
Sampling-based Steal Time Accounting
under Hardware Virtualization

Peter Hofer
Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems

Johannes Kepler University Linz, Austria
peter.hofer@jku.at

Florian Hörschläger
Johannes Kepler University Linz, Austria

florian.hoerschlaeger@jku.at

Hanspeter Mössenböck
Institute for System Software

Johannes Kepler University Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Virtualization enables the efficient sharing of hardware re-
sources among multiple virtual machines (VMs). Because the
physical resources are limited, the scheduler must often sus-
pend one VM to allow some other VM to run. The operating
system in a VM is typically unaware of the suspension and
accounts periods of suspension as CPU time to the executing
application thread. This misrepresentation of resource usage
makes it difficult to tell whether a performance problem is
caused by an actual bottleneck in the application or by the
virtualization infrastructure.

We present a novel approach to compute to what degree the
threads of an application in a virtual machine are affected by
suspension. Our approach does not require any modifications
to the operating system or to the virtualization software.
It periodically samples the system-wide amount of “steal
time” that is reported by the virtualization infrastructure,
and divides it among the monitored threads according to
their CPU usage. With a prototype implementation, we
demonstrate that our approach accounts accurate amounts
of steal time to application threads, that it can be used to
compute the true resource usage of an application, and that
it incurs only negligible performance overhead.

1. INTRODUCTION
Hardware virtualization is commonly used to efficiently

utilize and share hardware resources. The resources of a
physical machine (the host) are shared between several virtual
machines (the guests). The creation and execution of virtual
machines (VMs) is managed by a hypervisor. Each VM has
its own operating system that runs in an isolated execution
domain, which provides reliability and security. VMs can
also be deployed and moved between sites with less effort
than physical hardware.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2695524.

The number of virtual CPUs of the guests can exceed
the number of physical CPUs of the host. Therefore, the
hypervisor cannot schedule all virtual CPUs on the available
physical CPUs and must temporarily suspend some of them.
Time periods when a virtual CPU is ready to execute, but is
suspended, are referred to as steal time.

The amount of steal time is an important indicator for
whether the assigned virtual resources are overprovisioned or
whether the physical resources are insufficient. However, the
operating system in the VM is often not aware of steal time
or does not incorporate it into resource usage accounting
because the concept of steal time does not exist with physical
hardware. When a virtual CPU is suspended, the steal
time is considered active CPU time and counted toward the
resource usage of the currently executing thread. Therefore,
it is difficult for a performance engineer to spot whether a
performance problem is caused by an actual bottleneck in
the application or by virtualization.

In this paper, we present an approach for how a perfor-
mance analysis tool in an affected VM can estimate to what
degree steal time affects individual application threads. Our
approach relies on the hypervisor to provide the steal time
for the entire VM. We periodically sample this steal time as
well as the CPU usage of threads and then assign fractions
of the steal time to them.

The main contributions of this work-in-progress paper are:

1. We describe a new technique to attribute VM-wide
steal time to individual application threads. It does
not require any changes to the hypervisor or to the
operating system.

2. We present a preliminary evaluation that demonstrates
that we are able to reliably separate hypervisor steal
time from the actual CPU usage of application threads
at negligible performance costs.

2. APPROACH
Hypervisors commonly provide an interface that allows

the operating system or specific guest software in the VM
to detect that they are running in a VM and to interact
with the hypervisor, which can benefit the performance of
the VM. A hypervisor interface typically also exposes steal
time information. However, since the hypervisor has no

87

knowledge of the processes and threads running within the
VM, it accounts steal time only to virtual CPUs as a whole.
On this level, steal time is only useful to performance analysis
tools as an indicator for how the entire system is affected by
virtual CPU suspension.

Our approach works from within the VM and breaks down
the steal time provided by the hypervisor to the monitored
application threads. We base our approach on the fact that
those threads which use the most CPU time (or, to which
the most CPU time is attributed) are also the ones that are
most affected by the suspension of virtual CPUs. Hence, we
divide the steal time among the threads in proportion to the
CPU time they have consumed.

When a VM has multiple virtual CPUs, we would ideally
determine which threads were executed on each virtual CPU
and divide that CPU’s steal time among these threads. Unfor-
tunately, common operating systems do not make scheduling
information available. However, bare-metal hypervisors often
employ a form of co-scheduling in which all virtual CPUs of
a VM are scheduled to run on physical CPUs at the same
time, which avoids problems such as when one virtual CPU
waits for some other virtual CPU that is currently suspended
by the hypervisor [1]. With such scheduling, all virtual
CPUs of a VM are similarly affected by hypervisor steal time.
Other hypervisors simply rely on the host operating system’s
scheduler, and a fair scheduler should ensure that one ready
virtual CPU of a VM is not suspended significantly longer
than others. Therefore, we sum up the steal time from all
virtual CPUs of the VM and divide it among all threads that
consumed CPU time.

The extent of hypervisor suspension in a VM also depends
on the load in other VMs and on the host and thus varies over
time. To account for this fact, we use a sampling approach
and periodically read or compute the following values to
account the steal time since the last sample:

∆tsteal,total: The total steal time of all virtual CPUs since
the previous sample.

∆tcpu,total: The total apparent CPU time (including steal
time) that was consumed by the VM since the previous
sample.

∆tcpu(T): The apparent CPU time (including steal time)
that was consumed by thread T since the last sample.

The hypervisor and the operating system typically make
steal times and CPU times available as total times since the
start of the VM or since the start of the thread. Computing
the deltas between samples thus requires storing the values
that were read in the previous sample. We then use the
deltas between samples to divide the steal time among the
monitored threads using the following equation for each
thread T :

∆tsteal(T) = ∆tsteal,total
∆tcpu(T)

∆tcpu,total

The steal time of a process can be computed the same
way when the operating system provides a per-process CPU
usage that includes all threads. Alternatively, the steal time
of each thread of the process can be computed individually
and added up, but this can lead to inaccuracies when threads
exit between samples.

Figure 1 shows an example of how our approach works in a
schedule with three threads T1,2,3 executing on three virtual

t1

suspendedT1

idle

t2

t
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T2 T3

VCPU1
VCPU2
VCPU3

suspended

Figure 1: Schedule with three threads on three vir-
tual CPUs

processors V CPU1,2,3. Initially, V CPU1 is executing thread
T1, V CPU2 is executing T2, and V CPU3 is idle. At t1 = 12,
we take a first sample. Because we do not have a previous
sample, we cannot compute deltas at this point and do not
account steal time to the threads. At t = 14, the hypervisor
suspends both V CPU1 and V CPU2 until it resumes them at
t = 19. At t = 21, the operating system schedules out T2

on V CPU2 and executes T3. Finally, at t2 = 22, we take a
second sample and compute the deltas to the first sample as
follows:

∆tcpu(T1) = 10 ∆tcpu(T2) = 9 ∆tcpu(T3) = 1

∆tcpu,total = 10 + 9 + 1 = 20

∆tsteal,total = 5 + 5 = 10

The time during which the virtual CPUs were suspended
is accounted as CPU time to the scheduled threads because
the operating system does not consider steal time in its
CPU time accounting. Note that V CPU3 was idle, so it does
not contribute any steal time, although it was technically
suspended. Our approach now computes the following steal
times for the individual threads:

∆tsteal(T1) = 10
10

20
= 5 ∆tsteal(T2) = 10

9

20
= 4.5

∆tsteal(T3) = 10
1

20
= 0.5

Therefore, T1 is assigned the correct amount of steal time.
Although T3 was not affected by suspension, it is assigned
a small portion of the steal time because it was scheduled
briefly at the end of the sampling period. For the same
reason, T2 is assigned slightly less than the actual amount of
suffered steal time. However, we expect that such deviations
become insignificant with frequent samples.

3. IMPLEMENTATION
We implemented a prototype of our approach that com-

putes the steal time of all threads of a Java application
running in a Linux guest under a Linux host with the Kernel-
based Virtual Machine (KVM, [7]) as a hypervisor. To inte-
grate our prototype with the Java virtual machine (JVM),
we implemented it as an agent that uses the Java VM Tool
Interface (JVMTI, [9]).

Linux exposes information about the resource usage of
the system, its processes, and its threads via the procfs
pseudo-filesystem, which is typically mapped to /proc. The

88

/proc/stat file provides the resource usage of the entire sys-
tem, which is broken down into CPU time spent executing
application code, CPU time spent in the operating system
(mostly on behalf of an application), steal time, and idle
time. These times are given in clock ticks since the start of
the operating system. Unlike for threads, the system-wide
CPU times exclude the steal time. We therefore compute
tcpu,total as the sum of all times except the idle time, and
use the provided steal time as tsteal,total. We then use the
stored values from the last sample to compute ∆tcpu,total
and ∆tsteal,total.

The CPU time of an individual process is available in
its /proc/[pid]/stat file, where [pid] is the numeric process
identifier. The CPU time of a specific thread of a process is
available in /proc/[pid]/task/[tid], where [tid] is the thread
identifier. The times are given in clock ticks since the start
of the thread and split up into “regular” user-space ticks and
in system ticks. System ticks are time spent in the operating
system on behalf of the application. In our implementation,
we do not distinguish between user-space ticks and system
ticks. Whenever we take a sample, we take their sum and
compare it to the stored sum from the last sample to get
∆tcpu,total(x).

Our JVMTI agent is loaded by the JVM at startup time.
During initialization, we create data structures to store the
tick counts from /proc that are required to compute the
deltas, and to store the accounted steal time for each thread.
Our agent registers for JVMTI events so that it is notified
when application threads start and end. This enables us
to create a record for a thread when it starts and to stop
monitoring a thread (but keep its record) when it ends.

When the application is launched, our agent starts a sepa-
rate thread with a sampling loop. In this loop, we periodically
retrieve the system-wide tick counts as well as the tick counts
for all existing application threads. We then compute the
deltas using the stored values from our records, account the
new steal time to the threads, and update our records. At
the end of an iteration, the sampling loop pauses for the sam-
pling interval before it takes another sample and attributes
the new steal time.

4. EVALUATION
We used our prototype implementation to evaluate the

accuracy and the overhead of our approach. We set up KVM
virtualization under openSUSE Linux 13.1 on a computer
with a quad-core Intel Core i7-4770 processor with 16 GB
of memory. To get more stable results, we disabled the
hyperthreading, turbo boost and dynamic frequency scaling
features. With the exception of essential system services, no
other processes were running during our measurements.

We relied on the DaCapo suite [2] for our tests, which con-
sists of non-trivial benchmarks with different multi-threading
characteristics1. The workload of the benchmarks is constant,
so the consumed CPU times are similar between executions.
Therefore, we test whether subtracting the accounted steal
time results in a similar CPU time as when the benchmarks
are not subjected to hypervisor suspension. However, because
most benchmarks use thread pools to divide work between
threads, the CPU time of individual benchmark threads can
vary between executions. Therefore, we compared the total

1We did not use the DaCapo suite’s batik and eclipse bench-
marks because they do not run on OpenJDK 8.

CPU time of all benchmark threads (but excluding threads
of the JVM and the sampling thread).

First, we created a VM with four virtual CPUs and in-
stalled openSUSE Linux 13.1 and the Oracle Java SDK 8u20
in it. We then executed the DaCapo benchmarks with our
JVMTI agent, which we configured to take samples every
50 milliseconds. To reduce the impact of the startup phase
of the JVM, we executed 10 successive iterations of every
benchmark in a single JVM instance. We recorded the total
CPU times of all benchmark threads over all iterations. We
further executed multiple rounds of each benchmark (with
10 iterations each) and took the median total CPU time.

Next, we created a second, identical VM which only exe-
cutes a tool that continuously generates artificial CPU load
by computing checksums in four threads. Therefore, both
VMs continuously compete with each other for physical CPU
time, and the hypervisor is forced to suspend virtual CPUs.
We started this tool in the benchmarking VM as well, so that
the suspension of its virtual CPUs affects not only the bench-
mark threads. Instead, depending on the multi-threading
characteristics of each benchmark and on scheduling, suspen-
sion affects the benchmark threads and the tool’s threads to
different degrees over time, which is more likely to expose
inaccuracies in our steal time accounting approach. Using
this setup, we repeated our measurements.

4.1 Corrected CPU Times
Figure 2 shows the corrected and uncorrected median total

CPU times of all application threads for each benchmark.
The values of each benchmark are normalized to its median
CPU time without extra load. The error bars indicate the
5th and 95th percentiles. The figure demonstrates that the
corrected CPU times under load are commonly within a few
percent of the CPU times in an idle environment, whereas
the uncorrected CPU times under load are typically around
twice as large as the CPU times in the idle environment.
In some cases, our prototype accounts too much steal time,
such as for avrora or tradebeans. For other benchmarks, the
steal time is underestimated, such as for tomcat, tradesoap
and lusearch. The reasons seem to be more complex than
just differences between the multi-threading characteristics
of the benchmarks, because tradebeans and tradesoap are
identical in that regard, but show opposite results. We are
investigating these deviations in our ongoing work.

4.2 Overhead
We measured the overhead of our approach by comparing

the wall-clock execution times of each benchmark when our
agent is enabled and when the agent is not enabled. We
performed these measurements in an otherwise idle VM, with
no other VMs running. Figure 3 shows the normalized median
overheads and the 5th and 95th percentiles for all benchmarks.
fop, lusearch and sunflow show a slight median overhead
between 0.5% and 1.5%. For avrora, h2 and tradebeans,
the total execution times with the agent enabled are even
1% to 5% smaller than without the agent, which probably
comes from effects that the agent’s sampling thread has
on scheduling. The other benchmarks did not show any
distinctive changes in execution time. The geometric mean
of the execution times with steal time accounting is 99.2% of
that without steal time accounting. Therefore, we consider
the overhead of our approach negligible or even non-existent.

89

0%
25%
50%
75%

100%
125%
150%
175%
200%
225%
250%
275%
300%
325%

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

No load
Under load, steal time accounted
Under load, steal time unaccounted

Figure 2: Normalized total CPU time of all application threads with and without accounted steal time

94%
96%
98%

100%
102%
104%
106%

G
. M

ean

avrora

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

tradesoap

xalan

No agent
Agent active

Figure 3: Overhead of the agent

5. RELATED WORK
Timing issues in VMs have been investigated before. Lampe

et al. measured the impact of inaccurate timing in publicly
available cloud computing services [8]. Johnson et al. de-
scribe extensions to the Performance API (PAPI) project
which provide more accurate timers and shared resource us-
age statistics in VMs [5]. However, these extensions only
provide system-wide steal time information, and the paper
emphasizes the need for per-process steal time accounting.
Chen et al. describe a modification to the Xen hypervisor
that delivers hypervisor scheduling events to a modified guest
operating system which then uses them to correctly account
steal time to processes and threads [3]. M. Holzheu proposed
a patch for the Linux kernel that detects increases of the
per-CPU steal time and accounts them to the scheduled pro-
cesses and threads [4]. Both approaches require modifications
to the operating system or hypervisor, while our approach
does not.

6. CONCLUSIONS AND FUTURE WORK
We described a novel approach for determining to what

degree application threads in a virtual machine are affected
when the hypervisor suspends virtual CPUs. Our approach
does not require any modifications to the hypervisor or to the
operating system. We implemented our approach for Java
applications in a Linux guest with KVM as the hypervisor.
An evaluation with the DaCapo benchmarks demonstrated
that our approach accurately accounts the system-wide steal
time to the application threads at negligible overhead, and
that the accounted steal time can be used to compute the
application’s true execution time on a physical CPU.

As next steps, we plan to extend our prototype with the
capability to track transactions that execute within a thread,
such as individual web requests. Measuring the duration

and resource usage of transactions is a central feature of
Application Performance Monitoring (APM) systems such as
that from our industry partner Compuware [10]. Suspension
can considerably distort these measurements because of the
typically short execution time of transactions.

Furthermore, we plan to develop a test suite that gener-
ates different deterministic load patterns that we can use
to validate our approach in more detail. We also plan to
examine the effect of the sampling rate on the accuracy, par-
ticularly with different load scenarios. We further consider
experimenting with scheduling traces from the Linux perf
subsystem [6] for validation.

7. ACKNOWLEDGEMENTS
This work was supported by the Christian Doppler For-

schungsgesellschaft, and by Compuware Austria GmbH.

8. REFERENCES
[1] The CPU scheduler in VMware vSphere 5.1. VMware

Inc., 2013.

[2] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. OOPSLA ’06,
pages 169–190. ACM, Oct. 2006.

[3] H. Chen et al. XenHVMAcct: Accurate CPU Time
Accounting for Hardware-Assisted Virtual Machine.
2010 International Conference on Parallel and
Distributed Computing, Applications and Technologies,
pages 191–198, Dec. 2010.

[4] M. Holzheu. [RFC][PATCH v2 4/7] taskstats: Add per
task steal time accounting.
https://lkml.org/lkml/2010/11/11/271, 2010.

[5] M. Johnson et al. PAPI-V: Performance monitoring for
virtual machines. In ICPP Workshops, pages 194–199,
2012.

[6] kernel.org. perf: Linux profiling with performance
counters. https://perf.wiki.kernel.org/.

[7] A. Kivity et al. KVM: the Linux virtual machine
monitor. In Linux Symposium, volume 1, pages
225–230, 2007.

[8] U. Lampe et al. The Virtual Margin of Error. Proc. of
CLOSER, 2012, 2012.

[9] Oracle. JVMTMTool Interface version 1.2.1.
http://docs.oracle.com/javase/7/docs/platform/

jvmti/jvmti.html.

[10] A. Reitbauer et al. Java Enterprise Performance. 2012.

90

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.compuware.com
https://lkml.org/lkml/2010/11/11/271
https://perf.wiki.kernel.org/
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html

	Introduction
	Approach
	Implementation
	Evaluation
	Corrected CPU Times
	Overhead

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

