, S., Moreland, D., Nepal, S., Zic, J.: Yet Another

Performance Testing

[8] Mayer, D. A., Steele, O., Wetzel, S., & Meyer, U. (2012).

CaPTIF: Comprehensive Performance TestIng Framework.

In Testing Software and Systems (pp. 55-70). Springer Berlin

Heidelberg.

[9] Chodorow, Kristina. MongoDB: the definitive guide. "

O'Reilly Media, Inc.", 2013.

[10] Crockford, D.: The application/json Media Type for

JavaScript Object Notation (JSON). RFC 4627

(Informational) (July 2006)

[11] Boicea, A., Radulescu, F., & Agapin, L. I. (2012,

September). MongoDB vs Oracle-Database Comparison. In

EIDWT (pp. 330-335).

[12] Lv, Q., &Xie, W. (2014, August). A Real-Time Log

Analyzer Based on MongoDB. In Applied Mechanics and

Materials (Vol. 571, pp. 497-501).

16

http://www-03.ibm.com/software/products/en/order-management
http://www-03.ibm.com/software/products/en/order-management
http://www-01.ibm.com/software/awdtools/tester/performance
http://www-01.ibm.com/software/awdtools/tester/performance

	1. INTRODUCTION
	1.1 The Product Solution
	1.2 The Big Performance Question

	2. BIG DATA-BASED TEST FRAMEWORK
	2.1 Choice of MongoDB
	2.2 The Test Strategy
	2.3 POC Hardware Configuration
	2.4 Test Preparation and Execution
	2.4.1 Test Results

	3. ACKNOWLEDGMENTS
	4. REFERENCES

