
DOs and DON’Ts of
Conducting Performance Measurements in Java

Vojtěch Horký Peter Libič Antonín Steinhauser Petr Tůma
Department of Distributed and Dependable Systems

Faculty of Mathematics and Physics, Charles University
Malostranské náměstí 25, 118 00 Praha 1, Czech Republic

{horky,libic,steinhauser,tuma}@d3s.mff.cuni.cz

ABSTRACT
The tutorial aims at practitioners – researchers or develop-
ers – who need to execute small scale performance experi-
ments in Java. The goal is to provide the attendees with
a compact overview of some of the issues that can hinder
the experiment or mislead the evaluation, and discuss the
methods and tools that can help avoid such issues. The
tutorial will examine multiple elements of the software ex-
ecution stack that impact performance, including common
virtual machine mechanisms (just-in-time compilation and
garbage collection together with associated runtime adapta-
tion), some operating system features (timers) and hardware
(memory) – although the focus will be on Java, some of the
take away points should apply even in a more general per-
formance experiment context.

Categories and Subject Descriptors
D.4.8 [Performance]: Measurements; D.2.8 [Metrics]:
Performance measures

General Terms
Performance, Measurement

Keywords
performance measurement; performance evaluation; Java

1. INTRODUCTION
Some quarter century ago, a programmer using a linked

list could rely on its performance being fairly transparent.
The timing of the individual list operations could be com-
puted merely by considering their algorithmic complexity
together with the timing of the individual algorithmic steps,
whose source – perhaps in Pascal – was compiled into known
assembly instructions with known durations.

Today, programmers do not have that luxury. The same
list – this time perhaps written in Java – is repeatedly com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688820.

piled in multiple stages by adaptive compilers, it is not easy
to figure out which assembly instructions will eventually be
used to execute the list operations, and even if it were, the
instructions do not have predictable durations anymore.

In absence of performance transparency, performance ex-
periments become an attractive alternative. Rather than
guessing what performance a linked list may exhibit, a pro-
grammer can simply measure it. The same approach is
adopted in many similar situations – system administrators
may use small scale performance experiments to determine
optimal machine settings, computer scientists back their re-
search into software performance with experimental evalua-
tion, and so on.

Intuitively, performance experiment results should repre-
sent the ground truth in software performance – after all,
what can give a better idea of true software performance
than an experiment that measures that very performance ?
In truth, however, the very lack of performance transparency
that makes performance experiments useful can also make
them very much misleading. Even when the measurements
themselves report the true performance, which is not always
a given, the lack of performance transparency means it is
difficult to interpret the measurements and to extrapolate
the interpretation beyond the experiment.

There is much evidence that it is easy to unwittingly con-
duct performance experiments that produce tricky results [6,
7, 4, 8, 21, 3, 14]. On contemporary execution platforms,
even small scale performance experiments are turning from
an easy and reliable way of evaluating software performance
into a difficult exercise of tracking a multitude of technical
details that must be dealt with even in otherwise very simple
scenarios.

The goal of this tutorial is to help practitioners – pro-
grammers, administrators, researchers – who need to evalu-
ate software performance by providing a compact technical
overview of the essential problems and the available solu-
tions in performance experiments. By way of a disclaimer,
we acknowledge that our work does not tackle the core prob-
lem of insufficient performance transparency, but it may help
execute performance experiments with less effort and more
trust in the results.

The tutorial focuses on contemporary desktop environ-
ments running Java. Outside this environment, the content
is mostly relevant in general, but the technical particulars
can obviously differ. Due to space constraints, this tuto-
rial paper contains only a dense list of topics that we be-
lieve deserve attention, together with references to related

337

resources. The tutorial will explore the topics in more depth
where appropriate.

2. WARMING UP: FAST AND STEADY
Perhaps the most well-known issue related to performance

experiments is warm up. The term refers to the fact that
software performance can be influenced by one-time arti-
facts, often visible shortly after software start. When the
goal of the experiment is to examine sustainable perfor-
mance, measurements influenced by these warm up artifacts
need to be recognized and discarded.

Understanding the sources of the warm up artifacts is es-
sential. Contrary to expectations, the warm up time can be
very long, and observing a long period of steady performance
does not necessarily imply all warm up is done. Besides the
start of an experiment, the warm up artifacts can also ap-
pear between individual experimental stages, especially if
these involve changes in workload.

Two major sources of the warm up artifacts discussed in
the first tutorial section are class loading and just-in-time
compilation. Other sources are discussed later.

2.1 Class Loading
Java code is loaded class by class on demand, where de-

mand is first use, not first declaration [16]. Class loading
disrupts performance both directly, because execution can-
not proceed until the required classes are loaded, and in-
directly, because some compiler optimizations are based on
assumptions related to presence or absence of classes.

Once loaded, classes are rarely collected, because of many
links that connect the classes to other objects, with the ex-
ception of classes loaded by the anonymous class loader.

2.2 Just-In-Time Compliation
Java program is first compiled statically from source code

into bytecode. Bytecode is the portable representation that
the Java Virtual Machine (JVM) loads and executes. Al-
though it is possible to execute the bytecode in an inter-
preter, it is more common to compile bytecode into native
code, which executes directly. This is done by Just-In-Time
(JIT) compiler.

Triggering compilation. Inherent to JIT compilation
is the trade off between initial performance loss, due to ex-
ecuting the compilation, and later performance gain, due to
executing the compiled code. The JVM is therefore selective
in submitting code for JIT compilation – only methods that
have been observed to execute often enough are compiled
with complex optimizations.

JIT compilation can be configured with various levels of
optimization and include various levels of profiling code that
enable better optimization later. Current JIT compilers use
tiered JIT compilation, where methods gradually move to-
wards higher compilation levels. A common criterion for
triggering a compilation is the number of times a method
was invoked or the number of times a loop iterated. Thresh-
olds for lower compilation levels default to values around
thousands, thresholds for higher compilation levels to val-
ues around tens of thousands. The thresholds can be ad-
justed [18].

Inlining methods. Inlining is an optimization per-
formed by the JIT compiler which replaces method calls by
method bodies where appropriate. The immediately obvi-

ous but relatively small benefit of inlining is removing the
call overhead. More importantly, inlining improves other
optimizations by providing more code to work on.

Whether inlining happens depends on multiple factors,
especially the size of the method to be inlined (hence in-
strumentation influences inlining) and the ability of the JIT
compiler to determine the method call target (hence class
loading influences inlining).

A performance experiment may inline both more and less
than desired or expected. Sometimes it is possible to control
inlining or display inlining decisions [18, 19].

Determinism. The exact result of JIT compilation de-
pends on many timing factors. Multiple executions of the
same performance experiment will not necessarily exhibit
the same JIT behavior and therefore will not use the same
code. Support for making the behavior of JIT compilation
deterministic is not yet common [5, 1], in absense of such
support multiple JVM executions can be used to examine
the possible spectrum of experiment behaviors.

Initial performance. So far, we have considered exper-
iments that examine sustainable performance. When initial
rather than sustainable performance is of interest, multiple
JVM executions are required. Warm up artifacts exist even
in this context, for example the very first execution is likely
to fetch data from disk, while the subsequent executions will
benefit from disk cache. Even the opposite can be true, when
all but the first execution pay the cost of flushing the disk
cache left dirty by the previous execution.

3. TOO SMART: MORE COMPILATION
In a performance experiment, the dangers of JIT compi-

lation are not only that it progresses gradually or that it is
not deterministic, but also that it may be rather sensitive
to minute differences between the performance experiment
and the real environment the experiment approximates. As
a result, the experiment may see optimizations systemati-
cally different from reality.

3.1 Optimizing Experiment Workload
It is common for a performance experiment to repeat the

measured code multiple times. Also, a performance experi-
ment often cares only about the timing, throwing away the
result that would be used in reality. Without careful coding,
this may lead to optimizations such as moving loop-invariant
parts of the measured code out of the measurement loop,
simplifying the measured code through constant propaga-
tion from outside the measurement loop, merging multiple
iterations of the measured code by loop unrolling and com-
mon subexpression elimination, and more.

The black hole support in JMH is particularly helpful in
efficiently preventing similar optimizations [21, 19].

As the flip side of the same coin, a performance exper-
iment should not attempt to measure isolated code that
would not be isolated in reality.

3.2 Polymorphic Invocation
Calls whose target address is difficult to predict entail

overhead at the processor instruction level. Optimizations
used to make polymorphic invocations predictable include
class hierarchy analysis and target caching. Both are possi-
bly sensitive to performance experiment conditions, such as
loading or exercising a relatively limited subset of classes.

338

3.3 Optimization Fallback
Compared to static compilers, performance experiments

with dynamic compilers require a subtly different mindset.
Where a static compiler needs to prove a particular opti-
mization correct before using it, a dynamic compiler may
optimize tentatively and surround the optimized code with
a test that guards the correctness prerequisites. When the
guard fails, the assumptions are corrected and compilation
redone.

To guarantee realistic optimizations, a performance ex-
periment must emit workload that violates unrealistic com-
piler assumptions. This may entail taking unusual branches,
throwing unexpected exceptions, or loading and exercising
classes that are not otherwise essential to the workload.

3.4 On Stack Replacement
Normally, a method compiled at lower optimization level

is replaced by a method at higher optimization level between
calls. This poses a problem for methods with long loops,
where the more optimized version may wait long for the less
optimized version to exit.

Replacement of an executing method is possible but may
require converting stack layout and limiting available opti-
mizations. Both may impact the performance experiment.

4. MANAGED MEMORY
Java heap uses garbage collection (GC) with many per-

formance implications. Importantly, a performance experi-
ment must decide whether the GC cost should be included
or avoided. Using large enough heap and forcing collections
between iterations may avoid most GC costs, but from the
practical perspective, including GC cost may provide more
relevant results.

Heap size. Heap size has significant impact on GC
cost [2]. Adaptive heuristics that tune heap size are there-
fore complicating performance experiments [15, 12].

Heap content. A performance experiment may gener-
ate heap content that is less diverse than reality. When us-
ing a large heap, most objects are in the young generation,
with better locality and fewer references between genera-
tions. Experiments that discard results between iterations
lower GC costs by reducing live data. Collections between
iterations may also encounter few live objects, making GC
cheaper.

Sometimes, comparing workloads with different allocation
behavior is needed. Additional allocations exhaust alloca-
tion buffers (TLAB) sooner, causing more slow-path alloca-
tions and more young collections. In turn, this pushes more
objects into the old generation. This often leads to higher
GC costs.

Many changes to the heap content also impact the behav-
ior of weak reference types.

Optimized allocation. Using escape analysis or escape
detection, JVM can allocate objects on stack rather than
on heap [17]. As a side effect, measurement may turn stack
allocation into heap allocation [11]. This increases the allo-
cation cost and disables some potential optimizations.

Storing measurements. The measurements are often
stored on the same heap that the workload uses. This again
impacts heap content, in particular when storing the mea-
surements in dynamic structures such as lists. The very

presence of a long list may decrease the throughput of paral-
lel collectors, because the list must be traversed sequentially,
also part of the list will likely be in the young generation,
with impact as above.

Dynamic structures suffer from bloat that may not be
immediately apparent [13]. Using an array instead of a dy-
namic structure is less flexible, but may be more efficient
and more predictable, especially when the array items are
primitive.

When necessary, it is possible to store measurements out-
side the heap, using native memory through JNI or through
the sun.misc.unsafe API.

5. PARALLELISM
When collecting data from more threads, proper workload

synchronization is essential. Where blocking is reasonable,
the java.util.concurrent API may suffice. In some cases, it is
necessary to keep workload threads running and only syn-
chronize their data collection phases.

Biased locking. Parallel workload often involves syn-
chronization. Synchronization may be heavily optimized in
favor of certain common cases, such as the same thread re-
peatedly acquiring a lock without contention [20]. To assess
realistic synchronization performance, a performance exper-
iment must therefore use realistic contention.

Synchronization optimizations may exhibit anomalies due
to internal implementation details. For example, biased
locking is disabled for certain time after JVM start, and
does not work for objects whose identity hashcode was
queried [20].

Memory sharing. Contemporary architectures utilize
multiple levels of memory caches, some local to cores, some
shared among cores. Although JVM may use thread local
allocation buffers (TLAB) to prevent threads on different
cores from allocating data near each other, various workload
patterns may lead to excessive cache traffic.

Particularly disruptive issue is that of false sharing, where
unrelated variables occupy the same cache line. Modifying
such variables from multiple cores generates needless cache
coherency traffic whose reason is difficult to discern at source
code level. In artificial (especially extremely regular) work-
loads, similar effects may occur with internal JVM struc-
tures, such as card tables.

Randomizing workload parameters tends to reduce the
chance of encountering performance anomalies due to ar-
tificial memory sharing patterns.

NUMA. On NUMA architectures, memory access per-
formance depends on node locality. Automated partition-
ing of data to improve locality is a technically difficult
problem [22]. Solutions that avoid some worst-case scenar-
ios include thread-local allocations and interleaving data in
shared heap spaces [17].

6. SENSORS
Besides paying attention to how the workload of a perfor-

mance experiment behaves, we also need to pay attention
to the sensors used to measure the workload. Perhaps the
most obvious sensor is the time source.

Timing accuracy. The most easily accessible time
source in Java is calling System.nanoTime. The exact behav-
ior of this method is platform-dependent, for example Open-

339

JDK 8 on Linux queries the CLOCK MONOTONIC system
clock, OpenJDK 8 on Windows uses the QueryPerformance-
Counter call. These are both high precision time sources,
however, on older systems the same method can use mi-
crosecond or millisecond granularity sources.

Internally, the high precision time sources may use hard-
ware counters with unknown or varying frequency. Such
sources are callibrated against counters with known fre-
quency but possibly lower accuracy, this callibration can
yield slightly different frequency estimate on each initializa-
tion. Also, the CLOCK MONOTONIC system clock is sub-
ject to adjustments on systems with NTP or PTP support,
even during measurement.

Performance counters. Hardware performance event
counters are another important sensor in performance exper-
iments. Querying the counters from Java requires making
native calls, possibly through JNI. The associated overheads
may limit usefulness. Libraries for accessing these and other
sensors from Java are also available [9].

7. MISCELLANEA
The tutorial will also touch on other topics that we do

not describe in detail now. Some diverse examples include
anomalous optimization behavior on loop constructs that
do not qualify as counted due to choice of the loop control
type, caching of some boxed primitive values and impact
on memory allocation behavior, overhead associated with
invoking native code through JNI, and effects of thermal
budget on turbo boosting and frequency scaling [10].

Acknowledgements
This work was partially supported by the Charles University
institutional funding and the EU project ASCENS 257414.

8. REFERENCES
[1] Azul. Zing JVM, 2014. http:

//www.azulsystems.com/products/zing/virtual-machine.

[2] S. M. Blackburn, P. Cheng, and K. S. McKinley.
Myths and realities: The performance impact of
garbage collection. SIGMETRICS ’04/Performance
’04. ACM, 2004.

[3] S. M. Blackburn et al. Wake up and smell the coffee:
Evaluation methodology for the 21st century.
Commun. ACM, 51(8), Aug. 2008.

[4] A. Buble, L. Bulej, and P. Tůma. CORBA
benchmarking: a course with hidden obstacles. In
PDPS, April 2003.

[5] A. Georges, L. Eeckhout, and D. Buytaert. Java
performance evaluation through rigorous replay
compilation. In OOPSLA. ACM, 2008.

[6] J. Y. Gil, K. Lenz, and Y. Shimron. A
microbenchmark case study and lessons learned. In
SPLASH Workshops. ACM, 2011.

[7] B. Goetz. Java theory and practice: Anatomy of a
flawed microbenchmark, 2005. http://www.ibm.com/
developerworks/java/library/j-jtp02225/.

[8] D. Gu, C. Verbrugge, and E. M. Gagnon. Relative
factors in performance analysis of Java virtual
machines. ACM, 2006.

[9] V. Horký. Java microbenchmark agent, 2014.
http://github.com/d-iii-s/java-ubench-agent.

[10] Intel. Intel Turbo Boost technology, 2014.
http://www.intel.com/content/www/us/en/
architecture-and-technology/turbo-boost/
turbo-boost-technology.html.

[11] P. Libič, L. Bulej, V. Horký, and P. Tůma. On the
limits of modeling generational garbage collector
performance. In ICPE. ACM, 2014.

[12] P. Libič, P. Tůma, and L. Bulej. Issues in performance
modeling of applications with garbage collection. In
QUASOSS. ACM, 2009.

[13] N. Mitchell and G. Sevitsky. The causes of bloat, the
limits of health. In OOPSLA. ACM, 2007.

[14] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing
anything obviously wrong! In ASPLOS. ACM, 2009.

[15] Oracle. Memory management in the Java HotSpot
virtual machine, 2006.
http://www.oracle.com/technetwork/java/javase/
memorymanagement-whitepaper-150215.pdf.

[16] Oracle. The Java R© virtual machine specification,
2013. http://docs.oracle.com/javase/specs/jvms/se7/
html/jvms-5.html.

[17] Oracle. Java HotSpot virtual machine performance
enhancements, 2014.
http://docs.oracle.com/javase/7/docs/technotes/
guides/vm/performance-enhancements-7.html.

[18] Oracle. Java invocation documentation, 2014.
http://docs.oracle.com/javase/8/docs/technotes/tools/
unix/java.html.

[19] Oracle. Java microbenchmarking harness (OpenJDK:
jmh), 2014.
http://openjdk.java.net/projects/code-tools/jmh/.

[20] Oracle. Synchronization (HotSpot internals for
OpenJDK), 2014. http://wikis.oracle.com/display/
HotSpotInternals/Synchronization.

[21] A. Shipilev. Java microbenchmark harness (the lesser
of two evils). Presented at Devoxx, 2013.

[22] M. Tikir and J. Hollingsworth. NUMA-aware Java
heaps for server applications. In IPDPS, 2005.

340

http://www.azulsystems.com/products/zing/virtual-machine
http://www.azulsystems.com/products/zing/virtual-machine
http://www.ibm.com/developerworks/java/library/j-jtp02225/
http://www.ibm.com/developerworks/java/library/j-jtp02225/
http://github.com/d-iii-s/java-ubench-agent
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-5.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://openjdk.java.net/projects/code-tools/jmh/
http://wikis.oracle.com/display/HotSpotInternals/Synchronization
http://wikis.oracle.com/display/HotSpotInternals/Synchronization

	Introduction
	Warming Up: Fast And Steady
	Class Loading
	Just-In-Time Compliation

	Too Smart: More Compilation
	Optimizing Experiment Workload
	Polymorphic Invocation
	Optimization Fallback
	On Stack Replacement

	Managed Memory
	Parallelism
	Sensors
	Miscellanea
	References

