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ABSTRACT

The inability to provide performance guarantees is a ma-
jor challenge for the widespread adoption of shared execu-
tion environments, based on paradigms such as virtualiza-
tion and cloud computing. Performance is a major distin-
guishing factor between different service offerings. To make
such offerings comparable, novel metrics and techniques are
needed allowing to measure and quantify the performance of
shared execution environments under load, e.g., public cloud
or general virtualized service infrastructures. In this talk, we
first discuss the inherent challenges of providing performance
guarantees in the presence of highly variable workloads and
load spikes. We then present novel metrics and techniques
for shared execution environments, specifically considering
the dynamics of modern service infrastructures.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

1. INTRODUCTION

The proliferation of shared execution environments, based
on paradigms such as virtualization and cloud computing, is
becoming increasingly ubiquitous in today’s I'T landscape.
Cloud computing is a novel paradigm for providing data
center resources as on demand services in a pay-as-you-go
manner. It promises significant cost savings by making it
possible to consolidate workloads and share infrastructure
resources among multiple applications resulting in higher
cost- and energy-efficiency. Despite the hype around it, it is
well established that this new computing model is already
transforming a large part of the IT industry (5} [10].

However, the inability of today’s cloud technologies to pro-
vide dependability guarantees is a major showstopper for
the widespread adoption of the cloud paradigm, especially
for mission-critical applications [5]. The term dependability
is understood as a combination of service availability and re-
lrability, commonly considered as the two major components
of dependability [11], in the presence of variable workloads
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(e.g., load spikes), security attacks, and operational failures.
Given that an overloaded system appears as unavailable to
its users, and that failures typically occur during overload
conditions, a prerequisite for providing dependable services
is to ensure that the system has sufficient capacity to handle
its dynamic workload [12]. According to [10], concerns of or-
ganizations about service availability is a major obstacle to
the adoption of cloud computing.

Today’s cloud platforms generally follow a trigger-based
approach when it comes to enforcing application-level service-
level agreements (SLAs), e.g., concerning availability or re-
sponsiveness. Triggers can be defined that fire in a reactive
manner when an observed metric reaches a certain threshold
(e.g., long service response times) and execute certain prede-
fined reconfiguration actions until given stopping criteria are
fulfilled (e.g., response times drop). Triggers are typically
used to implement elastic resource provisioning mechanisms.
The term elasticity is understood as the degree to which a
system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner, such
that at each point in time the available resources match the
current demand as closely as possible [3|. Better elasticity
leads to higher availability and responsiveness, as well as to
higher resource- and cost-efficiency.

However, application-level metrics, such as availability and
responsiveness, normally exhibit a highly non-linear behav-
ior on system load, and they typically depend on the behav-
ior of multiple virtual machines (VMs) across several ap-
plication tiers. Thus, for example, if a workload change is
observed, the platform cannot know in advance how much,
and at what level of granularity, additional resources in
the various application tiers will be required (e.g., vCores,
VMs, physical machines, network bandwidth), and where
and how the newly started VMs should be deployed and
configured to ensure dependability without sacrificing effi-
ciency. Moreover, the platform cannot know how fast new
resources should be allocated and for how long they should
be reserved. Hence, it is hard to determine general thresh-
olds of when triggers should be fired, given that the appro-
priate triggering points typically depend on the architecture
of the hosted services and their workload profiles, which can
change frequently during operation.

Furthermore, in case of contention at the physical resource
layer, the availability and responsiveness of an individual
application may be significantly influenced by applications
running in other co-located virtual machines (VMs) sharing
the physical infrastructure [4]. Thus, to be effective, triggers
must also take into account the interactions between applica-



tions and workloads at the physical resource layer. The com-
plexity of such interactions and the inability to predict how
changes in application workload profiles propagate through
the layers of the system architecture down to the physical
resource layer render conventional trigger-based approaches
unable to reliably enforce SLAs in an efficient and proac-
tive fashion (i.e., allocating only as much resources as are
actually needed and reconfiguring proactively before SLA
violations have occurred).

As a result of the above challenges, today’s shared ex-
ecution environments based on 1st generation cloud tech-
nologies rely on “best-effort” mechanisms and do not pro-
vide dependability guarantees. Although no guarantees are
given, the provided level of dependability is a major distin-
guishing factor between different service offerings. To make
such offerings comparable, novel metrics and techniques are
needed allowing to measure and quantify the dependabil-
ity of shared execution environments, e.g., cloud computing
platforms or general virtualized service infrastructures.

In this keynote talk, we first discuss the inherent chal-
lenges of providing service dependability in shared execu-
tion environments in the presence of highly variable work-
loads and load spikes. We then present novel metrics and
techniques for measuring and quantifying platform elastic-
ity and performance isolation specifically taking into account
the dynamics of modern service infrastructures. We consider
both environments where virtualization is used as a basis
for enabling resource sharing, e.g., as in Infrastructure-as-
a-Service (TaaS) offerings, as well as multi-tenant Software-
as-a-Service (SaaS) applications, where the whole hardware
and software stack (including the application layer) is shared
among different customers (i.e., tenants). We focus on eval-
uating two dependability aspects: i) the ability of the sys-
tem to provision resources in an elastic manner, i.e., system
elasticity [3, |2} |13} 1], ii) the ability of the system to isolate
different applications and customers sharing the physical in-
frastructure in terms of the performance they observe, i.e.,
performance isolation |8, (7,9, 6]. We discuss the challenges
in measuring and quantifying the mentioned two dependabil-
ity properties presenting existing approaches to tackle them.
Finally, we discuss open issues and emerging directions for
future work in the area of dependability benchmarking.
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