A Performance Tree-based Monitoring Platform for Clouds

Xi Chen and William J. Knottenbelt
Department of Computing
Imperial College London
{x.chen12, wik}@imperial.ac.uk

ABSTRACT

Cloud-based software systems are expected to deliver reli-
able performance under dynamic workload while efficiently
managing resources. Conventional monitoring frameworks
provide limited support for flexible and intuitive performance
queries. In this paper, we present a prototype monitor-
ing and control platform for clouds that is a better fit to
the characteristics of cloud computing (e.g. extensible, user-
defined, scalable). Service Level Objectives (SLOs) are ex-
pressed graphically as Performance Trees, while violated
SLOs trigger mitigating control actions.

Categories and Subject Descriptors

C.4 [Computing Systems Organisation|: Performance
of Systems—Modelling Techniques

Keywords

Cloud, Benchmarking, Performance, Modelling, Evaluation

INTRODUCTION

Active performance management is necessary to meet the
challenge of maintaining QoS in cloud environments. In
this context, we present a prototype monitoring and con-
trol framework for clouds which makes three contributions:

1.

e We outline system requirements for an extensible mod-
ular system which allows for monitoring, performance
evaluation and automatic scaling up/down control of
cloud-based Java applications.

e We present a front-end which allows for the graphical
specification of SLOs using Performance Trees (PTs).
SLOs may be specified over both live and historical
data, and may be sourced from multiple applications
running on multiple clouds.

e We demonstrate how our monitoring and evaluation
feedback loop system ensures the SLOs of a web ap-
plication are achieved by autoscaling.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

ICPE’15, Jan. 31-Feb. 4, 2015, Austin, Texas, USA.

ACM 978-1-4503-3248-4/15/01.

http://dx.doi.org/10.1145/2668930.2688063.

97

density / distributio

target

Figure 1: An Example of Performance Tree Query:
“what is the 98.0th percentile of the passage time
density of the passage defined by the set of start
states identified by label ‘start’ and the set of target
states identified by label ‘target’?

2. SYSTEM REQUIREMENTS

In this section we present an overview of our system by dis-
cussing the requirements for an effective cloud-based moni-
toring platform and the techniques used to achieve them.

In-depth performance profiling. We require the abil-
ity to extract generic metrics on a per-application basis, such
as CPU utilisation, memory percentage etc., as well as cus-
tom application-specific metrics [6]. This functionality is
best delivered through a well-defined API.

Graphical performance query & online/offline eval-
uation. An important feature which distinguishes our plat-
form from other available tools is the fact we use Perfor-
mance Trees (PTs) [5 [3] for the comprehensive intuitive,
and flexible definition of performance queries and evalua-
tion, while most of the readily available monitoring tools
provide users a textual query language [4]. We also incorpo-
rate support for historical trend analysis by retaining past
performance data. A performance query which is expressed
in a textual form as follow can be described as a form of
hierarchical tree structure, as shown in Figure

Extensible & Scalable. First, since multiple applica-
tions and multi-cloud environments may impose different
choices of programming language and monitoring tool, a
light-weighted platform independent data format (JSON) is
used for monitoring data exchange. Second, all components
of our system communicate using a publish-subscribe model,
which allows for easy scaling and extensibility. Third, a
NoSQL database is used due to ability to support large data
volumes found in real-world use-cases. [1]

Application Real-time Performance
Client Data Data I Data Evaluation (PT)
(Httperf) Collector (JMS)

Performance
Model
Resource

Application Data Data Historical
(Petstore) Extractor (JMX) Data
VM
(Xen, Virtualbox)
Provisioning Predictive
Decisions Results

Automatic
Control

Figure 2: Testbed Architecture

3. PROTOTYPE IMPLEMENTATION

Figure [2]illustrates the prototype of our system. The sys-
tem is realised as a Java application capable of monitoring
and evaluating the performance of a target cloud applica-
tion, with concurrent scaling of the cloud system so as to
meet user-specified SLOs.

The data collector (Java Message Service) extracts appli-
cation metrics, e.g. response time and throughput. This is
combined with the output of the data extractor (Java Man-
agement Extension), which provides hardware-related met-
rics, i.e. utilisation of each core of the VM, memory band-
width, etc. The data collector can either feed this data di-
rectly into the performance evaluator or store it a database
for future analysis. The performance evaluator evaluates
metrics starting from the leaves of the PTs, and ending
with the root, thus producing performance indices which are
compared to target measurements for resource management.
The automatic controller (autoscale) then optimizes the re-
source configuration to meet the performance targets [2].

4. DEMONSTRATION
4.1 Application and System

Oracle Java Petstore, a common HTTP-based web appli-
cation, is used to expose a server to high HTTP request vol-
umes which cause intensive CPU activity related to process-
ing of input and output packets. The hypervisor (XenServer
6.2) is running on an a Dell PowerEdge C6220 compute
server with two Intel Xeon E5-2690 8-core 2.9 GHz proces-
sors and two 1 TB hard drives. The network between each
server is 10 Gbps. Each server virtual machine is assigned
with on vCPU with 1 to 4 cores, 4 GB memory and one
vNIC. Httperf is configured on the other servers to send a
fixed number of HT'TP requests rate incrementally for each
Petstore instance [2].

4.2 GUI and Demo in Action

The user interface contains a dashboard where the user
can manage up to 8 different PTs as shown in Figure[3] The
graphical nature allows easy comprehension and manipula-
tion by the users, and — thanks to their extensibility — new
nodes can be added. The user can design their own PTs,
either from scratch or by loading in a saved tree from a file.
The user can specify the performance metrics, the applica-
tion, and the server they want to evaluate. Once the tree
has been designed and the evaluation has been started, the

98

—smx
Response Time Evaluation Histogram

—wox
Heap Memory Evaluation Value Graph

T \wuw‘u i
A (IR

I L M\ L A
I e ! I

HAAE R O
AT

B [[T'EEEERE

FISELIST 1 FIDa]

Figure 3: Performance Tree Evaluation Interface:
the area on the top left is where the user can manage
up 8 different PTs. Two performance evaluations
are (a) Is it satisfied that 90% of response time is
lower than 10 ms? (b) Is it true that heap memory
is lower than 300 MB?

editor receives data from the data collector or the database,
which it uses to update the square panel in the GUI. If the
performance requirement is violated, this is represented by a
red color applied to the evaluation box; otherwise it is green.

Figure [3] illustrates two cases: (a) the monitoring and
control of a response-time-related SLO with autoscaling en-
abled, (b) the monitoring of a memory-consumption-related
SLO with autoscaling disabled. In the first evaluation, once
the PT detects the SLO is violated, the automatic controller
module migrates the server to a larger instance. In this
case, the server is migrated from a 1 core to a 2 core in-
stance, so the response time decreases and the SLOs is not
violated, represented as a ‘green’ PT block. The migration
time is usually around 8 to 10 secs inside of the same phys-
ical machine. In the second case, the ‘red’ block illustrates
the memory-consumption-related SLA is violated since au-
toscaling is not enabled.

S. REFERENCES

[1] P. Bar, R. Benfredj, U. D. Marks, Jonathon,

B. Wozniak, G. Casale, and W. J. Knottenbelt.
Towards a monitoring feedback loop for cloud
applications. Proc. MultiCloud’13, 2013.

X. Chen, C. P. Ho, R. Osman, P. G. Harrion, and W. J.
Knottenbelt. Understanding, modelling, and improving
the performance of web applications in multicore
virtualised environments. Proc. ICPE’ 14, pages
197-207, 2014.

N. J. Dingle, W. J. Knottenbelt, and T. Suto. PIPE2:
A tool for the performance evaluation of generalised
stochastic Petri nets. Proc. ACM SIGMETRICS, 2009.
F. Gorsler, F. Brosig, and S. Kounev. Performance
queries for architecture-level performance models.
ICPE’ 14, 2014.

T. Suto, J. Bradley, and W. Knottenbelt. Performance
trees: A new approach to quantitative performance
specification. Proc. MASCOTS, pages 303-313, 2006.
Q. Zheng, H. Chen, Y. Wang, J. Zhang, and J. Duan.
COSBench: cloud object storage benchmark. Proc.
ICPE’ 13, pages 199-210, 2013.

