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ABSTRACT

Internet companies like LinkedIn handle a large amount of
incoming web traffic. Events generated in response to user
input or actions are stored in a source database. These
database events feature the typical characteristics of Big
Data: high volume, high velocity and high variability. Data-
base events are replicated to isolate source database and
form a consistent view across data centers. Ensuring a low
replication latency of database events is critical to business
values. Given the inherent characteristics of Big Data, min-
imizing the replication latency is a challenging task.

In this work we study the problem of taming the database
replication latency by effective capacity planning. Based
on our observations into LinkedIn’s production traffic and
various playing parts, we develop a practical and effective
model to answer a set of business-critical questions related
to capacity planning. These questions include: future traffic
rate forecasting, replication latency prediction, replication
capacity determination, replication headroom determination
and SLA determination.
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1. INTRODUCTION
Internet companies like LinkedIn handle a large amount of

incoming traffic. Events generated in response to user input
or actions are stored in a source NoSQL database. Though
these events can be directly consumed by simply connecting
to the source database where the events are first inserted,
today’s major Internet companies feature more complicated
data flows, and so require database replications to isolate
the source database and events consumers (i.e., applications
that read the events).
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Database replication is needed mainly for the following
two reasons. Firstly, the source database may need to be
protected from heavy or spiky load. Having a database repli-
cation component can fan out database requests and isolate
the source database from consumption. Figure 1 illustrates
the typical data flow of event generation, replication, and
consumption. When users interact with a web page, the
corresponding user updates (events) are sent to databases.
The events are replicated by a replicator and made available
to downstream consumers. Secondly, when Internet traffic
is spread across multiple databases or multiple data centers,
a converged and consistent data view is required, which can
only be obtained by replicating live database events across
data centers.

The database replication process has to be fast and in-
cur low latency; this is important both for the benefits of
the particular business and for enhanced user experience.
Any event replicated by the events replicator has an associ-
ated replication latency due to transmission and processing.
We define replication latency as the difference in time be-
tween when the event is inserted into the source database
and when the event is ready to be consumed by downstream
consumers. Minimizing the replication latency is always pre-
ferred from the business value perspective. While a delayed
user update can be a bit annoying (for example, LinkedIn’s
user profiles fail to show the users’ newly updated exper-
tise), other delayed updates can incur additional business
cost or reduced business income. For example, with web
sites that display customers’ paid ads (i.e., advertisements),
the number of ads impressions (i.e., the number of times an
advertisement is seen) across multiple data centers has to
be tightly correlated to the pre-agreed budget. A signifi-
cantly delayed ads event update will cause additional cost
and reduced income for the company that displays the ads.

Keeping a low database replication latency of events is a
challenging task for LinkedIn’s traffic. The events feature
the typical characteristics of Big Data: high volume, high
velocity and high variability. These characteristics present
tremendous challenge on ensuring low replication latency
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Figure 1: Data flow of database replication
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while without significantly over-provisioning the deployment.
Though a naive solution to minimizing the replication la-
tency is to provision the capacity based on maximum traffic
rates, the high-variability feature will incur high business
cost associated with the over-provisioning. On the other
hand, allowing certain levels of replication latency can sig-
nificantly reduce business cost. Striking the balance between
replication latency and business cost turns out to be a chal-
lenging task that requires appropriate capacity planning.

Database replication latency is closely tied to capacity
planning. Capacity planning will help understand the cur-
rent business and operational environment, assess and plan
for future application needs based on traffic forecasts. Ca-
pacity planning can particularly help reduce the business
operation cost. For example, given incoming traffic patterns,
we can plan the replication capacity (hardware/software pro-
visioning) so that replication latencies do not exceed busi-
ness requirements. Though a naive solution is to aggres-
sively provision resources to meet business SLAs (Service
Level Agreements) in the worse cases such that the replica-
tion capacity always exceeds the foreseen peak traffic rates
(for example, maximum replication latencies less than 60
seconds), it would incur unnecessary business cost. On the
other hand, based on appropriate capacity planning models,
it is possible to significantly reduce business cost without
violating business SLAs.

To reduce database replication latency and save business
cost, appropriate capacity planning is required. For the
problem we attempt to address in this work, we need to
understand the relationship among incoming traffic volume,
replication capacity, replication latency, and SLAs in order
to ensure desired replication latency. In addition, by care-
fully considering both incoming traffic rate and replication
capacity, we can also use capacity planning to foresee future
replication latency values given a particular replication pro-
cessing capacity. Moreover, most Internet companies’ traffic
also show an ever-growing traffic rate, and we need to im-
prove replication processing capacity to accommodate the
traffic increase.

Specifically, the following set of questions need to be an-
swered in the context of capacity planning to tame database
replication latency:

• Future traffic rate forecasting : Given the historical
data of incoming traffic rates, what are the expected
traffic rate in the future? This question will also help
answering latter questions;

• Replication latency prediction: Given the incoming traf-
fic rate and replication processing capacity, what are
the expected replication latencies? The values are im-
portant to determine the SLA of maximum replication
latency;

• Replication capacity determination: Given the increased
incoming rate and largest allowed replication latencies

(SLA), how much replication capacity do we need to
achieve? This will help define replication capacity re-
quirements;

• Replication headroom determination: Given the repli-
cation capacity and SLA, how much more incoming
traffic can we handle? With the current replication
capacity, how long (i.e., how many days) will it take
before SLA violation? This helps plan for future re-
quirements.

• SLA determination: Given the incoming traffic rate
and replication processing capacity of today or future,
how to determine an appropriate SLA? Apparently, we
don’t want to over-commit or underestimate the SLA.

Based on our observations into production traffic and var-
ious playing parts, in this work we develop a practical and
effective model to forecast incoming traffic rates and deduct
corresponding replication latency. The model can be used
to answer the set of business-critical questions related to ca-
pacity planning defined above. In this work, we share how
we perform capacity planning by answering the five ques-
tions related to capacity planning. These questions offer
different aspects of capacity planning and can be applied to
different scenarios. We use the models on one of LinkedIn’s
database replication products to describe the designs and
demonstrate usage, but the models can easily be applied to
other similar usage scenarios. Moreover, our observations on
internet traffic patterns can also help shed light on solving
similar capacity planning problems in other areas.

For the remainder of the writing, we first present the var-
ious observations regarding our production incoming traffic
to motivate our design in Section 2. We then define the
problems being addressed in this writing in Section 3. We
then present the high level designs in Section 4 and the de-
tailed designs of forecasting in Section 5. Section 6 presents
the evaluation results of the proposed designs. We discuss
some further relevant questions in Section 7 and share our
learned lessons in Section 8. We also present certain related
works in Section 9. Finally Section 10 concludes the work.

2. OBSERVATIONS OF LINKEDIN TRAF-

FIC
In this section, we first give some background of LinkedIn’s

Databus, then present some observations of our production
traffic and deployments. These observations will help our
design in later sections.

2.1 LinkedIn Databus
LinkedIn’s Databus [7] is a data replication protocol re-

sponsible for moving database events across data centers.
It can also be used to fan out database usage to reduce the
load on source databases. It is an integral part of LinkedIn’s
data processing pipeline. Replication is performed by the
Databus Relay component, which processes incoming data-
base records and makes them ready to be consumed by
downstream Databus clients. A simple illustration of the
data flow is shown in Figure 2. The raw events are inserted
into the source database, LinkedIn’s home-grown Espresso
[15]. These events are replicated and queued for Databus
Relay to consume. Databus Relay fetches and processes
the queued events so that the events can be later pulled
by clients.
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Figure 3: Six weeks (42 days) of incoming traffic (totally 1008 data points; note that two close-to-zero data
points are invalid)

(a) Monday traffic (May 5th, 2014)

(b) Saturday traffic (May 17th, 2014)

Figure 4: Individual days of traffic (Each data point
represents 5 minutes, totally 288 data points)

A critical performance factor is the Databus Relay Lag
(i.e., Databus replication latency), which is calculated as
the difference in time between when a record is inserted
into source Espresso and when the record is ready to be
consumed by the Databus clients. The extent of relay lag
largely depends on two factors: the rate of incoming raw
database events (i.e., the “producing rate” of the events)
and the Databus Relay processing capacity (i.e., the “con-
suming rate” of the events). So if the producing rate is
always lower than the consuming rate, there will be no sub-
stantial relay lags, other than the event transmission delay
which is usually very small. But when the producer over-

whelms the consumer, the incoming events will be queued
and a non-trivial relay lag will result due to an events queue
backlog. To minimize relay lags, appropriate capacity plan-
ning is needed after careful consideration of both producing
and consuming rates.

2.2 Periodic pattern of incoming traffic rate
We first studied the incoming traffic rate of multiple Esp-

resso instances across many months; our first impression was
the strong periodic pattern - the traffic shape is repeated for
each day of the week. Figure 3 below shows 42 consecutive
days of data for a single Espresso node. The incoming traffic
consists of two types of database events: insert and update.
Databus Relay processes both types of traffic, so we aggre-
gated the total incoming rate for each minute.

We observed weekly repeating patterns in incoming traf-
fic rates. Every week, the five workdays have much higher
traffic rates than the two weekends. Such a weekly pattern
repeats with similar traffic shapes. Within a single day, ir-
respective of being workday or weekend, we found that the
traffic rate peaks during regular business hours, while drops
to the lowest at night.

2.3 Incoming traffic of individual days
We then studied the periodic pattern of incoming traffic

for each day. For each workday and weekend, we noticed
that the traffic shape is a well formed curve. In Figure 4,
we show the workday of May 5th, 2014 (Monday) and the
weekend day of May 17th, 2014 (Saturday).

We observed that the traffic shapes of these two days were
quite similar, except for the absolute values of each data
point. Specifically, for each day, the peak periods were about
8 hours (that is, 6AM to 2PM in the West Coast, or 9AM
to 5PM in the East Coast). Not surprisingly, the workday
peak value (6367 records/sec) was much higher than that of
weekends (1061 records/sec).

2.4 Relay processing capacity
We also examined the relay processing capacity. The re-

lay processing rate was maximized only when there was a
buildup in queued events. To force Databus Relay to work at
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Figure 5: Relay processing rate (Relay capacity)

Figure 6: Traffic growth in 6 weeks

full capacity, we rewound the starting System Change Num-
ber (SCN) of the relay component to artificially introduce
sufficient relay lag. For a particular Databus Relay instance,
the replay processing rates over 20 hours of a recent day are
plotted in Figure 5.

We observed that the relay processing rate is relatively
flat over time. The reason for relative stable relay process-
ing rate is because the processing rate is dominated by the
replication protocol, which is relatively constant for each
event.

2.5 Growing traffic
We studied the historical data of incoming traffic and

found that: (1) overall, the traffic volume grows over time;
(2) the traffic for individual days is affected by many factors
including weekends, holidays, and production releases. We
analyzed the incoming traffic rates for a duration of 6 weeks
and plotted the monthly traffic rates in Figure 6. Linear
fitting of the curve demonstrates about 20% increase in 6
weeks.

Note that this analysis and graph are based on a particu-
lar instance of the Espresso node. We also studied other in-
stances and found that though the exact growth rates differ
for different periods and instances, the overall traffic growth
rate is quite significant. Even though it is possible to build
capacity planning models for each instance for higher accu-
racy, we want to build a generic model to cover all instances.

2.6 Summary
Our study of LinkedIn’s production traffic showed that

the database events producing rate (i.e., the incoming traffic
rate) follows strong patterns in the form of repeated weekly
curves, while the consuming rate (i.e., the replication pro-
cessing capacity) is relatively constant. Because of varying
incoming traffic rates, we used to see that replication la-

tency can accumulate during peak hours when production
rate is higher than the relay capacity, and the accumulated
replication latency decreases during non-peak hours when
the incoming traffic rate is lower than the relay capacity.

The incoming traffic rate keeps growing, thanks to the
user and activity growth, so it is important to take into
account the traffic growth when doing capacity planning.
We need to forecast into future traffic to understand the
future replication latency, estimate the capacity headroom,
define the replication capacity requirements, and determine
SLAs.

3. PROBLEM DEFINITION
In this section, we formally define the problems we at-

tempt to address in this work. We first give the definitions
of SLAs (service level agreements); then present the four
types problems related to capacity planning.

3.1 Forms of SLA (service level agreements)
SLA is a part of a service contract where a service is for-

mally defined. Thought normally the service contracts are
between companies, it can extend to between different di-
visions inside a company or even between different software
components. For instance, a web service component may de-
fine a SLA such as maximum call latency being 100 ms, so
that the callers (e.g., a web page rendering component) can
rely on the SLA to make design choices and further define
their SLAs.

The goal of taming the database replication latency is to
fulfill SLA, which can come in different forms. A straight-
forward SLA metric can be expressed as the “largest” repli-
cation latency experienced, which is the form we use to de-
scribe our designs. For instance, largest replication latency
should not exceed 60 seconds. However, other forms of
SLA metrics are also possible, depending on specific require-
ments. To give a few examples: (1) certain percentiles (e.g.,
p99) of all replication latencies in a day, or (2) the duration
of replication latencies exceeding certain values. Despite the
differences in SLA forms, we believe the underlying mecha-
nisms required to answer the five types of questions in Sec-
tion 1 are very similar. So in this work, we will use the
largest replication latency as the SLA metric to present our
solution.

3.2 Problems being addressed
For simplicity in presentation, we fix the time-granularity

of the traffic rates to per-hour average, but other granularity
can be similarly defined. The following variables are needed
to define the problems: (1) Relay capacity: Ri,j in day di
and hour hj , where 0 ≤ j ≤ 23; (2) Incoming traffic rate:
Ti,j in day di and hour hj ; (3) Replication latency: Li,j in
day di and hour hj ; (4) SLA of replication latency: Lsla,
which is the largest replication latency.

With the above variables, we can formally define the set
of the problems we will address in this work:

• Forecast future traffic rate Given the historical traffic
rate of Ti,j of time period P (e.g., past 30 days), what
are the future traffic rate Tr,k, where r > imax in day
r and hour k?

• Determine the replication latency Given the traffic
rate of Ti,j and relay capacity Ri,j , what are the repli-
cation latency of Li,j?
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• Determine required replication capacity Given SLA
requirement Lsla and traffic rate of Ti,j , what are re-
quired relay capacity of Ri,j?

• Determine replication headroom There are two ques-
tions: (1) Given the SLA of Lsla and relay capacity of
Ri,j , what are the highest traffic rate Ti,j it can han-
dle without exceeding SLA? (2) what are the expected
date dk of the previous answer?

• Determine SLA There are multiple forms of SLAs that
can be determined. In this work we consider two of
them: (1) what is the largest replication latency Lmax

in a week; (2) for 99% of time in a week the replication
latency should not exceed Lp99, what is the Lp99 value?

4. DESIGN
This section will start with the overview of our design, fol-

lowed by two models to perform forecasting of future traffic
rates. After that, the other four types of questions described
in Section 1 will be respectively answered.

4.1 Design overview
Before we jump into the details of the design, it helps to

gain a conceptual grasp of the problem we try to address.
The extent of relay lag largely depends on two factors: the
rate of incoming raw database events and the Databus Re-
lay processing capacity. The Databus Relay is conceptually
a queuing system and has the features of a single server,
a First-In-First-Out (FIFO) queue, and infinite buffer size.
Unlike typical queuing theory problems, in this work, we are
more focused on the “maximum” awaiting time of all events
at a particular time.

In order to answer all the capacity planning questions, we
need to obtain the future traffic rates. We will employ two
models for traffic forecasting: Time series model and Regres-
sion analysis. Given historical traffic rates of certain period,
the time series model will be able to forecast the future rates
based on the discovered trend pattern and seasonal pattern.
The historical data we can obtain is mostly per-hour based
due to current limitations on the storing mechanisms, so for
each past day it consists of 24 data points. We also ob-
served that the traffic rates exhibit strong seasonal pattern
with period of a week (i.e., 7 days, or 168 hours).

For this type of time series data, typically ARIMA (au-
toregressive integrated moving average) model [3] is chosen
for modeling and forecasting. Due to its design rationales
and computation overhead, ARIMA is not suitable for long
period seasonality (e.g., 168). In addition, the capacity plan-
ning needs to obtain per-hour forecasted data rather than
per-day data. Because of this, we are not allowed to aggre-
gate per-hour data into per-day data to reduce seasonality
period to 7 (since a week has 7 days). To accommodate
the long period seasonality as observed in traffic data and
the per-hour forecasting requirements, we propose a two-
step forecasting model to obtain future per-hour traffic rates.
Briefly, it firstly obtain the aggregated traffic volume of each
day/week, it then “distribute” (or “convert”) the aggregate
to each hour inside a day/week. The “conversion” of traffic
volume from day/week to hours relies on seasonal indexes,
which roughly represent the traffic portion of each hour in-
side a week. Specifically, the model consists of two steps:
(1) Step-I of forecasting the average incoming rates per day

of future days using ARIMA model and (2) Step-II of fore-
casting the average rates per hour of each future days using
seasonal indexes.

Regression analysis is targeted for estimating the relation-
ships among variables. Regression analysis can also be used
to forecast and predict. Specifically, for our purpose of fore-
casting future traffic rate, the independent variable is the
time, while the dependent variable is the traffic rate at each
time. Such analysis is also referred to as “time series regres-
sion”. Since we observed strong seasonal pattern with the
period of a week, we propose to forecast the average traf-
fic rates of future “weeks” based on historical weekly data.
Once we obtained the weekly average, we can then convert
the weekly average to per-hour data of within a week using
the same step-2 of time series model presented above. An-
other important reason why we choose per-week aggregation
is that, regression analysis is based on the assumption that
the adjacent data points are not dependent. Compared to
finer scale of data points, weekly aggregated data are less
dependent on each other. We will discuss more on this in
Section 7.

For answering the other three types of capacity-planning
related questions, we develop respective mechanisms which
utilize numerical calculations and binary-searching. For ease
of description, we assume the time granularity is per-hour.
Once the traffic rates are obtained, then a numerical calcu-
lation method will be used to deduct the relay lags of any
time point. Based on the numerically calculated results, the
relay capacity required to sustain a particular traffic rate can
also be obtained using binary search. The maximum traf-
fic rates as well as the corresponding future dates can also
be determined. Finally, examining the deducted replication
latencies we can also determine appropriate SLAs.

4.2 Forecasting future traffic rate with ARI-
MA model

The incoming traffic rates of each time unit are a sequence
of observations at successive points in time, hence they can
be treated as a time series. We can employ time series
method to discover a pattern and extrapolate the pattern
into the future. The discovered pattern of the data can help
us understand how the values behave in the past; and the
extrapolated pattern can guide us to forecast future values.

ARIMA time series forecasting model will be used to pre-
dict the incoming rates of any future days. Though it is
obvious to see the weekly pattern for our particular time se-
ries data, identifying seasonal periods for other time series
might not be so trivial. Examining the ACF (Autocorre-
lation Function) [3], we see a strong signal at 7, indicating
a period of 1 week (i.e., 7 days). Based on our investiga-
tions into the properties of the traffic data, we decided to
use ARIMA(7,1,0) to fit the historical data and forecast the
traffic rates of future days, the details will be presented in
Section 5.

Answering various capacity planning questions requires
the per-hour granularity of traffic rates. To convert the fore-
casted per-day rate to per-hour rate, we perform time series
decomposition. A typical time series consists of three com-
ponents: trend component, cycle (or seasonal) component
and irregular component [3]: Xt = Tt + St +Rt, where: Xt

is the value of the series at time t; Tt is the trend component,
St is the seasonal component, and Rt is the random effect
or irregular component. Tt exists when the time series data
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Li,j = predict(Ti,j , Ri,j): // Latency in seconds.

1 // assuming no latency buildup in di−1, so Li,0 = 0.
2 for each hour of hj , where 1 ≤ j ≤ 24:
3 if Ti,j > Ri,j : // increase latency buildup

4 Li,j = Li,j−1 +
3600(Ti,j−Ri,j)

Ri,j

5 else: //decrease latency buildup if any

6 Li,j = Li,j−1 −
3600(Ri,j−Ti,j)

Ri,j

7 if Li,j < 0:
8 Li,j = 0

Figure 7: Algorithm of predicting replication la-
tency

gradually shift across time; St represents repeating patterns
(e.g., daily or weekly); while Rt is time-independent and is
characterised by two properties: (1) the process that gener-
ates the data has a constant mean; and (2) the variability
of the values is constant over time.

Time series decomposition can eliminate the seasonal com-
ponent based on seasonal index, which measures how much
the average for a particular period tends to be above (or
below) the expected value. Seasonal index is an average
that can be used to compare an actual observation relative
to what it would be if there were no seasonal variation. In
this work, we utilize seasonal index to convert per-day data
to per-hour data. Calculating seasonal index requires the
setting of seasonal period, which we choose 168 hours (i.e.,
1week, or 7 days * 24 hours). Once the seasonal indexes are
calculated, each day of data can be “seasonalized” to obtain
per-hour data based on the particular day in a week. We
will present details in Section 5.

4.3 Forecasting future traffic rate with regres-
sion analysis

When regression analysis (i.e., time series regression) is
used to forecast future traffic rates, the weekly average val-
ues are used instead. Specifically, for the consecutive weekly
average traffic rate of Wt, where t is the week id, a trend
line (i.e., the linear fitting of Wt) can be obtained in the
form of Yt = aWt + b. The a is the slope of the change, or
the growth rate. With the trend line, future weekly average
traffic rate Wt can be forecasted.

Future Wt values obtained with time series regression are
actually the “deseasonalized” forecast values. To convert to
specific hourly rate, Wt needs to be “seasonalized”, similar
to the process of using ARIMA model. The details of the
conversion will be presented in Section 5.

4.4 Predicting replication latency
For a particular day of di, assuming the per-hour traffic

rate of Ti,j and the relay capacity Ri,j are known (totally 24
data points). Apparently if the processing capacity is larger
than or equal to the incoming traffic rate, or Ti,j ≤ Ri,j , no
replication latency buildup will result; otherwise, there will
be replication latency buildup. We define “peak period” as
the time period where the incoming rate exceeds the relay
capacity, and“non-peak period” otherwise. For the latency
buildup during peak traffic time, it can be gradually con-
sumed during non-peak traffic time when the traffic rate is
relatively low. We assume eventually all the latency buildup

Ri,j = capacity(Ti,j , Lsla):

variables:
1 Ri,j(min): a Ri,j such that max(Li,j) ≥ Lsla

2 Ri,j(max): a Ri,j such that max(Li,j) ≤ Lsla

1 Ri,j(lf) = Ri,j(min)

2 Ri,j(rt) = Ri,j(max)

3 while Ri,j(lf) < Ri,j(rt) − 1:

4 Ri,j(mid) =
Ri,j(lf)+Ri,j(rt)

2
5 Li,j = predict(Ti,j , Ri,j(mid))
6 if max(Li,j) ≤ Lsla:
7 Ri,j(rt) = Ri,j(mid)

8 else:
9 Ri,j(lf) = Ri,j(mid)

10 return Ri,j(rt)

Figure 8: Algorithm of determining replication ca-
pacity

will be consumed by the end of non-peak traffic time of any
day. This is a reasonable assumption as otherwise the repli-
cation latency will continually grow across days, which is
unusable scenario for any business logic or SLA definition.

The mechanism to predict replication latency for any hour
of a day is based on numerical calculations. Assuming there
is no latency buildup from previous day of di−1 (i.e., Li,0 =
0, for each successive hour hj where j > 0, the traffic rate
is compared to relay capacity at hj . If the incoming rate
is higher, it will incur additional replication latency at that
time. Otherwise, previous replication latency, if any, will be
decreased, as the relay has additional capacity to consume
previously built-up latency. The amount of latency change is
based on the difference between the two rates, that is, Lδ =
Ti,j−Ri,j

Ri,j
hours. This process continues for each hour that

follows, and the entire data set of relay lag is constructed.
The algorithm is shown in Figure 7.

4.5 Determining replication capacity
Given SLA requirement Lsla (i.e., the maximum allowed

replication latency) and traffic rate of Ti,j , we need to obtain
the minimum required relay capacity of Ri,j . Previously we
have shown how to predict the replication latency Li,j given
Ti,j and Ri,j . For simplicity we denote the process as a
function of predict(), so we have Li,j = predict(Ti,j , Ri,j).
For each day di, we can also easily obtain the maximum
replication latency of Li,max of Li,j , denoted by Li,max =
max(Li,j).

To find out the relay capacity Ri,j that having Li,max ≤

Lsla, we can do a binary searching on the minimum value of
Ri,j . In order to do binary searching, we need to have two
base values of Li,j that are below and above Lsla, respec-
tively. These two values can be easily found out. With these
two base values (denoted by Ri,j(min) and Ri,j(max), we can
perform a binary searching in the value space between them.
The time complexity is log(Ri,j(max) − Ri,j(min)). The al-
gorithm is shown in Figure 8.

4.6 Determining replication headroom
Determining replication headroom consists of two ques-

tions. Firstly, given the SLA of Lsla and relay capacity of
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Si,j = headroom(Ri,j , Lsla): // The scaling factor of day di

variables:
1 Si,j(min): a Si,j such that max(Li,j) ≤ Lsla

2 Si,j(max): a Si,j such that max(Li,j) ≥ Lsla

1 Si,j(lf) = Si,j(min)

2 Si,j(rt) = Si,j(max)

3 while Si,j(lf) < Si,j(rt) − 0.01:

4 Si,j(mid) =
Si,j(lf)+Si,j(rt)

2
5 Li,j = predict(Ti,j ∗ Si,j(mid), Ri,j(mid))
6 if max(Li,j) ≤ Lsla:
7 Si,j(lf) = Si,j(mid)

8 else:
9 Si,j(rt) = Si,j(mid)

10 return Si,j(lf)

Figure 9: Algorithm of determining headroom (scal-
ing factor)

Ri,j , what are the highest traffic rate Ti,j it can handle with-
out exceeding SLA? (2) what are the expected date of the
previous answer?

To determine the highest Ti,j without compromising Lsla,
we can again use binary searching. For this purpose, we
assume the same shape of traffic rates inside a day, and scale
the rate values by multiplying a scaling factor (e.g., 2.0).
Specifically, First we find two base scaling factors (denoted
by Si,j(min) and Si,j(max), where Si,j(min) will fulfill Lsla,
while Si,j(max) will exceed Lsla. Then binary searching is
performed on the Ti,j such that predict(Ti,j, Ri,j) ≤ Lsla.
The algorithm is shown in Figure 9.

Once the highest Si,j (denoted by Ti,j(h))is obtained, de-
termining the corresponding date will be done by considering
the traffic growth rate r, which denotes yearly growth rate.
Specifically, with the forecasting model, the traffic rate of

day dk can be obtained and denoted by
365Si,j

r
+ di.

4.7 Determining SLA
We have shown above that the replication latency values

for each time unit can be obtained if we know the incoming
traffic rate and the replication processing capacity. Once the
replication latencies are known, determining the appropriate
SLA for replication latency is quite straightforward. For the
first form of SLA determination (i.e., Lmax), we can simply
iterate through the entire week, find the largest replication

Table 1: The estimates, standard errors, t value and
corresponding significance
Lag/Diff. Estimate Std. Err. t Significance
AR Lag 1 -0.198 0.104 -1.903 0.063
AR Lag 2 -0.312 0.105 -2.983 0.004
AR Lag 3 -0.245 0.107 -2.290 0.026
AR Lag 4 -0.259 0.106 -2.435 0.018
AR Lag 5 -0.284 0.109 -2.611 0.012
AR Lag 6 -0.214 0.106 -2.030 0.047
AR Lag 7 0.655 0.108 6.083 0.000
Difference 1
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Figure 10: ACF and PACF of ARIMA(7,1,0)

latency value, and assign it to Lmax. For the second form
of SLA determination (i.e., find p99.9 value of Lp99, we can
apply a adapted binary searching algorithm to find the value
of Lp99, such that 99% of time the replication latency is
below Lp99. For simplicity, we will not elaborate on the
detailed algorithm.

5. FORECASTING TRAFFIC RATE
In this section, we address the forecasting question by

using both time series model and regression analysis model.
Both models requires 2 steps: (1) forecasting rate of future
days (or weeks) and (2) converting per-day (or per-week)
rate to per-hour rate.

5.1 Forecasting using time series model
For 6-weeks of time (i.e., 42 days), the average traffic rate

of each hour is plotted in Figure 3. From the figure, we can
easily see that the time series is not a stationary time series;
instead, it exhibits strong seasonal pattern. It can be seen
to have a weekly seasonal pattern. There is also a trend
pattern in the time series which we will discover later. The
trend pattern is not easy to spot by human eyes due to two
reasons: (1) the trend is shadowed by other patterns (e.g.,
seasonal patterns); and (2) the trend is not obvious since
the shift is slow.

5.1.1 Step-I: Forecasting rate of future days

ARIMA(p,d,q) model needs to know the exact values of
(p,d,q). Based on various investigations into the properties
of the data, we choose ARIMA(7,1,0). In Figure 10 we show
the ACF and PACF of the model, we can see that the model
of ARIMA(7,1,0) adequately fits the data.

We obtained the specific parameters (AR lags and differ-
ence) of the ARIMA(7,1,0). With confidence interval width
of 95%, we show the estimates, standard errors, t value and
corresponding significance in Table 1. The stationary R2 is
0.888.

5.1.2 Step-II: Converting per-day rate to per-hour
rate

We will decompose the time series to obtain seasonal in-
dexes of each hour in a week (i.e., totally 168 indexes in
a week). Calculating the seasonal indexes can be done as
follows:
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Figure 11: (a) Weekly moving average (MAt) and
(b) centered moving average (CMAt)

1. Calculating weekly moving average (MA)

MAt =
∑64

i=−63 Xt+i

168
. MAt gives the average weekly

traffic rate.

2. Calculating centered moving average (CMA) CMAt =
MAt+MAt+1

2
. Since the period is an even number (i.e.,

168), the moving average values we computed do not
correspond directly to the original hours of the time
series. This can be resolved by computing the average
of the two neighboring averages. The centered moving
averages CMAt represent the trend in the time series
and any random variation that was not removed by
using moving averages.

3. Calculating seasonal irregular values SIIt = Xt

CMAt
.

Dividing the time series value by the centered moving
average, we can get the seasonal irregular values SIIt
for each hours.

4. Calculating seasonal indexes SIt = SIIt. for each of
the 168 hours, its seasonal index can be averaged over
all corresponding seasonal irregular values. Eventually,
we get 168 seasonal indexes SIt, which are the“scaling”
factor of the particular hours.

5. Adjusting seasonal indexes SIndext =
SIt∗168∑167
i=0

SIt+i
.

Since the average seasonal index should equal 1.00,
we need to adjust the seasonal indexes by multiplying
168 and dividing the sum of all unadjusted seasonal
indexes.

Once the seasonal indexes are obtained, per-day traffic
rate can be easily converted to per-hour rate by“seasonaling”
the forecasted data. Specifically, to convert the traffic rate
of a forecasted day, let’s assume it is the ith day in a week,
where 0 ≤ i ≤ 6 of a week, say di. We use ri,j to denote
the forecasted rate of hour j in di. For each hour j, we first

obtain its in-week hour offsets hj = 24i + j. Then for hour
hj , the per-hour traffic rate is calculated as di,j ∗SIndexhj

,
where SIndexhj

is the corresponding seasonal index for hour
hj .

5.2 Forecasting using regression analysis
The process of forecasting using regression analysis shares

the same Step-II with the time series model described above.
So we will focus on the Step-I. In Step-I of this model, the
per-week traffic rates in future weeks are obtained, which is
different from the time series model. The reason for this is
the weekly seasonality.

An alternative way of forecasting using regression analy-
sis is to separate the forecasting of each weekday and treat
them as independent time series. Specifically, for each of the
weekdays (e.g., Monday and Sunday), a separate trending
line is obtained. Based on the respective trending lines, the
traffic rates of each of the seven weekdays will be forecasted.
Though theoretically this treatment should also work, we
feel it is a overkill of our problem. In addition, maintaining
and processing of seven time series models is a non-trivial
tasks.

Once future weekly traffic rates are forecasted, they can be
converted to hourly traffic rates using the same seasonal in-
dexes we described before. Specifically, assuming the weekly
traffic rate is w, for each hour j (0 ≤ j < 168) in a forecasted
week, the forecasted traffic rate rj = w ∗ SIndexhj

.
In this section, we use the a particular Databus instance to

demonstrate the effectiveness of the proposed models when
answering the four types of questions in Section 1.

5.3 Some headroom is necessary
Any prediction model with Internet traffic will inevitably

have errors for various reasons. The major cause of predic-
tion errors is the high dynamics of Internet traffic. When
the prediction underestimates the traffic volume, the actual
replication latency will be lower than expected. Note that
such underestimation will not violate the performance SLA
which is defined based on predicted values. The only cost is
over-provisioned computing resources.

However, when the predicted traffic volume is lower than
actual value, the performance SLA could be violated. To
address this issue, it is absolutely necessary to give certain
headroom when determining various metrics such as SLA.
The exact amount of headroom given depends on a set of
factors including: (1) historical performance of forecasting;

Figure 12: Adjusted seasonal index (SIndext) (Each
hour of the week has a data point, totally 168 data
points)
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Figure 13: Observed (in blue) and forecasted (in green) hourly traffic using ARIMA time series model for 3
weeks

Figure 14: Observed (in blue) and forecasted (in green) hourly traffic using regression analysis model for 3
weeks

(2) the consequences (e.g., business cost) of violating SLA;
(3) the cost of over-provisioning computing resources. We
will not elaborate on this in this writing.

6. EVALUATION

6.1 Future traffic rate forecasting
According to the common practice of forecasting using

ARIMA model, the forecasted data length should not exceed
half of the historical data length [3]. So with 42 days of
historical data, typically up to 21 days into the future can
be forecasted using ARIMA model.

We show individual steps of calculating seasonal indexes
according to Section 5.1.2. The MA (moving average) and
CMA (centered moving average) are shown in Figure 11,
respectively. We also show the adjusted seasonal index in
Figure 12.

Using both the ARIMA time series model and regression
analysis model, we obtained the forecasted hourly traffic
rates for the later 21 days. In Figure 13 we show both the
observed (raw) values and the forecasted values of ARIMA
time series model. Figure 14 shows the results of regres-

sion analysis model. We also evaluated the forecasting accu-
racy by calculating the root mean square deviation (RMSD).
ARIMA model has a RMSD value of 547, while regression
analysis gives 578. For comparison, we choose a baseline MA
(Moving Average) model which predicts an hour j’s traffic
rate based on historical data of exactly 1-week ago, that is,
Ti,j = Ti−7,j . The corresponding RMSD value is 781, con-
siderably larger than both of our proposed methods. Also
note that though for this particular time series data, ARIMA
model gives better accuracy, the difference is only about 6%.
We also evaluated with other time series, the performance
results vary, and both models give quite similar accuracy.

6.2 Replication latency prediction
To understand how well the numerical analysis model pre-

dicts replication latencies, we compared the numerically cal-
culated results to observed values in one of our most resource-
limited instance. We choose one day of replication latencies
for a single Databus Relay instance as the base value. We
fed the incoming traffic rates and relay capacity for that
Relay instance into the numerical analysis model and then
calculated the latencies.
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Figure 15: Comparing calculated relay lag to real
lag (The shapes of the two curves are similar, the
peak values differ by 1.6X.)

The two sets of results are shown in Figure 15. From the
figure, we see that these results have almost identical shapes
across the time line. The absolute peak values are also very
close (i.e., 376 vs. 240, less than 1.6X). Given the data com-
plexities and variations in the production environment (for
instance, network bandwidth impact, network latency, cpu
and other resource contentions, etc.), we feel the accuracy
of the numerical analysis model is satisfactory.

6.3 Replication capacity determination
To determine the replication capacity, we chose a single

day and would like to determine the replication capacity
needed to ensure a SLA that is defined as the maximum
replication latency being 60 seconds.

The average traffic rate of the day is about 2386 event/s.
We firstly found that the capacity of 2500 event/s results a
maximum latency of 8871 seconds, which violates the SLA.
The other base value of capacity being 5000 event/s results
in less than 1-second latency. Using the two base values,
we perform binary searching. We plotted the min/max/mid
values used in the algorithm during the binary searching in
Figure 16(a). It only takes 12 steps to finally determine
the exact replication capacity needed - 3474 event/s, which
results in 57 seconds of replication latency.

6.4 Replication headroom determination
We chose the replication capacity being 5000 event/s and

attempted to determine the maximum scaling factor that it
can handle without violating the same SLA as defined before
(i.e., maximum of 60 seconds). The raw traffic rates (i.e.,
scaling factor being 1.0) does not violate SLA, while a scaling
factor of 2.0 results in more than 8000 second latency. Start-
ing with these two scaling factors, binary searching takes 9
steps to determine the maximum scaling factor is 1.44. As-
suming a yearly growth rate of 30%, it will take about 13
months to reach that traffic rate.

6.5 SLA determination
To determine SLAs, let’s assume the time period is the en-

tire 3 future weeks and the replication processing capacity is
6000 event/sec, we find the maximum replication latency is
about 1135.2 seconds. Based on this, the maximum latency
value in an appropriate SLA can be 1136 seconds, that is
Lmax = 1136. Correspondingly, we perform binary search-
ing on the percentile values and find the p99 value of the
SLA Lp99 = 850.

7. DISCUSSION
We now discuss a few interesting issues/aspects in the

problems and solutions.

7.1 Strong seasonal pattern of web traffic
LinkedIn’s production web traffic shows strong patterns

of seasonality, and we believe such seasonality also exists
in the traffics other Internet companies. Both strong daily
and weekly seasonal patterns are observed. Due to limited
data length, in this work we did not study the yearly sea-
sonal pattern. Though such seasonality adds difficulty to
capacity planning, the latter actually can potentially take
advantage of the seasonality to reduce operation cost and
improve the performance. For instance, if the seasonal pat-
tern predicts that the traffic rate will lower down in the next
few hours, we might want to shrink the computing resources
(e.g., network bandwidth, number of instances) to save op-
eration cost. Similarly, if the traffic rates are expected to
increase soon, we can allocate more computing resources to
improve the performance. Such dynamic allocation of re-
sources fit well into a cloud computing deployment. We will
leave this to future work.

7.2 Forecasting using time series vs. regres-
sion analysis

We have presented two methods to forecast future traffic
rates: time series model and regression analysis. Both meth-
ods then predict hourly traffic rates based on the same sea-
sonal indexes. Though the accuracies of these two methods
are quite similar, the design rational for these two methods
are fundamentally different. Regression analysis assumes
little dependency between two neighboring data points (i.e.,
the traffic rates of two succeeding time), while time series
model better fits otherwise. The fact that the outcomes
from the two methods are similar suggest the following two
characteristics about the data dependency. First, the depen-
dency between neighboring hourly-aggregated data points in
our particular production traffic is minor, hence time series
model does not gain advantage over regression analysis. In-
tuitively, since our data points are hourly-aggregated, it is
not surprising to see little dependency between two hours.
Second, our regression analysis model works on weekly-aggre-
gated data points, which have even less dependency between
two neighboring data points. Thus, both ARIMA and re-
gression analysis models suffice in our particular scenario.

7.3 Applying to other areas
Though this work is specific to database replication ca-

pacity planning, the observations we made regarding traffic
patterns and the models we proposed can help solve similar
problems in other areas. For instance, online log processing
applications are desired to keep up with the incoming traf-
fic rate. Typical designs/deployments of log processing are
fixed, not adaptive to log generation rates. As a result, the
processing may incur delays when incoming log generation
rates are high. High log generation rates are caused by high
traffic rates during peak hours. Similarly, the accumulated
delays will decrease during non-peak time. It also has sim-
ilar capacity planning questions that need to be answered.
The characteristics are very similar to those of the database
replication process. All the mechanisms we proposed in this
work can be applied there.
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Figure 16: The binary searching steps to determine replication capacity (a) and replication headroom (b)

8. LESSONS LEARNED
During the course of this work, we learned a set of lessons

that we would like to share.

8.1 Approximation model works well when the
entire data set is not available

When only limited values of incoming traffic are known,
while the full curves (i.e., the complete data points corre-
sponding to the incoming traffic rates) are not available, it
is difficult to determine the replication latency by perform-
ing numerical analysis as presented in Section 4. Partly for
this reason, we developed an approximation model to quickly
determine the maximum replication latency. This model re-
quires knowing the average traffic rates. Based on average
rate, the peak traffic rates can be approximated by scaling
the average traffic rate. Based on our experience, for such
web-type traffic rates, the rule of thumb is to scale average
traffic rate by 1.5X to obtain the peak traffic rates.

Once we know the incoming peak traffic rate, we assume
the peak hours will last for about 8 hours (which roughly cor-
relates with the length of typical business hours). We denote
these 8 hours as “busy period”. To estimate the maximum
replication latency, we also need to know the non-busy in-
coming traffic rate. For simplicity, we approximate the non-
busy rate by halving the average traffic rate. To gain an idea
of these values compared to the entire day’s traffic, in Figure
17 we plot the raw traffic rates of the day of April 15th, 2014
for a single instance. Each data point represents a 5-minute
average of traffic rate. The thick blue line shows the daily
average of the traffic rate, red line is the busy traffic rate,
and green line is the non-busy rate.

Figure 17: Approximation model (Each data points
represents 5 minutes)

Let Rcap be the relay capacity (e.g., 6K event/s), Tavg be
the average incoming traffic rate, Tbusy be the busy traffic
rate, Tidle be the non-busy traffic rate, and P be the dura-
tion of peak period; we can deduct the maximum replication

latency (denoted by La) by La =
(Tpeak−Rcap)P

Rcap−Tidle
. Note that

Rcap − Tidle gives the extra consumption rate that drains
the previous latency buildup. Let Tbusy = 1.5Tavg and
Tidle = 0.5Tavg . Also assume the time granularity is per
second. The equation calculating La in seconds becomes

La =
28800(1.5Tavg−Rcap)

Rcap−0.5Tavg
.

With the above equation, we can similarly address other
capacity planing questions. The corresponding solutions
only need a simple linear transformation of variables. Specif-
ically, to determine the needed relay capacity, we use Rcap =
(43200+0.5∗La)Ravg

28800+La
. To determine the maximum average in-

coming rate we can handle, we have Tavg =
(28800+La)Tcap

43200+0.5La
.

We evaluated the accuracy of this approximation model by
comparing this model to the numerical calculation model,
we found that the maximum replication lag obtained by ap-
proximation model is about 1.7X of that of the numerical
calculations. Though it is not quite accurate and only gives
the single maximum lag, it is a quick way to roughly esti-
mate the worst replication latency. In addition, it does not
need the full data set as required by the numerical calcula-
tions.

8.2 Internet traffic is highly dynamic, so give
enough headroom in capacity planning

Based on our observations into the production traffic, the
traffic rates across time can be very dynamic, sometimes
bursty. The variability is present in multiple granularities
including day, hour and minute. We observed highest vari-
ability inside a day. For instance, for the first day in our
presented 6-week data, out of 24 data points (hourly aggre-
gated), the mean is 3017, while the standard deviation is
1195. The primary reason for the high variability inside a
day is the human activities with regard to business hours.

Even with daily aggregated data of 60 days (totally 60
data points, each for a day), the variability is still high with
mean of 2787 and standard deviation of 864. We believe the
primary reason is difference between the weekdays and week-
ends inside a week. Compared to the variability of hourly
and daily traffic, the variability inside an hour (i.e., per-
minute aggregation) is much smaller. For instance, for a
particular workday, we find the maximum variability has
the mean of 2484 and standard deviation of 374.

49



Given the high variability of web traffic and the traffic
growth trend, it is important to give enough headroom in
capacity planning. A careless capacity planning strategy
would simply use the average values (e.g., average traffic
rate), however, the average value can be significantly mis-
leading due to the dynamic property. For instance, for our
60-day of hourly aggregated traffic, we found that the high-
est traffic rate can be 2.5X of the mean traffic rate.

9. RELATED WORK
This section will present some relevant works in literature.

9.1 Database replication latency
Database replication latencies have been studied in sev-

eral works. An approach of replicating the commit opera-
tions rather than the transactional log is proposed in [12]
to reduce replication latency. Database replication latencies
in particular applications are also studied [16]. Some other
works [2, 1] focus on MySql replication latency and evaluate
the latencies of different types of transactions.

9.2 Time Series Model
Time series data are commonly decomposed into trend,

season and noise. Noise is often modeled by stationary
ARMA (autoregressive moving average) [4, 10] process. Box-
Jenkins proposes ARIMA model (differencing) [3], which is
a generalization of ARMA model. This model is generally
referred to as an ARIMA(p,d,q) model where parameters p,
d, and q are non-negative integers that refer to the order of
the autoregressive, integrated, and moving average parts of
the model respectively. Other models include Holt-Winters
(HW) [5] and State Space Model (SSM) [8].

9.3 Forecasting network and Internet traffic
Work in [6] presents both neural networks and two time

series (ARIMA and Holt-Winters) to forecast the amount of
TCP/IP traffic. [13] found that IP backbone traffic exhibits
visible long term trends, strong periodicities and variability
at multiple time scales; Work [14] proposes time series based
model to forecast when to add more network bandwidth.
[11] uses time series model to extract the trends and seasonal
patterns from page view data. Other works [9] study the
fine-grained time series characteristics of network traffic at
an Internet edge network to facilitate anomaly detection.

10. CONCLUSION
In this work we study the problem of taming the database

replication latency for LinkedIn Internet traffic. Based on
our observations into production traffic and various playing
parts, we develop practical and effective models to answer
a set of other business-critical questions related to capac-
ity planning. These questions include: future traffic rate
forecasting, replication latency prediction, replication capac-
ity determination, replication headroom determination and
SLA determination.
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