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ABSTRACT
Sampling profilers are popular because of their low and ad-
justable overhead and because they do not distort the profile
by modifying the application code. A typical sampling pro-
filer periodically suspends the application threads, walks
their stacks, and merges the resulting stack traces into a
calling context tree. Java virtual machines offer a convenient
interface to accomplish this, but rely on safepoints, a synchro-
nization mechanism that requires all threads to park in a safe
location. However, a profiler is primarily interested in the
running threads, and waiting for all threads to reach a safe
location significantly increases the overhead. In most cases,
taking a complete stack trace is also unnecessary because
many stack frames remain unchanged between samples.

We present three techniques that reduce the overhead of
sampling Java applications. Partial safepoints require only a
certain number of threads to enter a safepoint and can be used
to sample only the running threads. With self-sampling, we
parallelize taking stack traces by having each thread take its
own stack trace. Finally, incremental stack tracing constructs
stack traces lazily and examines each stack frame only once
instead of walking the entire stack for each sample. Our
techniques require no support from the operating system or
hardware. With our implementation in the popular HotSpot
virtual machine, we show that we can significantly reduce
the overhead of sampling without affecting the accuracy of
the profiles.
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General Terms
Experimentation, Measurement, Performance

Keywords
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1. INTRODUCTION
Profilers are valuable analysis tools that help performance

engineers to understand the behavior of applications and
to assess the contribution of individual components to the
overall execution time. A profiler observes the execution of an
application and measures the run time and/or call frequency
of methods to generate an execution profile which indicates
those methods where the most time is spent or those that are
called most frequently. An engineer can use this information
to spot bottlenecks and to apply optimizations where they
are most effective. Profiling is also useful to guide compiler
optimizations, to determine test coverage, or to identify code
that is never used.

In contrast to “flat” profiles that attribute measurements
simply to methods, no matter from where they are called,
prior research has demonstrated the importance of adding
dynamic calling context information to profiles [2, 3, 24, 25].
The calling context is the call chain from the root method
to the executing method; in other words, it is a stack trace.
Calling contexts can be merged into a calling context tree
(CCT, [2]), which differs from a call tree in that it merges
identical children (callees) of a node.

In general, there are two approaches for collecting calling
contexts. Instrumenting profilers insert code snippets in
methods to record calls in the CCT. This approach yields
an exhaustive CCT, but the instrumentation can introduce
significant overhead and distorts the measured method execu-
tion times. Sampling profilers, on the other hand, periodically
interrupt the application to take stack traces and then merge
them into the CCT. This approach requires no instrumen-
tation and typically causes significantly less overhead, but
it can miss method invocations between samples and there-
fore results in an approximate CCT with only statistically
significant information. Our research focuses on profiling
techniques with minimal overhead that are suitable for mon-
itoring production systems, which is why we concentrate on
the sampling approach.

The Java Virtual Machine Tool Interface (JVMTI, [18])
offers functionality for sampling calling contexts of Java
applications. It is supported by all common Java VM imple-
mentations and is therefore used by many Java profiling tools.
Implementations of JVMTI rely on safepoints for sampling, a
mechanism that was originally devised for garbage collection:
the Java VM inserts checks for a pending safepoint operation
in the application code. When a profiler requests a sample,
the VM signals such a pending safepoint operation and then
waits for all application threads to reach a safepoint check
and park. As soon as all application threads are parked in a
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safe state, the stack traces can be taken. However, waiting
for all threads to park causes significant delays. Parking
all threads is often not even necessary because profilers are
primarily interested in the threads that are currently running.
Furthermore, the compiler can decide to eliminate safepoint
checks for performance reasons, which further increases the
time that it takes until all threads have parked.

In our previous research, we described a scheduling-aware
sampling approach for Java VMs that uses a mechanism of
the operating system to copy stack fragments of the running
application threads into a buffer for asynchronous analy-
sis [11, 12]. While this approach achieves very low overheads,
it requires specific capabilities of the operating system. In
this paper, we present an alternative set of techniques that
also significantly reduce the overhead of sampling, but are
independent of operating systems and hardware. We im-
plemented these techniques in Oracle’s HotSpot VM [19], a
popular high-performance Java VM.

The main contributions of this paper are:

1. With partial safepoints and self-sampling, we describe
novel techniques that reduce the sampling pause times
and that can be used to target those threads that are
actually running.

2. We describe a new sampling technique called incre-
mental stack tracing. It constructs stack traces lazily
instead of walking the entire stack for each sample. In-
cremental stack tracing examines each stack frame only
once and shares the collected data between multiple
stack traces.

3. We discuss aspects of our implementation in the HotSpot
VM, such as changes to the VM’s safepoint mechanism
and special cases which must be handled for incremen-
tal stack tracing.

4. We provide an extensive evaluation of our techniques,
comparing their overheads and their CCTs with those
from conventional JVMTI sampling. For the evaluation,
we use the DaCapo suite and the Scala Benchmarking
Project. We show that our techniques are faster without
affecting the accuracy of the CCTs.

The rest of this paper is organized as follows: Section 2 in-
troduces calling context trees as well as profiling with JVMTI
using safepoints. Sections 3, 4 and 5 describe our three tech-
niques for reducing the sampling overhead and for targeting
only the running threads. Section 6 describes aspects of our
implementation. Section 7 evaluates the overheads and the
accuracy of our techniques. Section 8 examines related work,
and Section 9 concludes this paper.

2. BACKGROUND

2.1 Calling Context Trees
A flat execution profile that only shows the observed meth-

ods and their total execution times is of limited value. Often,
a performance problem does not originate in the hot methods
themselves, but rather in their callers. For example, when
profiling shows that a program spends too much time in a
sorting method, a developer could conclude that this method
is inefficient. However, it could also be the case that the
program would rather benefit from better data structures
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Figure 1: Call tree and calling context tree

that would reduce the necessary amount of sorting. The
sorting method could be called from hundreds of locations in
the program while the performance problem typically orig-
inates in only a few call sites. To identify these call sites
and to allow the developer to make changes where they have
the most impact, profilers commonly sample entire calling
contexts, which are stack traces from the executing method to
the root method (the entry point of the program or thread).

Profilers typically represent all of the collected calling
contexts in a tree structure, like a call tree. Figure 1 shows
such a call tree, depicting, among others, multiple calls from
a to b, b to c, and a to u. The call tree represents each
observed method invocation as a single node, with the caller
as its parent. When the execution times of invocations are
measured, they can be specified as edge weights. Call trees
are an exhaustive representation of all calls of a program’s
execution, but because each observed call introduces a new
node, they quickly grow very large for most programs. Call
trees are also less suitable for sampling profilers because these
profilers typically cannot distinguish whether a stack frame
seen in subsequent samples belongs to the same invocation
or to different invocations of a method.

Calling context trees (CCT, [2]) are a more compact struc-
ture than call trees. In contrast to call trees, CCTs merge
identical children into a single node and thus store identical
calling contexts only once. The edge weights specify the
number of samples that were merged or the total execution
times of all merged samples. A call tree can be converted
to a CCT simply by recursively merging sibling nodes repre-
senting calls to the same methods and adding up their edge
weights. Figure 1 shows a call tree and its corresponding
CCT. Since CCTs are more compact while still sufficiently
expressive, CCTs are more common in practice.

2.2 Sampling with JVMTI and Safepoints
The Java Virtual Machine Tool Interface (JVMTI) is a

native programming interface that allows debuggers, profil-
ers, and similar tools to interact with the Java VM and the
application running on top of it [18]. Clients of JVMTI are
called agents and run in the same process as the Java VM.
Agents can invoke JVMTI functions to control the behavior
of the application and can register callbacks to receive no-
tifications about application and VM events. For example,
an instrumenting Java profiler would be implemented as an
agent that subscribes to JVMTI’s class loading events and
modifies the bytecode of classes when they are loaded.

Typical JVMTI sampling profilers start a separate agent
thread that executes a sampling loop. In this loop, the pro-
filer uses the JVMTI function GetThreadListStackTraces

to obtain stack traces for application threads of interest, and
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then processes these traces, for example by merging them
into a CCT. It then goes to sleep for a certain time, referred
to as the sampling interval, before repeating the process.

Because JVMTI offers ready-to-use functionality to ac-
complish most of the sampling process (i.e., interrupting
multiple threads, doing stack walks and decoding the stack
frames to an array of method identifiers) sampling agents are
straightforward to develop. However, the implementation of
JVMTI in the HotSpot VM and in other VMs suffers from
problems that affect the performance of sampling agents.

When an agent calls a JVMTI function for taking stack
traces, the function does not start its work immediately,
but rather enters a task into the work queue of the VM
thread. The VM thread can be seen as the main thread of
the virtual machine and is different from the application’s
main thread. Only after higher-priority tasks in the queue
have been completed, the VM begins taking stack traces.

In order to safely walk the stacks of application threads, the
VM relies on so-called safepoints. A safepoint is a state where
all application threads are parked to allow safe execution
of operations such as garbage collection, deoptimization, or
stack walks. To accomplish this, the VM inserts checks
for a pending safepoint operation at safe locations in the
application code. When the VM thread signals a pending
safepoint, each application thread enters a parking state
after it runs to its next safepoint check. Threads that are
already blocked, such as those that wait for an I/O operation,
are always parked in a safe state and only need to enter a
safepoint when they become unblocked while the safepoint
is still in effect. Once all application threads are parked, the
VM thread can safely take stack traces of threads. When the
operation has finished, the VM leaves the safepoint, resumes
all threads and passes the collected stack traces to the agent.

Figure 2 shows an example of how JVMTI uses safepoints
to sample application threads: Thread TV M is the VM thread,
the threads T1, T2 and T3 are runnable application threads,
and thread T4 is an application thread which is blocked
waiting to receive data via a socket. When the agent requests
samples for the threads T1, T3 and T4, the VM thread begins
“safepointing”, i.e. it signals that a safepoint is pending. Soon
after that, thread T1 reaches its next safepoint check and
enters a parking state (indicated by the square and the now
dashed line), followed by thread T3. Thread T4 does not
have to enter a safepoint, since it is already blocked. At
this point, thread T2 delays the process, although no sample
was requested for it, and threads T1 and T3 remain parked
and unproductive. When thread T3 finally parks and hence,
all threads have entered the safepoint, TV M can walk the
stacks of the three threads requested by the agent. In the
meantime, thread T4 becomes unblocked because its socket
has received data, but instead of resuming its execution, a
safepoint check ensures that it also enters a parking state.
After the VM thread has finished taking the stack traces, it
ends the safepoint and resumes all application threads.

The main problem with using safepoints for sampling is
that they affect all Java threads. Even the threads for which
no stack trace was requested are required to run to their next
safepoint and park until the stack traces have been collected.
Hence, the entire application is paused even when only a
single thread should be sampled.

Optimizations performed by the JIT compiler can further
increase the performance impact of JVMTI sampling. By
default, the compiler places safepoints at the exit points
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Figure 2: Sampling threads in a safepoint

of methods and at the end of loop iterations. Although
the overhead of safepoint checks is very low, it can become
significant in hot loops. Safepoints also prevent certain
kinds of optimizations because they enforce a particular
order of instructions, similar to a memory barrier. Hence,
the compiler can decide to move safepoints out of loops
to increase performance and can even decide to eliminate
safepoint checks in inlined code. With fewer safepoint checks,
it can take longer until all threads are parked, and the
sampling overhead increases. Eliminating safepoints also
means that there are fewer locations where samples can be
taken, which can distort the profile.

3. PARTIAL SAFEPOINTS
Global “stop the world” safepoints are acceptable or even

necessary for most purposes that they are used for, such
as garbage collection and deoptimization. For a profiler,
however, it is often sufficient to sample only a subset of the
application’s threads. In fact, a profiler should focus particu-
larly on the currently running threads because those are the
ones that are actively consuming resources. Sampling these
threads provides the most insight into where the program
spends its time.

However, a sampling profiler that focuses only on running
threads cannot be implemented with JVMTI and global
safepoints. Although JVMTI supports restricting sampling
to a set of threads, a sampling agent cannot determine a
priori which threads will be running when the samples are
taken. It is the operating system that schedules the threads,
and common operating systems do not expose scheduling
information to the VM or to an agent. The VM can only
keep track of which threads are runnable (i.e., ready to run).
As an approximation, an agent could request samples for a
selection of these threads. Still, this would not significantly
decrease the sampling overhead because the safepoint would
still affect all the other threads as well.

To target only running threads and to reduce the per-
formance impact of sampling profilers, we implemented a
variation of safepoints which we call partial safepoints. Par-
tial safepoints require only a certain number of application
threads to enter a safepoint state. Samples are then only
taken for these threads. We allow the agent to choose the
number of threads to sample. By using the number of proces-
sors in the system, sampling ideally affects only the running
threads. With no scheduling data available, this is a best-
effort approach. In practice, some of the system’s CPUs
might be executing threads from other processes. Also, the
operating system might interrupt a thread that was running
when the sample was requested, and instead schedule another
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thread which then enters the partial safepoint in its place. In
the worst case, however, a sample is taken of a thread which
was runnable, but not actually running, which we consider
acceptable.

As soon as the intended number of threads has entered
the partial safepoint, the VM can walk their stacks. Because
some threads can enter a waiting state and block before
reaching a safepoint check, we observe such thread state
transitions to avoid a deadlock caused by waiting for more
threads than can possibly enter the safepoint. While the
stacks are walked, the safepoint must remain in effect. During
that time, more threads than anticipated can enter the partial
safepoint. Our implementation must consider which threads
have entered the safepoint late and must finally resume all
of them.

3.1 Waiting Threads
Samples of waiting threads can be useful to locate bottle-

necks in locking or to detect inefficient I/O behavior. Threads
blocked in a waiting state do not enter a safepoint unless they
become unblocked while the safepoint is still in effect. This
also applies to Java threads executing native code, where
the VM ensures that a thread returning from native code
enters a safepoint when one is in effect. Such native calls
occur frequently because the Java class library implements
I/O operations using native code, and these operations can
also block.

We extended our partial safepoints mechanism with an
option to take samples also of waiting threads and of threads
that are in native code. If this option is active, we determine
the number of runnable application threads and the number
of threads that are waiting or executing native code, and
accordingly divide the number of requested samples between
runnable and waiting threads. For example, if a sampling
agent requests four samples for an application that has 21
threads, out of which 15 threads are runnable and six threads
are waiting or executing native code, our approach will return
samples for the first three threads that enter the safepoint,
and one sample for another, randomly selected thread.

Figure 3 shows an example of how runnable and waiting
threads are sampled with partial safepoints, using a similar
scenario as the one shown in Figure 2. In this example, a
sampling agent has requested three samples. The VM thread
TV M determines that there are three runnable threads and
one waiting thread, and hence decides to sample two runnable
threads and the waiting thread T4. TV M then signals a
pending safepoint. As soon as two threads, T1 and T3, have
parked, it takes samples of their stacks and then immediately
resumes T1 and T3. By the time when thread T2 reaches its
next safepoint check and when T4 becomes unblocked, the
safepoint is no longer in effect, and their execution remains
entirely unaffected by sampling.

4. SELF-SAMPLING
With a straightforward implementation of partial safe-

points, the safepoint remains in effect while the VM thread
walks the stack of each thread to ensure that the stack walks
can be done safely. During that time, further threads can
enter the partial safepoint. Although these threads will not
be sampled, they pause executing code, and the VM must
also keep track of them in order to resume them later, all of
which causes unnecessary overhead.
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Figure 3: Sampling threads with a partial safepoint
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Figure 4: Self-sampling threads in a partial safepoint

To minimize the time the partial safepoint must remain
in effect, we combined partial safepoints with a technique
that we call self-sampling. When a thread enters a partial
safepoint, it takes a ticket which tells it whether it is among
the threads which should be sampled. If it is, the thread
immediately walks its own stack. When the last thread that
should be sampled enters the partial safepoint, it notifies the
VM thread, which then signals the end of the safepoint so no
further threads (which would not be sampled) can enter it.
When a thread has completed sampling itself, it places the
stack trace in a designated buffer and notifies the VM thread.
The VM thread waits until all threads have provided their
samples, and then resumes all sampled threads and returns
the samples to the agent.

Because blocked threads do not enter a safepoint, they
cannot sample themselves. Instead, the VM thread takes
their samples, which increases the time the safepoint must
remain in effect. However, the VM thread can take the
samples while other threads are still running to their next
safepoint check.

Figure 4 shows an example of a partial safepoint with
self-sampling threads. As in Figure 3, the VM thread TV M

inspects the states of the application threads, decides to
sample two running threads and the waiting thread T4, and
then signals a pending safepoint. It then immediately begins
to take a sample of the waiting thread T4. Meanwhile, the
thread T1 enters the partial safepoint and examines its ticket.
Because it is the first of the two runnable threads that to
be sampled, it walks its own stack, places the stack trace
in the designated buffer and notifies TV M . When T3 enters
the safepoint, it also examines its ticket and recognizes that
it is the second and last of the two runnable threads to be
sampled, so it notifies TV M , which signals the end of the
safepoint. After T3 has sampled itself and placed the stack
trace in the buffer, it notifies TV M again, which resumes T1

and T3 and returns the collected stack traces to the agent.
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Figure 5: Three samples with complete stack traces

5. INCREMENTAL STACK TRACING
Self-sampling and partial safepoints reduce the time that

an application must pause for sampling. To further lower
the overall overhead, we looked at the costs of the stack
walk. In many cases, the stack frames from the stack base
up to a certain stack depth remain unchanged for most of
a thread’s execution. Nevertheless, these unchanged frames
are examined during every stack walk.

Figure 5 shows an example for redundantly sampled frames,
starting with a call to the method a. Method a calls b, which
in turn calls c. While execution is in c, the profiler takes a
sample. The stack walk visits the frames of the three active
methods as well as all frames below a. When the profiler
takes the next sample in v, c has returned, the frame of b
has changed because b continued its execution, and two new
frames from the calls to u and v are on the stack. Although
the frame of a and all frames below it remained unchanged,
the stack walk needlessly walks and decodes them again.
When the profiler takes a third sample, the frames of u and
v have disappeared and only the frame of b has changed, but
the stack walk again visits all other frames as well.

To avoid redundantly sampling frames, stack walks could
be limited to a certain number of frames below the frame
of the executing method. However, the resulting incomplete
stack traces would not be suitable to be correctly merged into
a CCT, which has the entry method as its root. Therefore,
we devised an approach that builds stack traces incrementally
when methods return, and does not examine an unchanged
stack frame more than once. We based our technique for
incremental stack tracing on an approach that our research
group developed for implementing continuations in a Java
VM [22]. Similar approaches have also been used to imple-
ment incremental scavenging for garbage collection [7].

5.1 Data Structures
To share frame information between stack traces of multiple

samples, we store the traces in a tree structure. Figure 6
shows what this tree looks like for the example from Figure 5.
We maintain a linked list of stack trace objects for the stack
traces that were taken, which is shown on the right-hand
side of the figure. Stack trace objects are assigned numeric
identifiers, which the profiling agent can use to keep track of
the stack traces that it has requested. Each stack trace object
has a pointer to a frame object that represents the stack frame
which was on top of the stack when the stack trace was taken.
For the first stack trace, which has the identifier 1, this is

a

b c

... u v

b''

b'

stack traces

1

2

3

Figure 6: Stack traces in a tree with shared frames

the frame object representing the frame for c, for stack trace
2 it is the frame object for v, and for stack trace 3 it is the
frame object for b. Each frame object has a pointer to its
caller frame object. The frame objects b, b′ and b′′ refer to
the same invocation of b, but the duplication is necessary
because the frame objects store different execution positions
(i.e., bytecode indices) within the method. This information
is useful to a profiler, for example, to distinguish between
different call sites in a method.

Frame objects store the details of a captured stack frame
in the following attributes:

parent: The pointer to the caller’s frame object.
method: An identifier of the Java method that the stack
frame belongs to.

bci: The index of the current instruction within the Java
bytecode of the method.

The following attributes of a frame object are not intended
for the profiler, but are required for capturing frames and
managing the tree of frame objects (see the next section).

filled: A value that indicates if the frame object has been
filled with valid data, or if it is an empty skeleton object.

frame address: The frame’s exact location on the stack.
saved return address: Original return address of the callee.

5.2 Capturing Frames
We maintain one list of stack trace objects for each thread.

When we take a new stack trace, we first create a new stack
trace object and insert it into the respective thread’s list. We
then create a new frame object for the top frame on the stack,
which we call top frame object (TFO). We decode the top
frame and fill the TFO with the determined method identifier
and bytecode index (see Figure 7 (a)). The frame address
and the saved return address attributes are not required for
the TFO. We set the TFO’s filled attribute and link it with
the stack trace object that we created earlier.

In a second step, we deal with the caller frame. The
caller frame remains unchanged until the top frame’s method
returns, so we do not capture it immediately. Instead, we
create a skeleton frame object for the caller frame that we
can fill later, and make this skeleton object the parent of the
TFO. We store the caller frame’s address (SPb in Figure 7)
in the skeleton object’s frame address attribute so we can
match it to the frame later (see below). To intercept when
the top frame’s method returns, we patch the top frame’s
return address on the stack with the address of a piece of
trampoline code that we generate during the VM’s startup
phase. The original return address (RAc in Figure 7) is
stored in the skeleton object’s saved return address attribute.

When the top method returns, it returns to our trampoline
instead of to its caller, and the trampoline in turn calls our
stack tracing code. In this code, we decode the caller’s frame
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Figure 7: Capturing a frame (a) when taking a sam-
ple, and (b) when intercepting a method return

into its skeleton object, patch the caller’s return address on
the stack, and create another skeleton object for the caller’s
caller frame (see Figure 7 (b)). Finally, we do the actual
return by using the saved return address that we stored in
the skeleton object before.

To know which frame object must be filled when we in-
tercept the return of a method, we maintain a thread-local
pointer to the next skeleton object that needs to be filled,
which we call current skeleton object (CSO). We also use the
CSO to implement sharing of frame objects between multiple
stack traces. We distinguish the following situations:

Taking a sample. When we take a sample, we create a
new TFO and fill it with the decoded top frame. Depending
on the CSO, the TFO is treated as follows:

• If the CSO is not set yet, we create a new CSO and
make it the parent of the TFO.

• If there already is a CSO, we check whether it refers to
the frame of the TFO’s caller by comparing their frame
addresses. If they match, we make the CSO the parent
of the TFO. Otherwise, we create a new CSO and insert
it between the TFO and the former CSO.

Intercepting a return. When we intercept a method re-
turn, the CSO always refers to the frame object of the caller,
so we decode the caller frame into the CSO. We then inspect
the CSO’s parent:

• If there is no parent, we create a new CSO as the parent
of the former CSO.

• If the CSO’s parent refers to the frame of the caller’s
caller, we make that parent the new CSO.

• If the CSO’s parent refers to some other frame, we create
a new CSO and insert it between the former CSO and
its parent.

Figure 8 demonstrates how our technique incrementally
builds stack traces for the example from Figure 5. Initially,
the list of stack traces is empty and there is no CSO. The stack
traces are then built in the following steps (for simplicity, we
use the name of the methods to also refer to their frames).

(1) To take the first sample, we create a new TFO and
decode the top frame c into it (the object that is filled
in each step is highlighted in bold). Because there is
no CSO yet, we create a skeleton object for the caller
b (skeleton objects are indicated with a dashed frame).
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Figure 8: Incremental construction of stack traces

We make the new skeleton object the CSO and also
make it the parent of the TFO. Finally, we patch the
return address of c and save the original return address
in the CSO.

(2) When c returns, the trampoline is executed, and we fill
the CSO with the decoded stack frame of b. Because
the CSO does not have a parent yet, we create a new
skeleton object for a as parent. We then make that
skeleton object the CSO, patch the return address of b
and do the actual return from c to b.

(3) When we take the second sample, we decode the top
frame v into a new TFO. We then check whether the
CSO corresponds to the caller frame u. Since the CSO
actually corresponds to a, we create a new CSO for u
and insert it between a and v. Finally, we patch the
return address of v.
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(4) We intercept the return from v to u and fill the CSO
with the decoded frame of u. Because the CSO’s parent,
which is a, does not match u’s caller, which is b, we
create a new CSO b′ for b and insert it between a and
u. We finally patch the return address of u and do the
actual return from v to u.

(5) We intercept the return from u to b and fill the CSO
with the decoded frame b. Because the CSO’s parent,
which is a, now corresponds to b’s caller, we make the
parent the CSO and do not need to create a new one.
We also need not patch the return address of b because
it was already patched in step (2), and do the actual
return from u to b.

(6) When we take a third sample, we fill the top frame
b into a new TFO denoted by b′′. Because the CSO
corresponds to the caller frame a, we make it the parent
of the TFO. The return address of b is still patched
and does not need to be modified.

(7) We intercept the return from b to a and fill the CSO
with the decoded frame a. Since the CSO does not
have a parent here, we create a new CSO for a’s caller.
Because all three stack traces join at the frame object
of a, they share this object and all further frame objects
below, and we examine their stack frames only once.

5.3 Interface
Typical profiling interfaces, such as JVMTI, offer an oper-

ation that walks the stack of a thread and returns a complete
stack trace. Our approach does not create such a stack trace
right away, but incrementally builds stack traces and requires
the profiler to collect them later. Therefore, we devised two
operations to use our technique:

sample. The profiler can use the sample operation to request
a stack trace. It can specify a numeric identifier to assign
to the stack trace. The identifiers of stack traces need not
be unique, and a profiler can also simply assign timestamps
to the stack traces it requests.

retrieve. The profiler can use the retrieve operation to col-
lect all requested stack traces for a set of threads. The stack
traces are returned in a tree structure that is similar to
the described internal representation. When stack traces
are still incomplete, the operation examines the remaining
frames on the stack, completes the tree and reverts the
patched return addresses on the stack. The retrieve oper-
ation empties the tree of stack traces kept in the VM. It
always enters a full safepoint, but due to its infrequent use,
the introduced overhead is negligible.

We implemented these two operations as JVMTI extension
methods, which has the advantage that a profiling agent can
probe whether the VM supports incremental stack tracing
and partial safepoints. Typically, an agent would period-
ically request samples by calling the sample method, and
infrequently use the retrieve method to collect the stack
traces. It can then merge the stack traces into a calling
context tree and update the tree’s edge weights accordingly.
The agent must retrieve the samples of a thread before the
thread exits, or otherwise the stack traces would be released
together with the thread’s resources. It can accomplish this
by subscribing to the ThreadEnd event that JVMTI offers.

6. IMPLEMENTATION ASPECTS
When we implemented our techniques in the highly opti-

mized HotSpot VM, we had to handle several cases where
thread synchronization or taking a correct stack trace is not
as straightforward as described in the previous sections.

Frame types. The HotSpot VM starts out by executing
Java bytecode in an interpreter, but compiles frequently
executed methods to machine code. Therefore, the stack can
contain frames of both interpreted and compiled methods,
which differ in their layout. Moreover, Java code can call
native methods of the VM, which again use different types
of frames. When walking stacks and particularly when
patching return addresses, we must handle each type of
frame differently.

Inlining. The compiler aggressively tries to inline the code
of called methods, and attempts to also inline those methods
that are called by the inlined callees. Therefore, a particular
location in compiled code can actually lie within multiple in-
lined methods that share a single stack frame. The compiler
stores information about inlined methods and their ranges
within other methods as metadata. When filling the frame
object of a compiled frame, we must read this metadata
and create extra frame objects for the inlined methods.

Exceptions. When a method throws an exception which
must be handled by a caller, the method does not return
in the usual way, using the return address on the stack.
Instead, the VM unwinds the stack and pops frames until
it reaches a method which can handle the exception. We
modified the VM’s exception handling code to capture a
frame before it is popped from the stack.

Deoptimization. Deoptimization occurs when a method
was compiled under an assumption that turned out to be
false at runtime [15]. An example is when the compiler omit-
ted a branch in the compiled code because it assumed that
it would never be taken. When deoptimization occurs, the
stack frame of the compiled method is transformed into one
or more interpreted frames, and execution is continued in
the interpreter. During this transformation, patched return
addresses are lost, so we had to alter the deoptimization
code to preserve patched return addresses.

On-stack replacement. For long-running interpreted meth-
ods, the VM can decide to compile them on the fly, to
transform their interpreted frames into compiled frames,
and to continue execution in compiled code. This is called
on-stack replacement. Since the resulting compiled frames
can have different locations than the interpreted frames, we
have to update our data structures in this case.

Safepoint synchronization. The safepoint checks that the
HotSpot VM injects into application code simply write a
value to a specific page in memory that is called polling page.
When no safepoint is pending, these writes are inexpensive.
To enter a safepoint, the VM thread acquires the global
threads lock to block thread state transitions, such as when
a thread resumes execution after waiting. Next, the VM
instructs the operating system to write-protect the polling
page. This causes the safepoint checks to trigger page faults
in each thread, and the fault handler then parks the thread.
The VM finally waits until all threads are parked or are in
a safe state guarded by the threads lock.
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] avrora simulates a microcontroller grid
fop transforms an XSL-FO file to PDF
h2 benchmarks an in-memory database
jython executes the pybench benchmark suite
luindex indexes a set of documents
lusearch searches in a set of documents
pmd analyzes Java source code for problems
sunflow renders images with raytracing
tomcat queries a Tomcat webserver
tradebeans trading simulation with database
tradesoap trading with SOAP communication
xalan transforms XML documents to HTML
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1] actors trading sample with actors
apparat optimizer for ABC, SWC and SWF files
factorie deployable probabilistic modeling toolkit
kiama language processing
scalac Scala language compiler
scaladoc Scala documentation tool
scalap Scala class file decoder
scalariform Scala source code formatter
scalatest Testing toolkit for Scala and Java
scalaxb XML databinding for Scala
specs behavior-driven design framework
tmt topic modeling toolbox

Table 1: Set of benchmarks

For partial safepoints and self-sampling, we use a modified
safepoint mechanism that waits only until enough threads
from the desired set of threads have entered the safepoint,
and then immediately unprotects the polling page again.
However, other threads can also enter the safepoint during
that time. Therefore, before write-protecting the polling
page, we set a flag for each thread which indicates whether
the thread should sample itself. Threads which have their
flag set then sample themselves in the fault handler, while
the other threads simply wait for the safepoint to end.
When including waiting threads for sampling, we compute
the ratio of waiting to runnable threads after acquiring the
threads lock, so no threads can change their state.

7. EVALUATION
We evaluated our sampling techniques with the DaCapo 9.12

benchmark suite and the benchmarks of the Scala Bench-
marking Project 0.1.0. The DaCapo benchmark suite [5]
consists of open source, real-world applications with pre-
defined, non-trivial workloads.1 The Scala Benchmarking
Project [21] complements the DaCapo suite with a set of
benchmarks based on real-world applications written in the
Scala language. Table 1 describes the individual benchmarks.

We compare the overheads and the generated CCTs of the
following techniques relative to no sampling:

• Conventional JVMTI sampling
• Self-sampling in Partial Safepoints (SPS)
• Incremental Self-sampling in Partial Safepoints (ISPS)

For that purpose, we implemented two profiling agents that
take samples at fixed intervals and build a CCT, one that
uses conventional JVMTI, and another one that uses our
VM extensions. We enabled sampling of waiting threads

1We did not use the DaCapo suite’s batik and eclipse bench-
marks because they do not run on OpenJDK 8.

with our techniques to be comparable with JVMTI sampling,
which cannot target running threads. We used the number of
CPU cores as the number of threads to sample with partial
safepoints. Experiments showed that using more threads
than that causes considerably more overhead, while using
fewer threads does not significantly reduce overhead. The
profilers adhere as much as possible to the sampling interval
by incorporating the time that elapsed while taking the last
sample into the time they wait until taking the next sample.

We chose to execute 30 successive iterations of each bench-
mark with each sampling technique in a single VM instance,
and to discard the data from the first 20 iterations to compen-
sate for the VM’s startup phase. Hence, our agents track the
start and the end of benchmark iterations to extract the met-
rics and the generated CCT for every iteration. We further
executed 10 rounds of each benchmark (with 30 iterations
each) to ensure the results are not biased by optimization
decisions the VM makes in the warm-up phase.

We performed all tests on a system with a quad-core
Intel Core i7-3770 processor with 16 GB of memory running
Ubuntu Linux 14.04 LTS. To get more stable results, we
disabled hyperthreading, turbo boost and dynamic frequency
scaling. With the exception of vital system services, no
other applications were running while the benchmarks were
executed.

7.1 Overhead
Figure 9 shows the median overheads for the benchmarks

of the DaCapo suite with all three sampling techniques, using
sampling intervals of 10 ms, 1 ms and 0.1 ms. The error bars
indicate the first and third quartiles. The G.Mean bars show
the geometric means for a sampling interval, and their error
bars indicate a 50% confidence interval. With 10 ms intervals,
JVMTI sampling already has a considerable overhead of more
than 10% on average, while that of SPS stays below 3%, and
ISPS comes close to 2%. Our techniques have the most
impact for the lusearch, sunflow, tradebeans, tradesoap and
xalan benchmarks. We found that these benchmarks have
a higher CPU usage or use a larger number of threads than
the other benchmarks. In comparison, our techniques have
little effect for the jython and luindex benchmarks, which are
mostly single-threaded. Overall, ISPS achieves significantly
lower overheads than SPS. Surprisingly, the overhead of
JVMTI sampling for lusearch, sunflow and xalan is lower
with 0.1 ms sampling intervals than with 1 ms intervals.
This can be explained with the sampling latency, which we
examine below.

Figure 10 shows the overheads for the benchmarks of the
Scala Benchmarking Project. In contrast to the DaCapo
benchmarks, even JVMTI sampling has only 5% overhead
with 10 ms sampling intervals. The improvements from our
techniques become more significant with 1 ms intervals, where
JVMTI sampling has approximately 25% overhead while
ISPS achieves less than 10% overhead. One interesting case
is tmt, where ISPS has more overhead than SPS with 10 ms
and 1 ms intervals. The reason is that tmt creates a large
number of short-lived threads, and the agent must retrieve
the samples of each of those threads when they end. The
extra effort for this is typically low, but becomes significant
in this case. We were unable to measure the overhead of
actors with JVMTI sampling with 0.1 ms intervals because
that benchmark has an internal timeout which causes it to
terminate early due to the high overhead.
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Figure 9: Overhead with the DaCapo benchmark suite using sampling intervals of 10ms, 1ms and 0.1ms
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Figure 10: Overhead with the benchmarks of the Scala Benchmarking Project

7.2 Latency
We examined the latency of each sampling technique, which

is the time it takes to pause threads and take samples. Fig-
ure 11 shows box plots of the latencies for all sampling tech-
niques with 1 ms sampling intervals. The whiskers indicate
the 2.5% and 97.5% percentiles. We grouped benchmarks
with similar characteristics in Others. For all those bench-
marks, the latency of JVMTI sampling is low, and SPS and
ISPS have slightly lower latencies. For the other shown
benchmarks, we found notable differences. actors, tradebeans
and tradesoap use a large number of threads and the median
latency with JVMTI sampling is high because it takes longer
until all threads have entered a safepoint. The latency with
SPS and ISPS is not higher than for all the other benchmarks
because these techniques only require some of the threads
to enter a safepoint. lusearch, sunflow and xalan have fewer
threads, but they are very CPU-intensive and the compiler
aggressively optimizes the hot code and eliminates safepoint
checks. While the median latency for those three benchmarks
with JVMTI sampling is not excessively high, the latencies
fluctuate significantly between samples and can reach more

than 10 ms, which results in fewer taken samples. We found
that with CPU-intensive benchmarks, such excessively high
latencies occur more often when using shorter sampling inter-
vals, possibly due to scheduling effects. A shorter sampling
interval can then yield fewer total samples than a longer
interval and actually reduce the overhead compared to a
longer interval. This was the case with our overhead mea-
surements with 0.1 ms intervals for those three benchmarks.
In comparison, the latency with SPS and ISPS for these
benchmarks is not higher than for the other benchmarks and
very stable.

7.3 Accuracy
Determining the absolute accuracy of a profiler is chal-

lenging: ideally, we would compare a CCT from the profiler
against an exact CCT of the same execution. However, such
a perfect profile cannot be obtained because all profiling has
an effect on the profiled application. While instrumenting
profilers can generate a complete CCT with exact call counts,
instrumentation significantly slows down short-running meth-
ods and interferes with compiler optimizations (particularly

83



0.0 ms

0.2 ms

0.4 ms

0.6 ms

0.8 ms

1.0 ms

1.2 ms

1.4 ms

1.6 ms

Others

actors

tradebeans

tradesoap

lusearch

sunflow

xalan

JVMTI
SPS
ISPS

Figure 11: Pause times for selected benchmarks

inlining). Therefore, when using instrumentation to measure
execution times, the measured times are not representative
for the unaltered application. Instead, we analyze whether
each sampling profiler generates similar CCTs for different
iterations of the same benchmark. We further construct
“averaged” CCTs from different iterations of each benchmark
with each profiler and compare them to test whether the
profilers agree.

To compare two CCTs with each other, we use the degree of
overlap and hot-edge coverage metrics. The degree of overlap
assesses how many edges of the two CCTs are equivalent
and how close their edge weights are to each other. It has
been described and used extensively in related research [8, 9,
12, 16, 25]. While the degree of overlap reflects all edges of
the two CCTs, the hottest edges of a CCT are of particular
interest for identifying performance bottlenecks. The hot-
edge coverage metric determines whether two CCTs identify
a similar set of edges as hot according to a relative threshold
and puts less emphasis on the exact edge weights. It was
introduced in [25] and is used in [8, 12].

For the results we present below, we used the CCTs that
we collected with a sampling interval of 1 ms. However,
we found that the results are similar for sampling intervals
of 10 ms and 0.1 ms. For each sampling technique and
benchmark, we merged the CCTs from every (undiscarded)
iteration in all rounds into a single CCT. This merged CCT
contains all edges that exist in any of the CCTs, with edge
weights that are the sum of the relative edge weights from all
CCTs. The merged CCT is thus really the average over all
individual CCTs of a benchmark. Some of the benchmarks
dynamically generate classes which can be assigned different
names in different iterations or rounds, for example call
wrappers or web service handlers. We added extra heuristics
to our analysis tools to properly match identical generated
code when merging CCTs.

Stability Analysis.
The behavior of most benchmarks does not deviate much

between iterations and thus, a profiler should produce similar
CCTs for different iterations. We determined the stability
of the CCTs of a profiler by comparing the CCT of every
iteration to the average CCT of each benchmark.
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Figure 12: Overlap (top) and hot-edge coverage
(bottom) of individual CCTs with average CCT

Figure 12 shows the similarity of the individual CCTs
with the average CCT by means of their median overlap
(top part) and their median hot-edge coverage (bottom part),
for all benchmarks and all profiling techniques. We used a
threshold of T = 0.1 for the hot-edge coverage, which means
that we consider an edge to be hot if it is within a tenth of
the hottest edge. The error bars indicate the first and third
quartiles. The plots demonstrate that for every benchmark,
the stability of all three sampling techniques is very similar.
They also suggest that the behavior of fop, kiama, scalac,
scaladoc and scalaxb varies significantly between iterations.
We found that these benchmarks spend over 40% of their
execution time in many different calling contexts, each of
which making up less than 0.05% of the overall execution
time, in many cases even less than 0.01%. Hence, these calling
contexts are seen in only very few samples and even slight
shifts in sampling times add up to a significant difference
in the resulting overlap. The hot-edge coverage for these
benchmarks is significantly better, with the exception of fop:
it has the shortest execution time of all benchmarks, so the
profiler collects the fewest samples, and since it does not have
any significantly hot calling contexts, the relative threshold
causes a large set of calling contexts to be considered hot.

Our results show that all three sampling techniques pro-
duce CCTs that are stable between different iterations of
most benchmarks. At the same time, the results demonstrate
that the average CCTs are representative for the individual
CCTs. However, this does not prove that the CCTs are accu-
rate, since a sampling technique can also repeatedly produce
an incorrect CCT.

Comparison between Sampling Techniques.
Figure 13 compares the average CCTs obtained with the

three sampling techniques to each other by means of their
overlap (top part) and their hot-edge coverage with a thresh-
old of T = 0.1 (bottom part). The overlap between the
three profiling techniques exceeds 70% for all benchmarks,
with the exception of kiama, scalac and scaladoc. These
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Figure 13: Overlap (top) and hot-edge coverage
(bottom) of average CCTs from different sampling
techniques

three benchmarks implement recursive-descent parsers with
very deep stacks, and their rapidly changing stack depths
make it improbable that many calling contexts are captured
more than once. The hot-edge coverage plots show that
SPS identifies a similar set of hot calling contexts as JVMTI
sampling, with over 90% coverage for all benchmarks. We
conclude from this that partial safepoints have no negative
effect on the accuracy in comparison to sampling all threads.
The hot-edge coverage between ISPS and the other two tech-
niques is slightly lower for some benchmarks. The reason
are deep stacks which exceed the otherwise adequate limit of
256 frames that we use for SPS and JVMTI sampling. Such
a limit is required for the preallocation of data structures
and we found that using a limit that is high enough to fit
every stack trace significantly increases the overhead even for
shallow stacks. While SPS and JVMTI sampling truncate
long stack traces, ISPS always provides complete stack traces.
While this is actually an advantage of ISPS, it reduces its
hot-edge coverage with the other techniques because the
complete stack traces do not match their truncated stack
traces.

8. RELATED WORK
In this section, we describe previous work on profiling

Java applications, on sampling calling context for dynamic
analysis, and on analyzing CCTs.

Profiling.
Whaley [24] describes a VM-internal Java profiler which

avoids complete stack walks. Unlike incremental stack trac-
ing, it examines stacks eagerly and uses a spare bit in each
stack frame’s return address to mark if a frame has already
been examined. Whaley claims a low overhead of 2-4% at
1000 samples per second, but the used VM performs thread
scheduling itself (“green threads”), which permits certain as-
sumptions and direct access to thread states. Green threads
are uncommon in modern Java VMs because of their disad-

vantages in systems with multiple CPUs. Our techniques
have only slightly more overhead with the high-performance
HotSpot VM and work well for multi-processor systems.

Zhuang et al. [25] describe a Java profiler that does not
sample stack traces, but instead instruments the code to
sample sequences (“bursts”) of calls and returns, and uses
heuristics to disable and re-enable sampling to reduce redun-
dant samples. The resulting CCTs are claimed to have more
than 80% hot-edge coverage and overlap with exhaustive
CCTs, but the stated overhead of 20% for 10 ms sampling
intervals is significantly higher than that of our techniques.

Binder [4] presents a Java profiler that instruments meth-
ods to maintain a shadow method stack and to periodically
capture samples of this stack, which he claims is more ac-
curate than JVMTI sampling. Unlike our techniques, this
profiler can be implemented in pure Java, but its overhead
is much higher and comparable to that of JVMTI sampling.

Inoue and Nakatani [14] describe a Java profiler that uses
hardware events to take samples of only the executing method
and its stack depth. It builds a CCT through matching stack
depths and caller information, and is reported to achieve an
overhead of 2.2% at 16000 samples per second. Similarly,
Serrano et al. [20] present a Java profiler that uses hardware
branch tracing to create partial call traces and attempt to
merge them optimally into approximate CCTs, claiming to
produce highly accurate CCTs at negligible overhead. Unlike
our techniques, both of these techniques require specific
hardware and their accuracy can suffer from caller ambiguity.

Dynamic analysis.
Calling context information is also useful for locating data

races, memory leaks and other anomalies with dynamic anal-
ysis tools. Such tools capture the calling context frequently
enough so that continuously maintaining the current calling
context is often faster than walking the stack for each sam-
ple. Bond and McKinley [6] describe an approach in which
they instrument code so that it continuously maintains a
probabilistically unique number for the current calling con-
text. This number is then sampled at certain points, such
as calls to library methods. A dynamic analysis tool can
then compare traces of these samples between executions of
a program for anomaly detection. They claim that their ap-
proach has an overhead of 3% for such applications. Sumner
et al. [23] describe a similar approach for encoding the calling
context as a number and report an overhead of 2%. Huang
and Bond [13] claim that the accuracy of such approaches
does not scale well with program complexity and propose
an approach that continuously builds a CCT-like data struc-
ture through instrumentation. It creates tree nodes eagerly
and relies on a modified garbage collector to release unused
nodes and to merge duplicate nodes. Using this technique to
add calling context information to a memory leak detector
or to a data race detector is claimed to introduce around
30-40% extra overhead. We believe that incremental stack
tracing can achieve equivalent or less overhead than these
techniques because it also does not walk the stack for each
sample, but does not introduce overhead in methods where
calling contexts are not needed.

Profile analysis.
The calling context trees of real-world applications can be

very large and complex so that it can be difficult to identify
performance bottlenecks in them. Moret et al. [17] as well
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as Adamoli and Hauswirth [1] describe approaches for visu-
alizing and analyzing large and complex CCTs. D’Elia et
al. [8] describe algorithms to continuously maintain a “Hot
CCT” that includes only hot calling contexts. They claim
that it is orders of magnitudes smaller than a regular CCT at
comparable accuracy. These algorithms could be used with
our sampling techniques to build a memory-efficient profiler.
The low overheads of our techniques also make it feasible to
enable them in an end-user product or in production systems
to gather performance data for real-world usage. Han et
al. [10] describe an approach to identify performance prob-
lems through pattern mining in vast amounts of performance
data, which could be used to analyze data collected this way.

9. CONCLUSIONS AND FUTURE WORK
With partial safepoints, self-sampling and incremental

stack tracing, we presented three novel techniques that re-
duce the overhead of sampling Java applications and allow
a profiler to target just the running threads. Unlike many
other fast profiling approaches, our techniques require no
support from the operating system or from hardware. Ex-
periments with our implementation in the HotSpot Java VM
demonstrate that these techniques significantly reduce the
sampling overhead while providing high accuracy.

In the future, we intend to look at improvements to the
accuracy of Java profiling techniques. For example, when
the JIT compiler eliminates safepoint checks to optimize
hot code regions, it prevents profilers from taking samples
in these regions, which can severely distort the profile of
some programs. We consider introducing light-weight “sam-
pling points” which make fewer guarantees about safety than
safepoints and therefore do not obstruct compiler optimiza-
tions. Instead of eliminating a safepoint check, the JIT
compiler could downgrade it to a sampling point check and
still produce fast code. We have also experimented with us-
ing facilities of the operating system, such as POSIX signals,
to interrupt individual threads for sampling with incremental
stack tracing. However, patching return addresses on the
stack is much more difficult and error-prone when a thread
is not in a safepoint, and a correct implementation requires
substantial modifications to the VM. Finally, we consider
extending incremental stack tracing to track the values of
variables. This should be possible at less runtime and space
overhead than with exhaustive stack tracing and would be
particularly valuable as input for profile-guided optimization.
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