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ABSTRACT
Object allocations and garbage collection can have a con-
siderable impact on the performance of Java applications.
Without monitoring tools, such performance problems are
hard to track down, and if such tools are applied, they often
cause a significant overhead and tend to distort the behavior
of the monitored application. In this paper we present a new
light-weight memory monitoring approach in which we trace
allocations, deallocations and movements of objects using
VM-specific knowledge. We strive for utmost compactness
of the trace by using a binary format with optimized encod-
ings for different cases of memory events and by omitting all
information that can be reconstructed offline when the trace
is processed. Our approach allows us to reconstruct the heap
for any point in time and to do offline analyses both on the
heap and on the trace. We evaluated our tracing technique
with more than 30 benchmarks from the DaCapo 2009, the
DaCapo Scala, the SPECjvm 2008, and the SPECjbb 2005
benchmark suites. The average run-time overhead is 4.68%,
which seems to be fast enough for keeping tracing switched
on even in production mode.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
Management (Garbage Collection)

General Terms
Performance, Measurement
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1. INTRODUCTION
Automatic memory management, i.e., garbage collection,

has gained wide-spread use because it relieves programmers
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from the error-prone task of freeing unused memory man-
ually. Moreover, a compacting garbage collector (GC) pro-
duces a consecutive, i.e., unfragmented, heap. This makes
object allocations simple because new objects are simply ap-
pended to the used portion of the heap without an expensive
search for a fitting memory block.

However, in today’s applications with millions of objects,
allocating and collecting objects can easily become a per-
formance bottleneck. Since the details of GC algorithms
are hard to understand, developers find it difficult to pre-
dict the interaction between the application and the garbage
collector. Therefore, diagnosing and fixing memory-related
performance problems is a tedious and often futile task.

Some virtual machines (VMs), such as the Java
HotspotTM VM, support the logging of GC statistics, e.g.,
the collection time or the memory usage before and after
garbage collection for individual spaces. While this may
help in detecting memory anomalies, it does not help in lo-
cating and resolving them.

A common remedy for these issues is to analyze entire
heap dumps, which tell developers what objects currently
exist and thus give some clue on the reasons for a GC per-
formance degradation. Although a dump contains structural
information about the layout of the heap, it lacks informa-
tion about the origin of the objects, i.e., their allocation site,
their allocation time and the thread that allocated them.
Furthermore, deallocations can only be detected by com-
paring two subsequent dumps and finding an object in one
but not in the other. Identifying two objects from differ-
ent dumps as the same is difficult because objects can be
moved in the heap and VMs usually do not maintain unique
object identifiers. For example, one object could have been
reclaimed by the GC while another object of the same type
could have been allocated at the same position. These two
objects would be indistinguishable in a heap dump. Thus, in
order to identify objects uniquely and to capture allocation-
specific information we have to trace the actual object allo-
cations.

Most Java VMs support dynamic bytecode instrumenta-
tion, enabling an external agent to inject code at each al-
location site. However, instrumentation introduces a sig-
nificant performance overhead because it impedes compiler
optimizations, such as escape analysis and inlining. Further-
more, some information about objects cannot be obtained
through mere bytecode instrumentation, e.g., the address
and the size of an object or the reclamation of an object by
the garbage collector. In order to obtain such information,
one has to modify or extend the VM.
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Ricci et al. [11] describe an approach called Elephant
Tracks in which they use instrumentation to trace memory
events such as object allocations and deallocations. Since
they aim for portability between different VMs and garbage
collectors, efficiency is not their primary goal. In fact, the
overhead of their tracing technique is so big that it changes
the behavior of the instrumented program and the GC. One
interesting part of their approach is that they compute esti-
mated death times of objects, i.e., the points in time when
objects are no longer reachable. Although this is interesting
in general, it is not useful for performance monitoring, be-
cause even unreachable objects occupy heap space as long as
they are not collected and thus influence the GC behavior.

Our approach integrates tracing into the Java
HotspotTM VM so that it has access to all informa-
tion about objects, their allocation, and how they are
treated by the garbage collector. We developed novel
techniques for minimizing the tracing overhead. This
includes a compact binary trace format in which frequent
events are encoded more compactly than less frequent ones,
in which certain event data is precomputed at compile
time, and in which all information is omitted that can be
reconstructed offline when the trace is processed. Based on
our traces, we can rebuild the heap for arbitrary points in
time, we can detect reoccurring patterns and anomalies in
the event stream, and we can reproduce the GC behavior
in order to diagnose performance problems.

Our scientific contributions are (1) a compact binary trace
format that is largely precomputable at compile time, (2)
an efficient tracing mechanism that is built into the Java
HotspotTM VM, and (3) algorithms for reconstructing omit-
ted trace information offline (e.g., object addresses and deal-
locations). Moreover, we provide (4) an algorithm that is
able to rebuild the heap layout based on our traces.

We conducted our research in cooperation with Com-
puware Austria GmbH. Compuware develops leading-edge
performance monitoring tools for multi-tier Java and .NET
applications. In their own applications as well as in applica-
tions of their customers, high GC times are a problem that
currently cannot be resolved with Compuware’s tools.

This paper is structured as follows: Section 2 pro-
vides an overview of memory management in the Java
HotspotTM VM; Section 3 describes our approach, i.e., the
tracing mechanism and the event formats we use; Section
4 presents a detailed evaluation of our approach, includ-
ing a validation of its soundness as well as a performance
evaluation that compares our overhead with those of other
tools; Section 5 discusses related work and the state of the
art. Section 6 shows future work and potential further usage
scenarios and Section 7 concludes the paper.

2. MEMORY MANAGEMENT IN THE
HOTSPOTTM VM

The default collector of the Java HotspotTM VM is the
so-called Parallel GC. It is a stop-the-world collector, mean-
ing that all application threads are halted when collecting
and resumed afterwards. Using the Parallel GC, the heap
is split into two regions: the young generation, which is di-
vided into the eden space and two survivor spaces, and the
old generation. Splitting the heap into two generations en-
ables the GC to use a run-time-efficient collection strategy
for objects that are likely to die (i.e., young objects) and a

more memory-efficient strategy for objects that are unlikely
to die (i.e., old objects). Thus, the run-time-efficient Scav-
enge algorithm (minor GC) is used for the young generation,
whereas the Mark and Compact algorithm (major GC) is
used if all spaces need collecting. Both algorithms produce
an contiguous, i.e., unfragmented, heap and are highly par-
allelized.

2.1 Object Allocation
New objects are usually appended at the end of the eden

space, which is possible because the eden space is never frag-
mented. To avoid multiple threads racing for the eden end,
every thread uses a separate thread-local allocation buffer
(TLAB) that resides within the eden space, and in which
objects can be allocated by this thread without the need for
synchronization. If a new object does not fit into the re-
mainder of a TLAB, the TLAB is retired and a new one is
allocated into the eden space. To avoid fragmentation, any
remaining space in the old TLAB is filled with an int[]

when it is retired. This filler object will be collected au-
tomatically at the next garbage collection because it is not
referenced. Only under rare circumstances, e.g., when a new
TLAB cannot be allocated, the object is put into the eden
space without a TLAB.

When an object allocation fails, the VM halts all applica-
tion threads and reclaims unused objects in order to make
space for the new object. There are different levels of alloca-
tion failures with distinct actions, depending on how often
the same allocation already failed.

• Level 1 allocation failures occur if the TLAB is full,
and there is neither enough space for another TLAB,
nor enough space for the object itself in the eden space.
The VM triggers a minor GC (possibly followed by a
major GC) and retries to allocate into the eden space.

• Level 2 allocation failures occur if there is still not
enough space and a major GC has not been triggered
at Level 1. The VM triggers a major GC and retries
to allocate into the eden space.

• Level 3 allocation failures occur if there is still not
enough space after the major GC or if the object is
simply too big for the young generation. Instead of
triggering another GC, the VM tries to allocate di-
rectly into the old generation.

• Level 4 allocation failures occur only if there is not
enough space in the old generation. This means that
the VM is running out of memory. Therefore, a more
conservative major GC is triggered, clearing all soft
references. The allocation is then retried in the eden
space.

• Level 5 allocation failures trigger a final attempt to
allocate into the old generation. If this fails, an Out-

OfMemoryError is thrown.

The memory manager provides allocation routines for dif-
ferent kinds of objects, i.e., for instances of any type and
for arrays of any size. They allocate objects by first try-
ing to allocate into a TLAB, and, if this fails, act according
to the allocation failure level. There are four components
which may allocate objects: the interpreter, compiled code,
the garbage collector, and the VM itself. The interpreter
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has a special fast path for allocating instances into a TLAB.
The code of this fast path is generated during VM startup
and relies on a non-full TLAB. If the TLAB is full or if an
array must be allocated, the interpreter has to fall back to
the slow path in which it calls one of the generic alloca-
tion routines provided by the memory manager. Similarly,
compiled code pieces have fast paths for TLAB allocations
(both for instances and for arrays). If the TLAB is full,
the code falls back to the generic allocation routines (slow
path). The garbage collector allocates filler objects (e.g.,
for retiring TLABs) by directly manipulating the heap. Fi-
nally, the VM uses the generic allocation routines for the
allocation of so-called universe objects (i.e., objects that are
created during VM startup) and for other special cases, e.g.,
for reflection and cloning.

2.2 Garbage Collection
During a minor GC, all live objects in eden and in one of

the survivor spaces are copied into the other (empty) sur-
vivor space by following all root pointers into the young
generation recursively. When an object has reached a cer-
tain age (measured in survived minor GCs), it is “tenured”,
i.e., copied into the old generation. An object might also be
copied directly into the old generation if the survivor space
is full or the object is too big. At the end of a minor GC,
eden and the source survivor space are considered empty
again. Any object that has not been copied is garbage. It
is not deallocated explicitly but is implicitly freed when the
containing spaces are declared empty. Therefore, the run
time of a minor GC depends only on the number of live ob-
jects because they have to be evacuated into either one of
the survivor spaces or the old generation.

To avoid locking, promotion-local allocation buffers
(PLABs) are used for parallel copying into the survivor space
and into the old generation. Like TLABs, PLABs are allo-
cated and retired on demand, which might include filling the
remainder with a filler object.

In order to avoid that an object is copied twice if two GC
threads arrive at that object at the same time, a forward
pointer is atomically installed into every copied object. The
forward pointer points to the new location of the copied ob-
ject and is used for detecting whether an object has already
been copied as well as for fixing the references to it. If an
object has been copied twice by accident, the slower thread
then overwrites its copy with an int[] and uses the other
copy obtained via the forward pointer.

A major GC consists of three phases: mark, summarize,
and compact. In the mark phase, the heap is traversed
starting with the root pointers and all reachable objects are
marked as being alive. The summarize phase computes the
new locations of live objects after compaction, whereas the
compact phase moves all live objects accordingly and ad-
justs all pointers. For parallel marking, subsets of the root
pointers are handled by different threads; for parallel com-
paction the heap is split into several small regions. As all
objects are moved towards the beginning of the heap during
compaction, very old objects, including the universe, tend to
accumulate at the beginning of the old generation. As these
objects are very unlikely to die in the future, the GC defines
a dense prefix at the beginning of the old generation. In this
special region, compaction is not performed every time, but
dead objects are only overwritten with filler objects.

3. APPROACH
This section presents our tracing approach, i.e., the gen-

eration of raw traces as well as the offline post-processing
steps required to reconstruct omitted information. Perfor-
mance results and the impact of individual optimizations
will be discussed in Section 4.2.

We modified the Java HotspotTM VM to capture allo-
cation and GC events. More specifically, we modified the
interpreter, the just-in-time compiler, and the garbage col-
lector so that every object allocation and every object move
is treated as an event that is written to a dedicated trace
file for subsequent analysis.

To reproduce an allocation from the trace, we need to
know the object’s address, its type, and its size (including
the array length if the object is an array), the allocation
site, the allocating thread, the allocator (i.e., interpreter,
compiled code, GC, or VM), and the allocation mode (i.e.,
fast path or slow path). To capture object movements by the
GC, we need to know the object’s old and new address for
every move. Furthermore, we need to know if an object was
kept alive by the GC without moving it. Every object that
is neither moved nor kept alive and is located in a collected
space, is reclaimed. Therefore, we do not need dedicated
deallocation events but can derive them from other events
in the trace. The above information must either be explic-
itly stored in the trace, or must be reproducible from other
events in the trace in combination with the context (i.e., the
adjacent events).

Although we extended the HotspotTM VM, our approach
remains applicable to others, because modern VMs and GCs
use very similar techniques and algorithms.

3.1 Symbols
Symbolic information such as the allocation site (i.e., class

name and method name) and the type name of the allocated
object would take up a lot of space if included in every event.
Therefore, we map this symbol information to numeric IDs,
which are used in the actual events instead. The informa-
tion corresponding to the IDs is written to a separate sym-
bols file. For every allocation site, the symbols file contains
the name of the allocating class (represented by a 2-byte
integer), the name of the allocating method, the bytecode
index (BCI) of the allocation site, and the ID of the allocated
type (represented as a 2-byte integer). For every type, the
symbols file contains the name of the type and the size of
objects belonging to this class. The size is the actual size for
instances, and the element size as well as the header size for
arrays. Encoding this information by a single ID keeps the
trace file compact. The symbols file is generated on demand
during tracing but stabilizes quickly.

3.2 Event Types and Formats
This section describes the format of allocation events and

GC events in the trace file.

3.2.1 Allocation Events
Figure 1 shows the format of the most generic (and ver-

bose) allocation event whereas every block is 4 bytes in size.
The event type field (1 byte) indicates that the event de-
scribes an allocation and contains also the allocator and the
allocation mode, e.g., compiled code fast (TLAB) allocation
or interpreter slow (eden space) allocation. The allocation
site (class, method and BCI) is mapped by an ID in the al-
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location site field (2 bytes). Although, we support at most
65536 allocation sites, we have never reached this limit be-
cause we assign IDs lazily, i.e., only if we observe at least
one allocation at that site. The object’s address can be de-
termined by the space into which the object was allocated
and by an offset that is stored in the relative address field
(4 bytes). Since addresses are word-aligned, the space can
be encoded in the last 2 bits of the relative address field.
If the object is an array, its length is stored in the optional
array length / size field (4 bytes). Some instance objects do
not have a fixed size, so their size can be encoded in that
field instead of the array length. Finally, the optional class
field (4 bytes) contains a reference to the type, if it cannot
be inferred from the allocation site.

event 
type

allocation
site

array length
/ size

relative 
address

space class

Figure 1: Event format for allocation events

Some of the fields are necessary because their contents
cannot always be inferred automatically. For example, the
type of the allocated object can usually be inferred from the
allocation site, because most sites, can allocate just a sin-
gle type of objects. However, if a single valid type cannot
be determined statically, we use the optional class field to
store the type. This can happen if there is no valid allo-
cation site or if different types can be allocated at a spe-
cific allocation site. The former occurs when the universe is
built by the VM, whereas the latter occurs in multidimen-
sional array allocations. For example, new int[21][42] is
actually one new int[21][] and 21 allocations of kind new

int[42]. Based on the type information and optionally the
array length, we can calculate the size of an object. If the
size cannot be derived from the type of the allocated object,
the explicit size field is used. This is necessary because the
Class class contains all static fields of the class it describes.
Therefore, the size of a Class object, although not being an
array, is not fixed but varies depending on the amount of
static members. Finally, the allocating thread can be de-
termined from the context, which will be shown in Section
3.3.

This generic allocation event format has potential for op-
timizations: (1) 16 bytes per allocation event is too big when
tracing allocation-intensive applications. (2) Calculating the
fields again and again is redundant, because their values
usually do not change for a specific allocation site; Figure
2 shows our optimized allocation event format that we use
whenever possible, falling back to the generic format only if
necessary.

We observed (cf. Section 4.2) that most objects are in-
stances and small arrays, i.e., arrays with a length smaller
than 255, which are allocated into the TLAB. Correspond-
ingly, the above mentioned corner cases (i.e., multidimen-
sional arrays and Class objects) account only for a small
fraction of all objects.

In the optimized format, the first word remains the same,
except that we use the previously unused byte for storing the
length of small arrays. Moreover, considering only TLAB

event 
type

allocation
site

array
length

Figure 2: Optimized allocation event format by ex-
ploiting continuous TLAB allocations

allocations, there is no need for an explicit object address,
since the address can be computed from the TLAB address
and previous TLAB allocation events, i.e., the sum of the
individual object sizes already allocated into this TLAB (the
algorithm to reconstruct the object address is discussed in
more detail in Section 4.1). As this event format is not used
for large arrays, Class objects, multidimensional arrays, and
allocations with an unknown allocation site, we can encode
everything in a single 4-byte word, without losing any infor-
mation.

Given this optimized event format and an arbitrary allo-
cation site, the first 3 bytes of the event word can be stati-
cally precomputed. This characteristic is used to minimize
the run-time performance overhead of allocation events in
compiled code, as described in Section 3.4.

3.2.2 GC Events
Figure 3 shows an event denoting that a single object has

been moved by the GC, as indicated by the event type field.
The from-address and space represent the current object po-
sition, whereas the to-address and space are its new location.
Although every object movement can be described with such
an event, there are several optimized event formats that we
use whenever possible in order to keep the trace small and
to minimize IO.

event 
type

relative
from-address

space relative
to-address

space

Figure 3: Event format for GC events

During minor GCs, PLABs are placed into the survivor
space and the old space to avoid synchronization when mov-
ing live objects (cf. Section 2.2). As PLABs are similar to
TLABs, we can employ the same technique to calculate the
to-address based on the PLAB address and previous object
moves into this PLAB. The first optimized event format,
shown in Figure 4, takes advantage of this fact. We omit
the to-address and only need to know into which space (i.e.,
survivor space or old space) objects are moved to correctly
reconstruct their addresses. If the relative from-address is
small enough to fit into the unused 22 bits of the first word,
we further compress the event into another 4-byte format.
Only if the object is moved without using a PLAB (e.g.,
because no more PLABs can be allocated or because the
object is too big for a single PLAB) we fall back to the
above described format.

During major GCs, live objects are moved towards the
beginning of the heap (cf., Section 2.2). As the Mark and
Compact algorithm does not use PLABs, we cannot omit the
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event 
type

relative
from-address

space

event 
type

relative
from-address

space

to-space

to-space

Figure 4: Optimized event format for minor GC
events by exploiting continuous PLABs and small
addresses

to-address in the same manner as described above. However,
we can exploit the fact that objects survive in clusters, be-
cause referenced objects are often located next to each other
due to their sequential allocation and compaction. Thus,
these clusters are moved by the same offset and can there-
fore be handled more efficiently by the event format shown
in Figure 5. This format differs from Figure 3 only in making
use of the remaining 24 bits to store the number of adjacent
objects moved by the same offset. In combination with the
object sizes from the allocation events, we can then repro-
duce every single move correctly.

event 
type

relative
from-address

space relative
to-address

space#
objects

Figure 5: Optimized event format for major GC
events by aggregating similar events

3.2.3 Other Events
To support the omission of information in the above men-

tioned event formats, we capture a number of additional
events, such as TLAB and PLAB allocations as well as the
start and end of GC runs. TLAB and PLAB allocation
events carry the absolute address and the size of the respec-
tive thread-local buffer. This information enables computing
the relative address of each object allocation or GC move if
the address has been omitted. GC start and GC end events
carry the absolute address and the size of each space as well
as the type, i.e., minor or major. By means of the absolute
addresses for each space, we can convert relative object ad-
dresses to the correct absolute address. As these events oc-
cur infrequently compared to allocation or GC move events,
there was no need for compressing the contents or other fur-
ther optimizations.

3.3 Writing Events to the Trace File
All events described in Section 3.2 have to be written to

the trace file. However, writing them one by one would
result in an unnecessarily large number of IO operations,
stalling application threads. Therefore, we use buffers to
collect events before they are written.

Event Buffers.
One simple approach is to store all events in a global event

buffer, as shown in Figure 6. However, as today’s appli-
cations are heavily multi-threaded, the application threads
would have to race for the buffer top. This would result in
stalling application threads at every event.

Thread n

Thread 2

Thread 1

Figure 6: Global buffer for all threads

To avoid multiple threads racing for a single buffer, we
assigned a buffer to every thread, as shown in Figure 7.
Therefore, every thread can fire events, i.e., store them into
its own buffer, without having to synchronize with the other
threads. When the buffer is full, it must be written to the
trace file, stalling the application thread again.

Thread 2

Thread 1

Thread n

Figure 7: Thread-local buffers

Figure 8 shows how two buffers per thread can be used to
avoid stalling application threads for most of the time. A
thread always writes to its front buffer until this buffer gets
full. Then it swaps its front buffer with its back buffer and
continues to write on the new front buffer. The full back
buffer is appended to a flush queue. A dedicated worker
thread consumes buffers from this queue and writes them
to the trace file. The application thread stalls only if the
front buffer gets full while the back buffer has not yet been
processed by the worker thread. However, our observations
showed that only a small number of threads allocate fre-
quently. Therefore, the majority of threads hog buffer space
needlessly.

Our final approach, shown in Figure 9, solves this problem
by assigning one buffer to each thread on demand, using a
flush queue and a worker thread for asynchronous output,
as well as a pool of empty buffers. When a thread’s buffer
gets full, it is appended to the flush queue and a new buffer
is requested from the pool of empty buffers. Thus, no appli-
cation thread consumes buffer space needlessly and threads
never have to stall due to full buffers. Moreover, they only
have to synchronize on the flush queue and the buffer pool.
However, this occurs rarely i.e., only when their own buffer
gets full.

Using thread-local event buffers allows us to associate all
events in a buffer with a particular thread, avoiding the need
for a dedicated thread ID in every event. When a buffer is
written to the trace file, it is preceded by a thread ID, thus
allowing us to recover this association when the trace file is
processed.
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Thread 2

Thread 1

Thread n

Front buffers Back buffers

Worker
threadFlush queue

Figure 8: Thread-local front and back buffers

Worker
thread

Flush queue

Buffer pool

Thread 2

Thread 1

Thread n

Figure 9: Thread-local buffers with a buffer pool

Buffer Sizes.
We observed that, if threads execute similar tasks, they

also have similar allocation frequencies. This can lead to
buffer overflows at the same time, and consequently, to per-
formance degradations, because (1) the locks of the flush
queue and the buffer pool are contended and (2) the flush
queue might overflow itself because the worker thread may
not be able to process the buffers fast enough. This prob-
lem was overcome by randomizing the individual buffer sizes
while leaving the overall size of all buffers the same. As the
overall size is the same, buffers are flushed as often as be-
fore, but because of the different individual sizes, they are
flushed at different points in time.

Event Times.
Since events are collected in thread-local event buffers,

their chronological order cannot be recorded if they occur in
different threads. We accept that as the price for not having
to synchronize the recording of every event. However, we
flush all event buffers (even those that are not yet full) before
and after every GC run so that the chronological order of
events is at least maintained across GC runs. In other words:
all events that happended before a GC run occur before the
corresponding GC events in the trace file, and all events that
happened after a GC run occur after the corresponding GC
events. Furthermore, all events that happened in the same
thread occur in the correct chronological order.

3.4 Event Capturing
We designed a new VM component (the Event Runtime),

that is responsible for (1) building an event, (2) writing it to
a buffer as well as for (3) appending a full buffer to the flush
queue and (4) fetching a new buffer. This section describes

how it is used by other VM components such as the memory
manager, the interpreter, compiled code, and the GC.

3.4.1 Allocations in the Memory Manager
Objects allocated by the memory manager are the uni-

verse objects (at VM startup) and filler objects (e.g., when
retiring TLABs or PLABs). These objects are allocated in
native C methods, which we instrumented to call the proper
methods of the Event Runtime. Since these objects are not
allocated by Java code, no allocation site can be defined.
Hence, we use a predefined VM_INTERNAL allocation site and
append the type ID in the optional field.

3.4.2 Allocations in the Interpreter
As discussed in Section 2.1, the interpreter allocates in-

stance objects in the fast path. When it processes the al-
locating bytecode it calls into the Event Runtime to record
the allocation event. Since interpreted code is never “hot”
(otherwise it would have been compiled) there was no need
for optimizing this call.

When the TLAB is full or when the allocated object is
an array, the interpreter goes into the slow path and again
makes a call into the Event Runtime. In this case, however,
the Runtime additionally extracts the method and current
BCI from the call stack and records them in the event.

3.4.3 Allocations in Compiled Code
Since hot code is compiled, most objects will be allocated

by compiled code (cf. Section 4.2). These allocations are fast
because there is a fast path for both instances and arrays of
arbitrary lengths. Only if the TLAB is full, a VM routine
is called that allocates objects using the generic allocation
routines. This is why we designed the event format in a way
that we can capture events in the compiled code as fast as
possible.

56



Since the just-in-time compiler knows which allocation site
it is currently compiling (i.e., which method and BCI), the
value of the optimized allocation event can be inlined into
the generated code as a precomputed constant. If the al-
location site is an array allocation with less than 255 ele-
ments, we just have to add the array length to the precom-
puted event word. Therefore, the overhead of most alloca-
tion events in compiled code is as small as checking whether
the event buffer is full (i.e., comparing two pointers), firing
the event (i.e., assigning a 4 byte constant to a memory lo-
cation) and incrementing the top of the event buffer (i.e.,
incrementing a pointer).

Figure 10 shows C-like pseudo code representing the gen-
erated code at every allocation site of an instance object
(excluding Class allocation sites), whereas Figure 11 shows
the generated code for array allocation sites (excluding al-
location sites for multiddimensional arrays).

Please note that this code is generated during the transla-
tion of an intermediate program representation to machine
code, i.e., after optimizations have been applied. Therefore,
this code does not impede any optimizations, such as escape
analysis or control/data flow analysis. If the buffer is full (or
if the array is too big), the Event Runtime is called which is
able to handle these cases appropriately. This might include
fetching a new buffer or, in the worst case, falling back to
the generic allocation event format.

Object* o = ...; // allocation
if(buf ->top < buf ->end) {

*(buf ->top++) = 0xABCDEF00;
} else {

allocation_event_slow_path(o);
}

Figure 10: Generated code for firing an optimized
allocation event for instances

Object ** a = ...; // allocation
if(buf ->top < buf ->end && a->len < 255) {

*(buf ->top++) = 0xABCDEF00 | a->len;
} else {

allocation_event_slow_path(a);
}

Figure 11: Generated code for firing an optimized
allocation event for arrays

3.4.4 Allocations in the GC
To avoid fragmentation, the GC allocates objects to fill

holes in the heap. This is done by directly manipulating the
memory location where the object header will be. We in-
strumented all sites where the GC creates such filler objects
so that they fire proper allocation events. Although filler
objects will never survive the next collection (because they
are not referenced), they must be tracked in order to calcu-
late the absolute addresses of neighboring objects correctly
and to keep our rebuilt heap unfragmented.

3.4.5 Moves in the GC
Whenever the GC moves an object, an appropriate GC

move event is fired. If a PLAB is used, e.g., during a minor

GC, one of the fast event formats is used. During a major
GC, most GC move events are suppressed and grouped into
region events.

4. EVALUATION
In this section we validate our approach by showing how

we can reconstruct omitted information from the trace and
consequently rebuild the heap layout. Furthermore, we show
that our approach outperforms similar approaches signifi-
cantly in terms of performance.

4.1 Validation
In order to validate our approach, we defined two cate-

gories of tests: Correctness tests are (self-written) applica-
tions whose allocation behavior is predictable. For these ap-
plications we defined tests in which we check if every single
allocation event is recorded in the trace and carries the cor-
rect data; Consistency tests check whether the trace is con-
sistent in itself, i.e., whether the heap can be reconstructed.
We applied these tests to well-known Java benchmarks de-
scribed in detail in Section 4.2.

4.1.1 Reconstructing the Heap Layout
Based on the trace file, we can reconstruct the heap layout

offline for any point in the execution of the application. This
includes information about which objects were alive at that
time, as well as where they were located in the heap. To do
this, we first parse the symbols file and start with an empty
heap before parsing the actual trace file. Each trace file
contains an alternating sequence of two phases: the mutator
phase and the GC phase. The GC phase starts at a GC start
event and ends at a GC end event, whereas the mutator
phase is active at all other times.

Mutator Phase.
The first phase is the mutator phase, which consists of

object allocations and TLAB allocations. During this phase,
we (logically) create a new object for each allocation and
store it in a map using the object address as its key. If
an event uses the unoptimized event format, this is trivial
because the object address is stored in the event explicitly.
If an event uses the optimized format, i.e., if the object was
allocated into a TLAB and the address was omitted from
the trace, the object address must be reconstructed. Thus,
we also maintain a map of currently active TLABs using
the thread ID as the key. When the address of such an
event is reconstructed, we look up the correct TLAB and,
consequently, can determine the range in which the object
must lie (somewhere in between the TLAB start and the
TLAB end).

As objects are allocated sequentially into TLABs, the ad-
dress of the first object (obj0) is equal to the address of
its TLAB. The address of all subsequent objects (objn) can
be calculated by adding the size of the previous objects to
its address. Figure 12 shows how to incrementally recon-
struct object addresses based on previously reconstructed
addresses.

As object allocations into a TLAB might also be described
by the generic allocation event format, their address must
be checked if it lies within the current active TLAB (there
might be other reasons for falling back to this format than
a non-TLAB allocation). If it lies within the TLAB, the
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Figure 12: Algorithm for reconstructing object ad-
dresses of TLAB allocations

counters are adjusted as described above, if not, the object
is just added to the map with the explicitly stored address.

This algorithm assumes that (1) all allocations are in tem-
poral order within the scope of one thread and that (2) only
the owner thread can allocate into a TLAB. Although the
former is trivially true because all events are written sequen-
tially to a thread-local buffer and the buffers are flushed in
the order they are committed to the flush queue, the latter
is false due to filler objects when retiring TLABs in prepa-
ration for a GC run.

In this case, all Java threads are suspended and their re-
spective TLABs are retired by a dedicated VM thread. Re-
tiring a TLAB might include allocating a filler object to fill
the current TLAB, but, as the VM thread is retiring the
TLABs, this allocation is accounted to that thread instead
of the owner thread. To make it even worse, due to the lack
of temporal ordering among multiple threads, the allocation
event of that filler object might be located in the trace before
or after the last allocation into the corresponding TLAB.

To deal with filler objects correctly, we detect them while
parsing a mutator phase and postpone their processing un-
til the mutator phase is complete. As this filler objects are
always of type int[] with a VM_INTERNAL allocation site al-
located by the GC and thus carry an explicit object address,
they are easily detectable. Therefore, we process the post-
poned filler objects when the mutator phase is complete by
searching the correct TLAB and assigning the filler to it as
described above.

GC Phase.
The second phase is the GC phase, which consists of GC

move events, PLAB allocations, and a few object allocations
(for filler objects when PLABs are retired). At the end of
the mutator phase, the data structure representing the heap
can be interpreted as a map of object addresses to object-
specific information. When processing a GC move event,
the object is copied from the old heap map to a new heap
map. In the end, the maps of all collected spaces are cleared
and replaced with the new ones (the kind of spaces depend
on the kind of GC). Every object which is in the old map
but not in the new map has been deallocated.

To reconstruct missing addresses, we use the same tech-
nique for PLABs as for TLABs. (cf. Mutator Phase).

When the GC phase has been processed completely (indi-
cated by a GC end event), the heap map is in a valid state
and can thus be used for the next mutator phase.

4.1.2 Consistency Tests
The consistency tests are performed while the heap layout

is reconstructed from the trace of an application as described
above. The tests check certain invariants, e.g., whether the
sum of all object sizes in a TLAB matches the TLAB size
and whether there are no holes in the heap at each phase
change where the heap should be valid. Extensive tests with
well-known Java benchmarks (cf. Section 4.2) showed that
we can reconstruct the heap for every Java application with-
out restrictions or inconsistencies.

4.2 Performance
In order to measure the overhead of our tracing mecha-

nism we performed measurement on a large number of well-
known Java benchmarks such as the DaCapo1 2009 bench-
mark suite [1], the DaCapo Scala2 benchmark suite [12],
the SPECjvm3 2008 benchmark suite, and the SPECjbb4

2005 benchmark. These suites contain a large variety of pro-
grams exhibiting different kinds of allocation and garbage-
collection behavior. The DaCapo Scala benchmark suite
contributes benchmarks that are not implemented in Java
but in Scala, which usually results in a more allocation-
intensive behavior. For every benchmark, we chose the
largest input available to put more pressure on the mem-
ory manager and the garbage collector.

In addition to that, we implemented a benchmark that
prints ”Hello World” to the standard output. We use this
benchmark to measure the overhead we introduce during
VM startup and teardown.

Every result we show is the median of 50 runs. For every
run, we executed enough warmups in order to JIT-compile
all hot methods and to stabilize the caches before measure-
ment.

We ran all measurements on an Intel R© CoreTM i7-3770
CPU @ 3.40GHz×4 (8 Threads) on 64-bit with 18GB RAM
running Ubuntu 13.10 Saucy Salamander with the Kernel
Linux 3.11.0-23-generic. All unnecessary services were dis-
abled and the experiments were always executed in text-only
mode.

4.2.1 Overhead
Figure 13 shows the run-time overhead of our approach

(i.e., lower is better). Every group of bars is one benchmark,
whereas the left/red/dark bar is the run time without the
tracing mechanism enabled and the right/green/light bar
is the run time with the tracing mechanism enabled. Due
to large absolute differences in their run times, every bench-
mark has been normalized with respect to the run time with-
out the tracing mechanism. The crypto, compress, scimark,
mpegaudio, factorie, specs and scalatest benchmarks were
excluded for space reasons and because they do not show
any measurable run-time overhead anyway. The size of a
single event buffer has been fixed at 16KB for this experi-
ment.

The results show that the average run time overhead is
about 4.68%. Some benchmarks such as tomcat, trade-
beans, tradesoap and actors even show a slight speedup.
We tracked this reproducible behavior down to the fact that

1http://www.dacapobench.org/
2http://www.dacapo.scalabench.org/
3http://www.spec.org/jvm2008/
4http://www.spec.org/jbb2005/
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Figure 13: Run time overhead

the slight overhead we introduce when tracing allocations
and GC moves causes the compiler to make different opti-
mization decisions, that have an accidental albeit positive
influence on the run time.

The overhead observed is significantly lower than simi-
lar tracing mechanisms. Figure 14 shows the overhead of
Elephant Tracks on the DaCapo benchmarks based on [11]
(time for tracing allocation and deallocation events without
method entry and exit events). Although Elephant Tracks
was not built for performance monitoring, it is the tool that
is most similar to ours and can be configured to collect al-
most the same amount of data as we do. Please note the
different scale on the y axis and that the overhead on the
tradebeans and tradesoap benchmarks is so high that they
crash due to internal timeouts with Elephant Tracks. The
results show that our tracing mechanism outperforms Ele-
phant Tracks significantly.

Although there was no overhead measurable in Java heap
size, the non-Java heap rose by 1% due to the event buffers.
Furthermore, the code cache (holding all compiled code)
grew by 3% due to the additional code generated. These
numbers are the same for all benchmarks.

4.2.2 Impact of Optimizations
In order to determine the gain of individual trace opti-

mizations, we compared the benchmark results with and
without these optimizations. Here, we will only discuss the
most import optimizations in terms of performance impact.

Optimized Allocation Event Formats.
Figure 15 shows the distribution of the types of allocated

objects, i.e., instances, small arrays (length < 255), and big
arrays, of a reduced albeit representative set of benchmarks.
As expected, instances and small arrays comprise the by far
largest amount of heap objects. Therefore, handling them
by a more compact event format makes sense.

Figure 16 shows the distribution of the allocators, i.e.,
compiled code, interpreter, and the VM. Again, as expected,
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after the application is warmed up, almost all allocations
were performed by compiled code. The only exception is
the HelloWorld benchmark, where all allocations are done
during startup by the VM itself or by the interpreter. There-
fore, our decision to optimize the tracing of allocations in
compiled code pays off.

To summarize, it is obvious that optimizing compiled code
for instances and small arrays is of utmost importance. For
this reason, we defined optimized and precompilable event
formats for these cases as described in Section 3.2.1. Dis-
abling these optimizations and falling back to the unopti-
mized allocation event format increases the trace size by a
factor of 2 to 3 (depending on the ratio between instances
and arrays), roughly doubling the overall run-time overhead.
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Optimized GC Event Formats.
Figure 17 shows the distribution of the GC event formats

used in the benchmarks. We can observe that most events
use the optimized event format without the source address;
only a few events use the generic (unoptimized) event for-
mat (mostly originating from major GCs). The region move
event format as well as the generic move event format are
used by less than 0.1% of the events in the trace. However,
observations have shown that on average at least 300 objects
are aggregated into a single region event, meaning that 300
events (900 words) have been replaced by a single event (3
words as well). Furthermore, a significant amount of opti-
mized events can be replaced by their narrow version, cut-
ting the event size in half and consequently reducing buffer
overflows and IO.

Asynchronous IO.
The performance impact of asynchronous IO strongly de-

pends on the chosen buffer size. When using synchronous
IO, we observed that the run time overhead is multiplied by
at least a factor of 5 without changing the buffer size (16KB
by default). When the buffers are of much larger size (several
MB at least), synchronous IO performs almost as good as
asynchronous IO. This is due to the fact that buffer overflows
occur only rarely. However, whenever a garbage collection
starts or ends, all buffers must be flushed, which increases
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the pause time of the GC significantly with synchronous IO
and large buffers. Furthermore, with large buffer sizes, the
non-Java heap size overhead can easily grow to several GBs.

Buffer Management.
Using only a single thread-local buffer produces the same

overhead and the same space trade-off as described above
(cf. Paragraph Asynchronous IO) because even with asyn-
chronous IO, the thread cannot continue without waiting
for the buffer to be flushed. However, using front and back
buffers doubles the average overhead compared to our fi-
nal implementation. Our investigation showed that this is
due to the fact that almost every benchmark has allocation-
intensive bursts. During these bursts, objects are allocated
faster than the buffers can be flushed. In these cases, ap-
plication threads must be stalled because both, the front
buffer is full, and the back buffer has not yet been flushed.
As these bursts occur rarely and only affect a limited num-
ber of threads at a time, stalling can be avoided by our more
flexible buffer management described in Section 3.3.

Randomized Buffer Sizes.
To evaluate the performance impact of randomized buffer

sizes, we measured the lock and wait times when accessing
the flush queue. The lock time is the time a thread has to
wait for the lock, whereas the wait time is the time spent
waiting because the flush queue became full. A high lock
time indicates that multiple threads wanted to flush their
buffers at the same time, whereas a high wait time suggests
that the worker thread could not process the flush queue fast
enough. Using randomized buffer sizes reduced the overall
run time overhead by 2% on average and the lock time by
5% and wait time by 21% on average.

5. RELATED WORK
There is ample work on how to track down memory-

related performance degradations in Java and other man-
aged execution environments. Chilimbi et al. [2] define a
binary format for recording memory event traces with the
intention to use them as simulation workloads for garbage
collector performance tests. However, as their trace format
is very flexible and allows for variable-sized fields and cus-
tom fields, the trace is not encoded as efficiently as it could
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be. Harkema et al. [3] create events (not only memory
events) by instrumentation and provide an event trace API.
Furthermore, they implemented a number of tools on top
of this API. Although their events include allocations they
lack the granularity of our approach. For example, they do
not trace GC events. Hertz et al. [4, 5] generate traces in-
cluding allocation, deallocation and pointer-update events.
They invoke a full GC every n milliseconds to calculate the
approximate time of death for an object, whereas the preci-
sion depends on n. However, they cannot tell how an object
was moved by the GC. Moreover, frequent full collections
degrade performance as well as they distort GC behavior.
Printezis et al. [10] provide an adaptable framework and
API for collecting memory management behavior, includ-
ing GC behavior. However, they record the behavior for
blocks instead of for objects and thus lack object-specific in-
formation. Ricci et al. [11] use a combination of bytecode
rewriting and JVMTI to build a shadow heap and to gen-
erate traces with events such as allocations, deallocations,
and pointer updates. However, they produce an overhead of
a factor of 3000 for some benchmarks, making this approach
unfeasible in production environments. Furthermore, they
compute estimated object death times, i.e., the time the
last reference to an object is cleared, and not actual deallo-
cations, i.e., the time an object is actually reclaimed by the
GC. Although the former might be interesting, it ignores the
fact that even unreferenced objects have an impact on the
GC behavior. Considering the actual point in time, where
they are reclaimed, is therefore more useful for performance
monitoring. Finally, Jones et al. [7] offer a detailed study
about the correlation of object age, allocation site, program
input, and GC performance.

There is also some work on tracing objects in native en-
vironments. Although these approaches are only marginally
relevant for us, they deserve being mentioned: Janjusic et al.
[6] implemented a memory profiling tool that is able to as-
sociate each memory access to source-level data structures
using binary instrumentation. This enables the program-
mer to refactor code based on memory access patterns and
to simulate cache behavior. Marathe et al. [9] also pro-
vide a framework for partial access traces as well as a novel
compression algorithm for these traces.

6. FUTURE WORK
This section discusses future work, as well as further po-

tential usage scenarios.

6.1 Compression
As event traces can grow large, we plan to compress them.

The event stream can either be compressed on the fly inside
the VM (before writing it to the trace file) or by an external
phase. Compressing the event stream inside the VM has the
advantage that the VM has to write less data which in turn
reduces the IO overhead. However, the compression itself
will take some time as well, resulting in a trade-off between
the quality of the compression (i.e., the resulting size and the
run time) and IO time. Additional research and experiments
are needed to determine whether an internal compression is
beneficial in our case.

6.2 Cyclic Traces
When applications run indefinitely, the trace becomes too

large to be kept in a single file or even on a single disk.

Therefore, we plan to overwrite the trace cyclically, so that
the last n minutes of the execution are always available for
analysis. In other words, the trace must be cut off and
restarted in regular intervals. However, cutting off the trace
will result in loss of data and, therefore, impede subsequent
analysis. Information about previously allocated objects will
no longer be available. To solve this problem, we plan to col-
lect all relevant information about objects that are alive at
cut points and write it to the beginning of the new trace file.
The contents of this information as well as the best suitable
cut points are undefined as yet and therefore considered to
be future work.

6.3 Pointer Updates
In addition to object allocations and GC moves, we con-

sider tracing also pointer updates. This can either be done
at every assignment to a pointer field (which would augment
the trace with valuable information about the dynamic be-
havior of the program but is probably too expensive) or only
at major GCs where we could record the current values of
pointer fields. Tracing the connections between objects on
the heap would open new possibilities for advanced offline
analyses such as memory leak detection or the discovery of
“tenured garbage” (i.e., dead objects in the old generation
that keep other objects in the young generation alive).

6.4 GC Configuration Comparisons
In previous work, we described a technique for automati-

cally tuning the GC by finding optimal GC parameter set-
ting in a black box manner (Lengauer et al. [8]). Object
traces will help us to understand why a specific GC config-
uration is superior to others by providing detailed insights
into dynamic behavior of the memory manager and the GC.

6.5 Mining Recurring Patterns in Transac-
tions

Large-scale server applications have to handle a continu-
ous stream of similar requests, i.e., transactions. Transac-
tions can be split into different phases, some of which ex-
hibit exactly the same allocation behavior at every execu-
tion. Other phases might follow specific patterns, e.g., the
number of allocations of a certain type of objects might de-
pends on a certain transaction parameter. Object traces can
be extended with information about transaction boundaries
and then mined for recurring patterns of object allocations
in relation to transaction parameters. This information can
help the developer to understand the performance impact of
certain parameters on transactions.

7. CONCLUSIONS
In this paper, we presented the design and the implemen-

tation of an efficient tracing mechanism for Java objects,
creating a trace file which contains all object allocations and
GC moves that occur during the execution of a Java appli-
cation. We also described a novel and compact event format
as well as its efficient generation based on the omission of
redundant event data, precomputed event information, and
a sophisticated buffering scheme.

Extensive evaluation showed that our approach has a very
low run time overhead (4.68%) that is significantly smaller
than the overhead reported for other techniques. Further-
more, we showed that our approach can track the full life
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cycle of every object (i.e., allocations, moves, and dealloca-
tions) and allows us to reconstruct the heap layout (i.e., the
location of every object) at any point during the execution
of an application.

When monitoring applications with large GC pauses or
when tuning GC parameters, a trace that reflects the exact
behavior of an application can lay the foundation for new
tools that help developers in solving memory and GC-related
problems.
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collection traces: How to cheat and not get caught. In
Proc. of the 2002 ACM SIGMETRICS Int’l Conf. on

Measurement and Modeling of Computer Systems,
pages 140–151, 2002.

[5] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S.
McKinley, and D. Stefanović. Generating object
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