
Automated Reliability Classification of Queueing Models
for Streaming Computation

Jonathan C. Beard, Cooper Epstein, and Roger D. Chamberlain
Dept. of Computer Science and Engineering

Washington University in St. Louis

{jbeard,epsteinc,roger}@wustl.edu

ABSTRACT

When do you trust a model? More specifically, when can
a model be used for a specific application? This question
often takes years of experience and specialized knowledge to
answer correctly. Once this knowledge is acquired it must
be applied to each application. This involves instrumen-
tation, data collection and finally interpretation. We pro-
pose the use of a trained Support Vector Machine (SVM)
to give an automated system the ability to make an edu-
cated guess as to model applicability. We demonstrate a
proof-of-concept which trains a SVM to correctly determine
if a particular queueing model is suitable for a specific queue
within a streaming system. The SVM is demonstrated using
a micro-benchmark to simulate a wide variety of queueing
conditions.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements, Modeling and Pre-
diction, Queuing Theory

1. INTRODUCTION
Stochastic modeling is essential to the optimization of high

performance stream processing systems. The optimization
of streaming systems can require the application of several
different stochastic models within a single system. Each one
must be carefully selected so that assumptions inherent to
the model do not make the model diverge significantly from
reality. Some streaming systems (such as RaftLib [9]) can
spawn tens to hundreds of queues, each potentially with a
unique environment and characteristics to model. Approxi-
mating an optimal queue size at run-time is clearly not possi-
ble manually when microsecond-level decisions are required.
This paper outlines a proof-of-concept for an approach when
fast modeling decisions are necessary. We will briefly outline
the approach to training and using a SVM for deciding when
and when not to apply a simple M/M/1 queueing model [7]
to a particular queue in the context of a streaming computa-
tion. Evaluation is given for selection of this queueing model

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.

Copyright c⃝ 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.

http://dx.doi.org/10.1145/2668930.2695531.

for a variety of conditions simulated via micro-benchmark on
a multitude of hardware platforms.

Stream processing is a compute paradigm that views an
application as a set of compute kernels connected via com-
munications links or “streams” (example shown in Figure 1).
Streaming languages include StreamIt [12], S-Net [6], and
others. Stream processing is increasingly used by multi-
disciplinary fields with names such as computational-x and
x-informatics (e.g., biology, astrophysics) where the focus is
on safe and fast parallelization of a specific application [8,
13]. Many of these applications involve real-time or latency
sensitive big data processing necessitating usage of many
parallel kernels on several compute cores.

Kernel A Kernel BStream

BStreamA

Figure 1: The top image is an example of a sim-
ple streaming application with two compute kernels
(labeled A & B). Each compute kernel could be as-
signed to any number of compute resources (e.g.,
processor core, graphics engine). The communica-
tions stream connecting A & B could be allocated
to a variety of resources depending on the nature of
A & B (e.g., heap, shared memory or network inter-
face). We are interested in the queueing behavior
that results from the communications between com-
pute kernels A & B. The bottom image is the result-
ing queue with arrival process A (emanating from
compute kernel A) and server B. For more complex
systems this becomes a queueing network.

Optimizing or reducing the communication overhead within
a streaming application is often a non-trivial task, it is how-
ever central to making big data and stream processing suc-
cessful. When viewing each compute kernel as a “black-
box,” a major tuning knob at the application’s disposal is
the buffer (queue) size between kernels. A classic way to
size a buffer is to run each compute kernel in isolation with
the expected workload, derive the service rate and distri-
bution, then use this data to select a queueing model to
inform the correct buffer size. Modern streaming systems
such as RaftLib support online queue optimization. Param-

325

eters such as service process distribution are difficult to de-
termine online. Clearly, the classic method is inadequate for
this circumstance. Another approach could use branch and
bound searching, but it can consume significant time (much
spent reallocating buffers). A more efficient online approach
is to make an educated guess as to which model to use for
each queue and solve for the buffer size. If the service rate
of the kernel is known, we contend (and show evidence for)
that a sufficiently trained SVM can select the correct model
quickly, avoiding bounding search and possibly negating the
need for process distribution determination.
A SVM is a method to separate a multi-dimensional set of

data into two classes by a separating hyperplane. Theoreti-
cal details are covered by relevant texts on the subject [14]
A SVM labels an observation (represented by a set of at-
tributes to identify it) with a learned class label based on
the solution to Equation (1) [5] (note: dual form given, e is
a vector of all ones of length l, Q is an l × l matrix defined
by Qi,j ← yiyjK(xi, xj) and K is a kernel function, specific
symbolic names match those of [3]). A common parame-
ter selected to optimize the performance of the SVM is the
penalty parameter for the error term C (value discussed in
Section 3.1).

min
α

1

2
α

TQα− eT
α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,
(1)

K(x, y) = e−γ||x−y||2 , y > 0. (2)

Utilizing 76 features (shown in Figure 2) easily extracted
from a system, we show that a machine learning process can
identify where a model can and cannot be used. Each one
of the input features can be determined a priori. We also
assume that the mean service rate (i.e., rate of data con-
sumption by the kernel) can be determined either statically
or online, while the application is executing. In order to
map all 76 attributes into features we use a Radial Basis
Function (RBF, [10], Equation (2)) represented as K. The
parameter, γ is commonly optimized separately in order to
maximize the performance of the SVM and kernel combina-
tion (value of γ also discussed in Section 3.1).

Figure 2: Word cloud depicting features used for
machine learning process with the font size repre-
senting the significance of the feature as determined
by [4].

Kernel learning methods such as SVM have been utilized
in diverse pattern recognition fields such as handwriting
recognition and protein classification [2]. This work does
not seek to add new techniques to SVM or machine learn-
ing theory, rather we are focused on expanding the applica-
tion of these methods to judging the applicability of stochas-
tic performance models to real-world scenarios in streaming
computation. Results are shown that demonstrate that our
SVM approach appears to be applicable with respect to mul-
tiple operating systems and hardware types, at least for the
micro-benchmark conditions.

2. ASSUMPTIONS & PITFALLS
The stochastic mean queue occupancy models our SVM

will be trained for are steady state models. Applications
whose performance is not well characterized by mean be-
havior are not good candidates without modifications of our
approach. First, we assume that the applications under test
have executed long enough so that the queue occupancies
observed are at steady state. Second, our investigation will
be constrained to applications for which the computational
behavior is independent of the input set or does not vary
dramatically as a function of the input. In future work we
plan to modify our approach that will perhaps enable char-
acterization of some non-steady state behavior.

Architectural features of a specific platform such as cache
size are used as features for this work. As such we assume
that we can find them either via literature search or directly
by querying the hardware. Platforms where this information
is unknown are avoided, and there is a surfeit of platforms
where this information is knowable.

Implicit within most stochastic queueing models (save for
the circumstance of a deterministic queue) is the strict rele-
gation of server utilization ρ to be less than one for a finite
queue occupancy. It is expected that the SVM should be
able to find this relationship based upon the training pro-
cess. It is shown in Section 3.2 that this is indeed the case.
We also assume that the SVM is not explicitly told what the
actual service time distributions are of the compute kernels
modulating data arrival and service.

Changes in service time distribution can drastically effect
the queue occupancy characteristics of an individual queue.
Traditionally a change in distribution would necessitate a
quantification of that distribution before moving forward
with a different type of model. We hypothesize that by
training the SVM with a variety of distributions that the
SVM can identify regions where the models under consider-
ation can be used and where they cannot. This is not to say
that the SVM as trained will be successful in all cases. We’ll
examine some edge cases in the results. It is possible that
the SVM as trained might not generalize to distributions
that did not exist in the training data.

3. EVALUATION
In order to train the model with as much data as possi-

ble and evaluate the method with some known parameters,
a set of micro-benchmarks (see topology in Figure 1) with
synthetically generated workloads is used. A synthetic work-
load for each compute kernel is composed of a simple busy-
wait loop whose looping is dependent on a random num-
ber generator (either exponential, Gaussian, deterministic
or a mixture of multiple distributions). Upon completion of

326

work, a nominal “job” (data element) is emitted from “A”
to “B” via the connecting stream. Each job is the same
size for each execution of the micro-benchmark (8-bytes).
The micro-benchmark applications have been authored in
C/C++ using the RaftLib framework and are compiled with
g++ using the -O1 optimization flag for their respective plat-
forms. These applications are executed on a variety of x86
commodity hardware with a range of Linux and OS X oper-
ating systems.

3.1 Methodology
Our SVM will be used to classify the micro-benchmark

queues with “use” or “don’t use” for the M/M/1 analytic
queueing model. Before the SVM can be trained as to which
set of attributes to assign to a class, a label must be pro-
vided. The labeling function is described by Algorithm 1.
For our labeling function l ← 5. A percentage based func-
tion for l could also have been used. Empirically measured
mean queue occupancy is used for labeling purposes. Ob-
servation data is divided into two distinct sets via a uniform
random process. Approximately 20% of the data is used for
training the SVM, the remainder is used for testing. The
set training set has the following specifications: server uti-
lization ranges from close to zero to greater than one and
distributions vary widely (a randomized mix of Gaussian,
deterministic, and the model’s expected exponential distri-
bution as well as some mixture distributions).

Algorithm 1 Class assignment algorithm

if |observed occupancy− predicted occupancy| ≤ l then
class← use

else
class← don’t use

end if

The micro-benchmark data (and attributes) are linearly
scaled in the range [−1000, 1000] (see [11]). This tends to
cause a slight loss of information, however it does prevent
extreme values from biasing the training process. It also
has the added benefit of reducing the precision necessary for
the representation. Once all the data are scaled, there are
a few SVM specific parameters that must be optimized in
order to maximize classification performance (γ and C). We
use a branch and bound search for the best parameters for
both the RBF Kernel (γ ← 4) and for the penalty parameter
(C ← 32768). The branch and bound search is performed by
training and cross-validating the SVM using various values
of γ and C for the 20% set of training data discussed above.
The SVM framework is sourced from LIBSVM [3].

3.2 Results
The SVM classifies a set of platform and compute kernel

specific attributes with one of two labels, “use”or“don’t use”
with respect to a M/M/1 stochastic queueing model. The
SVM is trained on data labeled with these two binary cate-
gories via Algorithm 1. To evaluate how well the SVM clas-
sifies a queueing system, we’ll compare the known (but not
to the SVM) class labels compared to those predicted by the
SVM. If the queueing model is usable and the predicted class
is “use” then we have a true positive (TP). Consequently the
rest of the error types true negative (TN), false positive (FP)
and false negative (FN) follow the obvious corollaries.

As enumerated in Table 1, the SVM correctly predicts
(TP or TN) 88.1% of the test instances for the M/M/1
model. Overall these results are quite good compared to
manual selection [1]. Not only do these results improve the
mean queue occupancy predictions, they are far faster than
manually interpreting the parameters of the queueing system
to select a model. The average per example classification
time is in the microsecond range. Our results suggest that
this process can be effective for online model selection for
the M/M/1 model.

Table 1: Overall classification predictions for micro-
benchmark data.

Model # obs. TP TN FP FN
M/M/1 39392 66.60% 21.60% 11.70% 0.20%

Server utilization (ρ) informs a classic, simple test to de-
termine if a mean queue length model is suitable. At high ρ
it is likely that the M/M/1 models will diverge widely from
reality. It is assumed that the SVM should be able to discern
this intuition from its training without being given the logic
via human intervention (a key point in training the SVM
to take the place of human intervention). Figure 3 shows
a box and whisker plot for the error types separated by ρ.
As expected the middle ρ ranges offer the most true posi-
tive results. Also expected is the correlation between high ρ
and true negatives. Slightly unexpected was the relationship
between ρ and false positives.

Figure 3: Summary of true positive (TP), true neg-
ative (TN), false positive (FP), false negative (FN)
classifications for the M/M/1 model of the micro-
benchmark data by server utilization ρ.

Directly addressing the performance and confidence of the
SVM is the probability of class assignment. Given the high
numbers of TP and TN it would be useful to know how con-
fident the SVM is in placing each of these feature sets into
a category. Probability estimates are not directly provided
by the SVM, however there are a variety of methods which
can generate a probability of class assignment [15]. We’ll use
the median class assignment probability for each error cat-
egory as it is a bit more robust to outliers than the mean.
This results in the following median probabilities: TP =
99.5%, TN = 99.9%, FP = 62.4% and FN = 99.8%. The
last number must be taken with caution given that there
are only 79 observations in the FN category. For the FP

327

it is good to see that these were low probability classifica-
tions on average, perhaps with more training and refinement
these might be reduced. Calculating probabilities is expen-
sive relative to simply training the SVM and using it. It
could however lead to a way to reduce the number of false
positives. Placing a limit of p = .65 for positive classification
reduces false positives by an additional 95% for the micro-
benchmark data. Post processing based on probability has
the benefit of moving this method from slightly conservative
to very conservative if high precision is required, albeit at a
slight increase in computational cost.
In Section 2 we noted that one potential pitfall of this

method is the training process. What would happen if the
model is trained with too few distributions? To test this
hypothesis a set of the training data from a single distri-
bution (the exponential) is used and divided into two sets,
20% for training and 80% for testing. The exponential only
training data is used to train a SVM which is then tested
on the testing exponential only data (results shown in Ta-
ble 2). Second, the SVM trained with only exponential
micro-benchmark data is used to classify data from distri-
butions other than exponential (note: no data used to train
is in the test set). These results are shown in Table 2. Two
trends are apparent: training with a single distribution in-
creases the accuracy when attempting to classify data with
that distribution and lack of training diversity increases the
number of false positives for the distributions not seen dur-
ing the training process. Unlike the false positives seen ear-
lier, these are high confidence predictions meaning that post
processing for probability will not significantly improve pre-
dictions. Training with as many distributions as possible is
essential to improving the generalizability of our method.

Table 2: % for SVM predictions with SVM trained
only with servers having an exponential distribution.

Dist. # obs. Model TP TN FP FN
exp. 3249 M/M/1 53.0 31.2 15.7 .092
many 6297 M/M/1 55.8 0.0 44.2 0.0

4. CONCLUSIONS & FUTURE WORK
We have shown an approach for using a SVM to classify

a stochastic queuing model’s reliability in the context of a
streaming system (varying hardware platform, application,
operating system and environment). Across multiple hard-
ware types, operating systems and micro-benchmark appli-
cations it has been shown to produce fairly good reliability
estimates for the M/M/1 stochastic queueing model.
This work does not assume the availability of knowledge

of the actual distribution of each compute kernel. Manually
determining these distributions and retraining the SVM im-
proves the classification rate to 96.6%. One obvious path
for future work is faster and lower overhead process distri-
bution estimation. As a work in progress paper, we did not
explore the limits of generalization or the impact of online
model selection to the efficiency (and performance) of the
RaftLib framework. In conclusion we have shown a proof-
of-concept for automated stochastic model selection using a
SVM. We have shown that it can be done, and our limited
testing suggests it works relatively well.

5. ACKNOWLEDGMENTS
This work was supported by Exegy, Inc., and VelociData,

Inc. Washington University in St. Louis and R. Chamber-
lain receive income based on a license of technology by the
university to Exegy, Inc., and VelociData, Inc.

6. REFERENCES
[1] J. C. Beard and R. D. Chamberlain. Analysis of a

simple approach to modeling performance for
streaming data applications. In Proc. of IEEE Int’l

Symp. on Modelling, Analysis and Simulation of

Computer and Telecommunication Systems, pages
345–349, Aug. 2013.

[2] C. J. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge

Discovery, 2(2):121–167, 1998.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Trans. on Intelligent

Systems and Technology, 2:27:1–27:27, 2011.

[4] Y.-W. Chen and C.-J. Lin. Combining SVMs with
various feature selection strategies. In Feature

Extraction, pages 315–324. Springer, 2006.

[5] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[6] C. Grelck, S.-B. Scholz, and A. Shafarenko. S-Net: A
typed stream processing language. In Proc. of 18th

Int’l Symp. on Implementation and Application of

Functional Languages, pages 81–97, 2006.

[7] L. Kleinrock. Queueing Systems. Volume 1: Theory.
Wiley-Interscience, New York, NY, 1975.

[8] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig.
Streaming algorithms for biological sequence
alignment on GPUs. IEEE Trans. on Parallel and

Distributed Systems, 18(9):1270–1281, Sept 2007.

[9] RaftLib. http://www.raftlib.io. Accessed November
2014.

[10] B. Schölkopf and A. J. Smola. Learning with Kernels:

Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press, Cambridge,
MA, 2002.

[11] D. M. Tax and R. P. Duin. Support vector data
description. Machine learning, 54(1):45–66, 2004.

[12] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A language for streaming applications. In
R. Horspool, editor, Proc. of Int’l Conf. on Compiler

Construction, volume 2304 of Lecture Notes in

Computer Science, pages 49–84. 2002.

[13] E. J. Tyson, J. Buckley, M. A. Franklin, and R. D.
Chamberlain. Acceleration of atmospheric Cherenkov
telescope signal processing to real-time speed with the
Auto-Pipe design system. Nuclear Inst. and Methods

in Physics Research A, 585(2):474–479, Oct. 2008.

[14] V. N. Vapnik and V. Vapnik. Statistical Learning
Theory, volume 2. John Wiley & Sons, New York, NY,
1998.

[15] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability
estimates for multi-class classification by pairwise
coupling. The Journal of Machine Learning Research,
5:975–1005, 2004.

328

