Load Testing Elasticity and Performance Isolation in
Shared Execution Environments

Samuel Kounev
Chair of Software Engineering
University of Wiirzburg
97074 Wiirzburg, Germany

skounev@acm.org

ABSTRACT

The inability to provide performance guarantees is a ma-
jor challenge for the widespread adoption of shared execu-
tion environments, based on paradigms such as virtualiza-
tion and cloud computing. Performance is a major distin-
guishing factor between different service offerings. To make
such offerings comparable, novel metrics and techniques are
needed allowing to measure and quantify the performance of
shared execution environments under load, e.g., public cloud
or general virtualized service infrastructures. In this talk, we
first discuss the inherent challenges of providing performance
guarantees in the presence of highly variable workloads and
load spikes. We then present novel metrics and techniques
for shared execution environments, specifically considering
the dynamics of modern service infrastructures.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

1. INTRODUCTION

The proliferation of shared execution environments, based
on paradigms such as virtualization and cloud computing, is
becoming increasingly ubiquitous in today’s I'T landscape.
Cloud computing is a novel paradigm for providing data
center resources as on demand services in a pay-as-you-go
manner. It promises significant cost savings by making it
possible to consolidate workloads and share infrastructure
resources among multiple applications resulting in higher
cost- and energy-efficiency. Despite the hype around it, it is
well established that this new computing model is already
transforming a large part of the IT industry (5} [10].

However, the inability of today’s cloud technologies to pro-
vide dependability guarantees is a major showstopper for
the widespread adoption of the cloud paradigm, especially
for mission-critical applications [5]. The term dependability
is understood as a combination of service availability and re-
lrability, commonly considered as the two major components
of dependability [11], in the presence of variable workloads

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

LT’15, February 1, 2015, Austin, Texas, USA.

Copyright © 2015 ACM 978-1-4503-3337-5/15/02 ...$15.00.
http://dx.doi.org/10.1145/2693182.2693186.

(e.g., load spikes), security attacks, and operational failures.
Given that an overloaded system appears as unavailable to
its users, and that failures typically occur during overload
conditions, a prerequisite for providing dependable services
is to ensure that the system has sufficient capacity to handle
its dynamic workload [12]. According to [10], concerns of or-
ganizations about service availability is a major obstacle to
the adoption of cloud computing.

Today’s cloud platforms generally follow a trigger-based
approach when it comes to enforcing application-level service-
level agreements (SLAs), e.g., concerning availability or re-
sponsiveness. Triggers can be defined that fire in a reactive
manner when an observed metric reaches a certain threshold
(e.g., long service response times) and execute certain prede-
fined reconfiguration actions until given stopping criteria are
fulfilled (e.g., response times drop). Triggers are typically
used to implement elastic resource provisioning mechanisms.
The term elasticity is understood as the degree to which a
system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner, such
that at each point in time the available resources match the
current demand as closely as possible [3|. Better elasticity
leads to higher availability and responsiveness, as well as to
higher resource- and cost-efficiency.

However, application-level metrics, such as availability and
responsiveness, normally exhibit a highly non-linear behav-
ior on system load, and they typically depend on the behav-
ior of multiple virtual machines (VMs) across several ap-
plication tiers. Thus, for example, if a workload change is
observed, the platform cannot know in advance how much,
and at what level of granularity, additional resources in
the various application tiers will be required (e.g., vCores,
VMs, physical machines, network bandwidth), and where
and how the newly started VMs should be deployed and
configured to ensure dependability without sacrificing effi-
ciency. Moreover, the platform cannot know how fast new
resources should be allocated and for how long they should
be reserved. Hence, it is hard to determine general thresh-
olds of when triggers should be fired, given that the appro-
priate triggering points typically depend on the architecture
of the hosted services and their workload profiles, which can
change frequently during operation.

Furthermore, in case of contention at the physical resource
layer, the availability and responsiveness of an individual
application may be significantly influenced by applications
running in other co-located virtual machines (VMs) sharing
the physical infrastructure [4]. Thus, to be effective, triggers
must also take into account the interactions between applica-

tions and workloads at the physical resource layer. The com-
plexity of such interactions and the inability to predict how
changes in application workload profiles propagate through
the layers of the system architecture down to the physical
resource layer render conventional trigger-based approaches
unable to reliably enforce SLAs in an efficient and proac-
tive fashion (i.e., allocating only as much resources as are
actually needed and reconfiguring proactively before SLA
violations have occurred).

As a result of the above challenges, today’s shared ex-
ecution environments based on 1st generation cloud tech-
nologies rely on “best-effort” mechanisms and do not pro-
vide dependability guarantees. Although no guarantees are
given, the provided level of dependability is a major distin-
guishing factor between different service offerings. To make
such offerings comparable, novel metrics and techniques are
needed allowing to measure and quantify the dependabil-
ity of shared execution environments, e.g., cloud computing
platforms or general virtualized service infrastructures.

In this keynote talk, we first discuss the inherent chal-
lenges of providing service dependability in shared execu-
tion environments in the presence of highly variable work-
loads and load spikes. We then present novel metrics and
techniques for measuring and quantifying platform elastic-
ity and performance isolation specifically taking into account
the dynamics of modern service infrastructures. We consider
both environments where virtualization is used as a basis
for enabling resource sharing, e.g., as in Infrastructure-as-
a-Service (TaaS) offerings, as well as multi-tenant Software-
as-a-Service (SaaS) applications, where the whole hardware
and software stack (including the application layer) is shared
among different customers (i.e., tenants). We focus on eval-
uating two dependability aspects: i) the ability of the sys-
tem to provision resources in an elastic manner, i.e., system
elasticity [3, |2} |13} 1], ii) the ability of the system to isolate
different applications and customers sharing the physical in-
frastructure in terms of the performance they observe, i.e.,
performance isolation |8, (7,9, 6]. We discuss the challenges
in measuring and quantifying the mentioned two dependabil-
ity properties presenting existing approaches to tackle them.
Finally, we discuss open issues and emerging directions for
future work in the area of dependability benchmarking.

2. BIOGRAPHY

Samuel Kounev is a Professor and Chair of Computer Sci-
ence at the Department of Computer Science, University of
Wiirzburg, Germany. His research focusses on developing
methods, techniques and tools for the engineering of depend-
able and efficient software systems. Relevant research areas
include: software design, modeling and architecture-based
analysis; systems benchmarking, monitoring and experimen-
tal analysis; and autonomic and self-aware systems manage-
ment. He received a PhD degree in computer science from
Technische Universitaet Darmstadt (2005). From February
2006 to May 2008, he was a research fellow at Cambridge
University. In April 2009, he received the Emmy-Noether
Career award (1 Mil. EUR) for excellent young scientists
by the German Research Foundation (DFG). He currently
serves as elected Chair of the Research Group of the Stan-
dard Performance Evaluation Corporation (SPEC), which
he co-founded in 2010, providing a platform for collabora-
tive research efforts between academia and industry in the
area of quantitative system evaluation. He also serves as

Co-Chair of the Steering Committee of the ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE),
which he co-founded in 2010 as a first joint event between
ACM and SPEC. He is a member of the ACM, IEEE, and
the German Computer Science Society, and recipient of sev-
eral honors including the SPEC 2014 Presidential Award for
“Excellence in Research” recognizing lasting contributions
to the field of performance evaluation and benchmarking of
computing systems.

3. REFERENCES

[1] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-Adaptive Workload Classification and Forecasting
for Proactive Resource Provisioning. 2013.

[2] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-Adaptive Workload Classification and Forecasting
for Proactive Resource Provisioning. Concurrency and
Computation - Practice and Experience, John Wiley
and Sons, Ltd., 26(12):2053-2078, 2014.

[3] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity
in Cloud Computing: What it is, and What it is Not.
In 10th International Conference on Autonomic
Computing (ICAC 2013). USENIX, June 2013.

[4] N. Huber, M. von Quast, M. Hauck, and S. Kounev.
Evaluating and Modeling Virtualization Performance
Overhead for Cloud Environments. In International
Conference on Cloud Computing and Services Science
(CLOSER 2011), May 2011.

[5] B. Jennings and R. Stadler. Resource Management in
Clouds: Survey and Research Challenges. Journal of
Network and Systems Management, March 2014.

[6] R. Krebs, C. Momm, and S. Kounev. Architectural
Concerns in Multi-Tenant SaaS Applications. In 2nd
International Conference on Cloud Computing and
Services Science (CLOSER 2012), April 2012.

[7] R. Krebs, C. Momm, and S. Kounev. Metrics and
Techniques for Quantifying Performance Isolation in
Cloud Environments. In 8th ACM SIGSOFT
International Conference on the Quality of Software
Architectures (QoSA 2012), June 2012.

[8] R. Krebs, S. Spinner, N. Ahmed, and S. Kounev.
Resource Usage Control In Multi-Tenant Applications.
In 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), 2014.

[9] R. Krebs, A. Wert, and S. Kounev. Multi-Tenancy
Performance Benchmark for Web Application
Platforms. In 13th International Conference on Web
Engineering (ICWE 2018). Springer-Verlag, July 2013.

[10] M. Armbrust et al. A View of Cloud Computing.
Communications of the ACM, 53(4):50-58, 2010.

[11] J. Muppala, R. Fricks, and K. S. Trivedi.
Computational Probability, volume 24, chapter
Techniques for System Dependability Evaluation.
Kluwer Academic Publishers, 2000.

[12] R. Nou, S. Kounev, F. Julia, and J. Torres.
Autonomic QoS Control in Enterprise Grid
Environments using Online Simulation. Journal of
Systems and Software, 82(3):486-502, Mar. 2009.

[13] J. G. von Kistowski, N. R. Herbst, and S. Kounev.
LIMBO: A Tool For Modeling Variable Load
Intensities. In 5th Intl. Conf. on Performance
Engineering (ICPE 2014). ACM, March 2014.

	Introduction
	Biography
	References

