
Hybrid Machine Learning/Analytical Models
for Performance Prediction: a Tutorial∗

Diego Didona and Paolo Romano
INESC-ID / Instituto Superior Técnico, Universidade de Lisboa

ABSTRACT
Classical approaches to performance prediction of computer
systems rely on two, typically antithetic, techniques: Ma-
chine Learning (ML) and Analytical Modeling (AM).

ML undertakes a black-box approach, which typically
achieves very good accuracy in regions of the features’ space
that have been sufficiently explored during the training pro-
cess, but that has very weak extrapolation power (i.e., poor
accuracy in regions for which none, or too few samples are
known).

Conversely, AM relies on a white-box approach, whose key
advantage is that it requires no or minimal training, hence
supporting prompt instantiation of the target system’s per-
formance model. However, to ensure their tractability, AM-
based performance predictors typically rely on simplifying
assumptions. Consequently, AM’s accuracy is challenged in
scenarios not matching such assumptions.

This tutorial describes techniques that exploit AM and
ML in synergy in order to get the best of the two worlds.
It surveys several such hybrid techniques and presents use
cases spanning a wide range of application domains.

1. INTRODUCTION
Performance modeling of applications and systems is a

critical requirement in tasks like anomaly detection, opti-
mization, capacity planning, and, with the advent of Cloud
computing, automatic resource provisioning.

Analytical Modeling (AM) has been for decades the ref-
erence technique in this context [11, 12, 20, 21]. AM relies
on exploiting a-priori knowledge of the internal dynamics
of target applications/systems in order to express the in-
put/output relation by means of a set of analytical equa-
tions. For this reason, AM modeling is often referred to as
white box modeling. The most appealing feature of AM is
that, once instantiated, a white box model exhibits a good

∗
This work has been supported by FCT - Fundação para a Ciência e

a Tecnologia through PEst-OE/EEI/LA0021/2013, project specSTM
(PTDC/EIA-EIA/122785/2010) and project GreenTM EXPL/EEI-
ESS/0361/2013

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688823.

accuracy when working in extrapolation. That is, AM is
capable of predicting several Key Performance Indicators
(KPI) for a wide set of application’s workload, input param-
eters and characteristics of the underlying hosting platform.
Yet, AM comes with the downside of relying on assump-
tions and approximations (necessary to ensure the analyti-
cal tractability of the model) that can hamper prediction’s
accuracy.

The successful application of AM technique has been pro-
gressively challenged over the last years, primarily due to
two main causes: i) the ever increasingly complexity of ap-
plications makes it increasingly difficult to derive detailed
AMs capable of capturing all the dynamics and relations
that map characteristics of an application/system onto KPIs;
ii) the advent of Cloud Computing has led applications to
be deployed over virtualized infrastructures, whose details
are typically intentionally hidden. This limited knowledge
about the underlying platform poses serious challenges to
the derivation of accurate white box models.

Fortunately, the last years have also witnessed the ma-
turing of research in the area of Machine Learning (ML) [1],
which resulted into the development of a wide range of freely-
available high quality ML toolkits [15]. This has led a grow-
ing number of researchers to explore the possibility of us-
ing ML techniques to build black box predictors of complex
computer systems [16, 18, 19]. Black box modeling is anti-
thetic with respect to its white box counterpart: it relies on
inferring the input/output relationships that map applica-
tion’s and system’s characteristic onto the target KPI, and
on encoding such relationships via statistical models. Such
models are built on the basis of a so called training phase,
during which the application is tested with different work-
loads and parametrized with different configurations, with
the purpose of observing the corresponding achieved per-
formance. The most appealing property of such modeling
approach is that it is sufficient to identify which are the in-
puts –a.k.a. features– of the performance functions, and the
ML algorithm will take care of inferring how they map to
the target KPI, without exploiting any additional knowledge
about the application.

Unfortunately, ML does not represent the “silver bullet”
for the performance modeling problem, as the lack of a priori
information about the target application/system does come
with a price. The accuracy of ML-based performance predic-
tors, in fact, ultimately depends on the representativeness
of the input/output samples collected during the training
phase. In order to exhaustively cover the whole space of
possible inputs, the training phase should sweep all com-
binations of possible workloads and system configurations.

341

Unfortunately, the cardinality of the resulting set grows ex-
ponentially with the number of input features, making it
cumbersome, or even impossible, to carry out an exhaustive
training phase for complex systems. As a result, black box
models typically delivers a very good accuracy when work-
ing in interpolation, i.e., in regions of the features’ space
that they have been sufficiently explored; conversely, their
accuracy is typically poor when working in extrapolation.

Gray box modeling [5, 6, 4, 8, 7, 10, 14, 9, 3] has emerged
in the last years as an attempt to achieve the best of the AM
and ML world. It relies on exploiting both methodologies,
in order to compensate the weaknesses of the one with the
strengths of the other. In particular, gray box modeling
aims at making performance predictors more robust to the
limitations of the two base methodologies by i) inheriting
from ML-based models the ability to progressively enhance
the accuracy of the performance predictor as new data from
the operational system are collected; ii) requiring, like AM
models, little or no training time in order to instantiate a
performance predictor. Different gray box methodologies
have been proposed, targeting very diverse techniques to
combine AM and ML. In this paper we overview the most
prominent approaches that have been proposed in literature.
This document is intended to be a companion of the ICPE15
tutorial, which will cover this topic in deeper detail.

The next section is devoted at introducing some basic con-
cepts and terminology on ML. Section 3 describes the three
most prominent gray box modeling methodologies, whereas
Section 4 overviews example applications for each of these
methodologies. Finally, Section 5 concludes the paper and
discusses open research questions in the area of gray box
modeling.

2. BACKGROUND ON MACHINE
LEARNING

Machine Learning deals with the construction and study
of systems that can learn from data [1]. In this section we are
going to provide basic background on ML focused on Super-
vised Learning and Reinforcement Learning, which are the
ML techniques that are most frequently employed in the do-
main of performance modeling. We shall also introduce two
of the most commonly used ML algorithms, namely Decision
Trees and Support Vector Machines.

Supervised Learning (SL) is the task aimed at learning
the relation between a set of input parameters, called input
features, and a set of outputs, called target features. More
formally, a supervised machine learner infer a function (also
called model) φ : X → Y based on the observed output

corresponding to a set X̃ ⊂ X, called training set. Such
a function can be exploited to predict the output value y
corresponding to values of the input parameters that are not
present in the training set. If the codomain of the φ function
is continuous, then the learner is defined regressor. If it is
discrete, then the learner is defined classifier ; in this case,
the values that the output can assume are called classes.

Two of the most prominent Supervised Learning algo-
rithms are Decision Trees (DT) and Support Vector Ma-
chines (SVM) [1].

DTs [1] structure their model as a tree: each interior node
of the tree corresponds to one of the input variables; edges
from a parent to a child are labeled with a predicate about
the value of the input feature relevant to the parent node.
In the case of DT classifiers, each leaf represents the class of

the target feature; in the case of regressors, it is a function
of the input values.

SVMs [1] map the points of the training set over a multi-
dimensional space W such that elements in the same class
occupy a specific portion of that space and are as far away as
possible from elements of other classes. Although introduced
to solve classification problems, SVMs have been extended
to be used also as regressors [1].

Reinforcement Learning (RL) is the branch of ML that in-
vestigates the issue of how an agent should perform actions
in an environment in order to maximize a cumulative reward.
One of the most important issues in reinforcement learning
techniques is the trade-off between exploration and exploita-
tion: in absence of an explicit model capable of determining
a priori the optimality of an action over another one, the
agent must explore the environment in order to gather feed-
back on the rewards of the action. A RL algorithm aims
to identify which and how many exploration steps should
be performed in order to maximize the long-term reward
(typically modeled as an unknown random variable). When
applied to the domain of self-tuning, RL techniques are used
to implement a controller that is in charge of determining
the optimal configuration for a system. In this context, the
environment is represented by the set of tunable parameters
and external factors (e.g., the workload) and the reward is
defined as a function of some target KPI.

3. GRAY BOX MODELING TECHNIQUES
Existing works in the area of gray box performance mod-

eling and optimization can be grouped in three different
classes, which we call Boostrapping, Divide-and-conquer, and
Ensembling. We overview each of them in the following.

Bootstrapping. This technique relies on an AM in order
to produce a synthetic training set over which a black box
learner is initially trained. This training set is composed of
< input, output > tuples where the input normally spans
different workload metrics and platform configurations, and
the corresponding output is obtained by querying the ana-
lytical model. As this set is obtained without actually gath-
ering samples from the operational system, this technique
allows for significantly reducing the time necessary an initial
black-box leaner (e.g., based on DT or SVM). Clearly, the
performance function inferred by the ML will be very similar
to the one encoded in the AM and, as such, it will inherit
also its possible inaccuracies. However, as < input, output >
tuples are collected from the actual system (e.g., while it is
running in production), such synthetic training set can be
complemented with real samples. The ML can be, thus, pe-
riodically re-trained over time, in order to benefit from this
additional knowledge and compensate for possible inaccura-
cies of the original AM.

This technique has been implemented in solutions inte-
grating analytical models both with RL [13, 9] and SL algo-
rithms [14, 10], and has been applied for data centers man-
agement [13, 14] and applications optimization [10, 9]. A
recent detailed study of the bootstrapping technique inves-
tigates the design space of such technique and highlights
some pitfalls that may arise in its implementation [7].

Divide and conquer. This approach consists in build-
ing specialized models, for different components of the tar-
get system, that rely either on AM or on ML; such models

342

are then coupled to carry out the performance prediction
about the behavior of the overall system. Normally, AM
is exploited to capture performance of components whose
internal dynamics are known and easy to monitor; ML, con-
versely, is typically employed to predict the behavior of com-
ponents whose internals are hidden (and, thus, not observ-
able), or whose performance dynamics are too complex to
be accurately captured via analytical methods.

This approach has been implemented for modeling per-
formance of distributed transactional Cloud data platforms,
where details of the underlying physical architecture is hid-
den by the virtualization layer; it has been integrated in
hybrid models encompassing both queueing-theory based
AMs [5, 8] as well as simulation-based ones [3].

Ensembling. This technique entails combining the outputs
of multiple AMs and MLs according to different schemes.
Various implementations have been proposed, which differ
in the way the base models are combined to produce the
final performance prediction of the target KPI.

One approach we find in literature [4, 6] consists in build-
ing an AM to predict the target KPI; then, a chain of M
black box learners is progressively trained not on the KPI
itself, but on the residual prediction errors of the previous
model. In this way, the i-th model learns a corrective func-
tion that compensates for the inaccuracies of the chain com-
posed by previous i− 1 models.

Other solutions rely on building a battery of independent
predictors for the target KPI; at query time, only the pre-
dictor that is estimated to be the most reliable for a given
input i is employed to carry out the final prediction. All the
ensemble-based predictors that we are aware of carry out
this decision based on the expected accuracy of the indi-
vidual learners in the “proximity” of the target input i, but
adopt different notions of proximity. Existing approaches
include solutions that partition statically the input space
(based on some a-priori knowledge) and assign different par-
titions to each model [2], techniques that employ a classifier
to determine which predictor to use or that pick the most
accurate learner over the k nearest neighbors of the target
input in the training set [6] .

4. APPLICATIONS
This section is devoted to presenting in greater detail one

use case for each of the gray box modeling methodologies
described in the previous section.

4.1 Divide and conquer
For this category we present Transactional Auto Scaler

(TAS) [5]. We choose this use case as, to the best of our
knowledge, it represents the first implementation of such
gray box modeling methodology.

TAS is a performance model for replicated transactional
Cloud data stores; a transactional data store is a platform
that allows applications deployed over it to perform atomic
operations on shared data in spite of concurrent accesses
via the transaction abstraction [17]. In a replicated transac-
tional platform, there are multiple machines (a.k.a. nodes)
that host the same data set, and each node maintains a local
copy of it. Whenever a transaction completes its execution,
it starts a distributed commit phase during which it contacts
all the nodes in the systems to determine the final outcome
for the transaction, i.e., commit or abort. In the former case

the transaction completes successfully, otherwise it needs to
be aborted and restarted.

TAS captures the effect of data and CPU contention by
means of white box models: it models the CPU of different
nodes using queuing theory in order to compute the response
time of CPU-bound operations, like reading or writing data;
moreover, it also models each datum as a queue, in order to
compute the probability for two transactions to abort due
to conflicting accesses on the same data. On the other hand,
TAS exploits ML, specifically DTs, in order to predict the
execution time of network-bound operations, i.e., the dis-
tributed commit phase. As already discussed, the rationale
behind this choice is that the virtualization layer of Cloud
environments hides the physical details of the hosting in-
frastructures; it is, thus, extremely cumbersome to derive a
network performance model without knowing, for example,
the network topology according to which physical machines
are organized.

The two models are built independently, but they are
solved according to an iterative scheme that couples them in
order to predict the overall execution time of a transaction.
First, the AM is queried to produce an estimate of some in-
termediate performance variables that are among the input
features of the ML, e.g., the rate at which commit procedures
are initiated; then, the ML is queried to produce a prediction
of the network-bound operations execution times, which is
in turn needed by the AM to compute the overall response
time of a transaction. This two steps are repeated until the
difference in the transactions response time computed in two
consecutive iterations becomes marginal.

Bootstrapping. We choose as representative for this method-
ology IRONModel [14], which is a performance modeling
framework for anomaly detection in data centers.

IRONModel relies on a set of AMs that are built to predict
the expected behavior of different components in a data cen-
ter, from routers to storage systems. The synthetic training
sets generated starting from these models are given in input
to a DT, which ultimately serves all the performance predic-
tion queries. Note that, unlike other use cases in which any
ML could be employed, IRONModel specifically relies on
DTs because of their characteristic to produce a model that
is interpretable by humans; this is an important requirement
for anomaly detection and data centers management.

This black box model is exploited not only to perform
what-if analysis, but it is also periodically queried so at to
monitor whether the behavior of a component deviates from
its normalcy. Upon detecting such a deviation, an alarm is
triggered, which is handled by the system administrator. If
the anomalous behavior is not recognized to be caused by a
bug or a failure of a sub-component, and it is, then, a reg-
ular but unforeseen behavior of the target component, then
the system administrator performs the following operations:
i) she examines the logs about the utilization patterns of
the target component, in order to detect and isolate work-
loads of the target component that caused the anomalous
performance; ii) she sets-up experiments aimed at repro-
ducing such workloads and conditions, and schedules them
to be run either immediately, if the current workloads can
be redirected to other components in the data center, or as
soon as they can be executed in isolation, e.g., at night; iii)
once the experiments are completed, the logs encoding the
measured input/output relation is given as input to the DT,
which is re-trained in order to update its rule-set and prop-

343

erly predict the component’s behavior that was regarded as
anomalous.

Ensemble. The use case chosen as example for this method-
ology is Chorus, a model ensemble tool for self-management
in data centers. Chorus’ performance predictor relies on en-
sembles of both black and box models. Chorus’ white box
models are typically simple, as they are designed to capture
the target system’s behavior in well specified operational
conditions, for example in cases in which the workload is
CPU bound, disk bound or memory bound. Black box mod-
els include both SVMs, as well as simpler regressive models
(linear, polynomial or exponential functions), whose param-
eters are determined by fitting the output of the various
models to the data in the training set.

Chorus is trained by performing the following steps. First
of all, the input space is partitioned into R disjoint regions.
Then, an immutable validation set Dv is generated, starting
from some input/output observations; such set is used to
evaluate the accuracy of the overall performance model and
to stop the training phase when a target average accuracy
has been achieved. The training set Dt is expanded incre-
mentally in rounds, until the stopping criterion is met. At
each round, the accuracy of the M models is evaluated by
means of k-fold cross validation on Dt. This entails parti-
tioning Dt into k bins Dt,1 . . . Dt,k and then, iteratively for
i = 1 . . . k, training the models over Dt \ Dt,i and evaluat-
ing its accuracy against Dt,i. The models are then sorted
on a per region basis, according to the achieved accuracy in
predicting performance for samples falling in a given region.

Once trained, Chorus serves a query for an input sample
belonging to region r ∈ R by returning the output of the
most accurate performance predictor for r.

5. CONCLUSIONS AND DISCUSSION
Analytical Modeling and Machine Learning are typically

regarded as two alternative methodologies to model perfor-
mance of computer systems and applications. In this paper
we have overviewed three different hybrid modeling method-
ologies, which leverage on both AM and ML to get the best
of the two worlds, namely reducing the model’s training time
and increasing its accuracy as new training data become
available.

While research on AM and ML has already reached ma-
turity, investigation on hybrid methodologies is still at its
infancy. A recent work [6] has shown that none of such tech-
niques outperforms the others in terms of accuracy for every
application and for every training data set. An interesting
research line to pursue, in the light of this result, is to iden-
tify which characteristics of the applications being modeled,
or of the AM and ML techniques employed for modeling may
lead a given hybrid methodology to outperform the others.

Another interesting issue to investigate is whether it is
possible to fruitfully combine further the described method-
ologies, with the goal of building a unique, more accurate,
meta-hybrid model.

6. REFERENCES
[1] C. M. Bishop. Pattern Recognition and Machine

Learning (Information Science and Statistics). 2007.

[2] J. Chen et al. Model ensemble tools for
self-management in data centers. In Proc. of ICDE
Workshops, 2013.

[3] P. Di Sanzo et al. A flexible framework for accurate
simulation of cloud in-memory data stores. ArXiv
e-prints, Dec. 2014.

[4] D. Didona et al. Identifying the optimal level of
parallelism in transactional memory applications.
Springer Computing Journal, 2013.

[5] D. Didona et al. Transactional auto scaler: Elastic
scaling of replicated in-memory transactional data
grids. ACM Trans. Auton. Adapt. Syst.,
9(2):11:1–11:32, July 2014.

[6] D. Didona et al. Enhancing Performance Prediction
Robustness by Combining Analytical Modeling and
Machine Learning. In Proc. of ICPE, 2015.

[7] D. Didona and P. Romano. On Bootstrapping
Machine Learning Performance Predictors via
Analytical Models. ArXiv e-prints, Oct. 2014.

[8] D. Didona and P. Romano. Performance modelling of
partially replicated in-memory transactional stores. In
Proc. of MASCOTS, 2014.

[9] P. Romano and M. Leonetti. Self-tuning batching in
total order broadcast protocols via analytical
modelling and reinforcement learning. In Proc. of
ICNC, 2011.

[10] D. Rughetti et al. Analytical/ml mixed approach for
concurrency regulation in software transactional
memory. In Proc. of CCGRID, 2014.

[11] Y. C. Tay. Analytical Performance Modeling for
Computer Systems. Morgan & Claypool Publishers,
2013.

[12] L. Kleinrock Queueing Systems, Theory, Volume 1.
Wiley Interscience, 1975.

[13] G. Tesauro et al. On the use of hybrid reinforcement
learning for autonomic resource allocation. Cluster
Computing, 2007.

[14] E. Thereska and G. Ganger. Ironmodel: Robust
performance models in the wild. In Proc. of
SIGMETRICS, 2008.

[15] M. Hall et al. The WEKA Data Mining Software: An
Update. SIGKDD Explor. Newsl., 11(1) 10–18, June
2009.

[16] M. Couceiro et al. A machine learning approach to
performance prediction of total order broadcast
protocols. In Proc. of SASO, 2010.

[17] P. Bernstein and E. Newcomer Principles of
Transaction Processing: For the Systems Professional
Morgan Kaufmann Publishers Inc., 1997

[18] M. Couceiro et al. Chasing the optimum in replicated
in-memory transactional platforms via protocol
adaptation. In Proc. of DSN, 2013

[19] A. Ganapathi et al. Predicting Multiple Metrics for
Queries: Better Decisions Enabled by Machine
Learning. In Proc. of ICDE, 2009

[20] J. Padhye et al. Modeling TCP throughput: A simple
model and its empirical validation. SIGCOMM
Comput. Commun. Rev., 28(4) 303-314, Oct. 1998.

[21] P. Di Sanzo et al. On the analytical modeling of
concurrency control algorithms for software
transactional memories: The case of
commit-time-locking. Performance Evaluation 69(5),
May, 2012

344

