
Towards a Performance Model Management Repository for
Component-based Enterprise Applications

Andreas Brunnert, Alexandru Danciu
fortiss GmbH

Guerickestr. 25
80805 Munich, Germany

{brunnert,danciu}@fortiss.org

Helmut Krcmar
Technische Universität München

Boltzmannstr. 3
85748 Garching, Germany

krcmar@in.tum.de

ABSTRACT
This work introduces a Performance Model Management Re-
pository (PMMR) for component-based enterprise applica-
tions. A PMMR is a central server that allows managing
performance model components in corporate environments.
A key challenge when using performance models in such en-
vironments is to distribute, update and maintain them. Es-
pecially, when software components represented in perfor-
mance models are under the control of different teams in an
organization. Additional problems arise as soon as release
cycles for their components are not synchronized. A PMMR
helps to address these challenges by introducing a central
repository in which different performance model component
versions can be managed and maintained. Such capabilities
support the collaboration of distributed teams as they can
manage their performance model components independently
from each other. Performance models of specific component
versions can be combined into one performance model as re-
quired for the current performance evaluation. We propose
to build such a PMMR using the capabilities provided by
the Palladio Component Model (PCM) as meta-model and
the EMFStore as underlying versioning repository.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques

General Terms
Measurement, Performance

Keywords
Performance Model Repository, Performance Evaluation, Pal-
ladio Component Model, Enterprise Application, Component-
based Performance Model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2695526.

1. INTRODUCTION
Performance models are still not in widespread industry

use as of today [12, 11]. One of the most cited reasons
for this lack of adoption is that the effort required to cre-
ate performance models often outweighs their benefits [6, 9].
To reduce the modeling effort, several approaches to auto-
matically generate performance models based on static and
dynamic analysis have been proposed [2, 6, 15].

An additional challenge for applying performance mod-
els in industrial practice is the organizational complexity in
corporate IT environments [5, 14]. Performance modeling is
especially demanding for component-based enterprise appli-
cations as soon as components are under the control of dif-
ferent teams within one or more organizations. Performance
models can thus only be created through the cooperation of
these teams. It gets even worse if they adhere to different
release cycles for their components. In such a scenario it is
challenging to keep a performance model consistent and in
sync with changes that occur in parallel.

The Performance Model Management Repository (PMMR)
concept proposed in this work addresses these organizational
challenges. Its primary purpose is that of an integration
server for performance models to support the collaboration
of distributed teams within an organization (see Figure 1).
A PMMR contains architecture-level performance models
which represent performance-relevant aspects of a software
architecture separately from workload and hardware envi-
ronment. Only performance-relevant aspects of software ar-
chitecture are managed in a PMMR. Performance-relevant
aspects of component-based enterprise applications are rep-
resented by component-based performance models (CBPM).
CBPMs represent software components, their relationships,
operation behavior and resource demands. A PMMR allows
to manage software components in CBPMs independently
from each other.

2. PERFORMANCE MODEL
MANAGEMENT REPOSITORY

The realization of a PMMR is driven by several research
questions. This work in progress paper focuses on the fol-
lowing three:

1. Which existing methodologies and technologies can be
used for implementing the PMMR concept?

2. How can the relationships of components and their cor-
responding versions be represented in a PMMR?

321

Performance Model Management Repository

Analysis
& Design

Implem-
entation

Testing

Evaluation

Require-
ments

Team 2

Analysis &
Design

Implem-
entation

Testing

Evaluation

Require-
ments

Team 1
Analysis
& Design

Implem-
entation

Testing

Evaluation

Require-
ments

Team …

Analysis
& Design

Implem-
entation

Testing

Evaluation

Require-
ments

Team N

C 2
C 1

C 3

C …

C N

Analysis
& Design

Implem-
entation

Testing

Evaluation

Require-
ments

Team 3

Figure 1: Conceptional architecture of a Performance Model Management Repository (PMMR)

3. How can a PMMR handle resource demand specifica-
tions in performance model components that are de-
rived from different hardware environments?

To address the first research question, we propose the use
of the Palladio Component Model (PCM) as meta-model for
the component performance models managed in a PMMR
[3]. A PMMR prototype is being developed on top of the
PCM modeling environment (Palladio-Bench1) as PMMR
client and the EMFStore as PMMR server [8]. Using the
PCM modeling methodology and corresponding technolo-
gies allows to extend an existing modeling environment and
avoids the need to introduce a new one.

PCM is designed with specific organizational roles in mind
and consists of several model layers [3, 11]. One of the
main models within the meta-model is the PCM repository
model. The PCM repository model contains the compo-
nents of a system, their operation behavior and resource
demands as well as their relationships. The content of the
PCM repository model is created by component develop-
ers. These repository model components are combined into
a system model by system architects. A so called deployer
can afterwards specify the available servers and resources
(e.g., central processing unit (CPU) cores) in a resource en-
vironment model. An allocation model specifies how the
repository model elements are mapped to these servers. A
domain expert specifies the workload on the system repre-
sented by the other PCM model layers in the PCM usage
model.

All PCM model layers apart from the repository model
are intended to represent specific application scenarios. The
repository model, on the other hand, is intended to contain
reusable components for different application scenarios [3,

1http://www.palladio-simulator.com/

11]. The basic purpose of a PCM repository model and a
PMMR are thus quite similar. However, the PCM reposi-
tory model itself can nowadays not address the challenges
mentioned in the introduction. PCM repository models are
represented by single files that are hard to maintain by dif-
ferent teams concurrently. The result of this difficulty is
that multiple PCM repository models with outdated com-
ponent specifications exist, as multiple component versions
need to be maintained at the same time by different teams.
The PMMR extends the repository model concept in order
to manage repository model components independently.

The PCM meta-model is based on the Eclipse Modeling
Framework (EMF)2. All PCM-based performance models
therefore conform not only to the PCM meta-model but also
to the Ecore meta-model defined by EMF. We are leveraging
this capability by using the EMFStore, which already imple-
ments the required versioning features for models based on
the Ecore meta-model. The advantage of using EMFStore
compared to other versioning systems is that it is designed
to support the semantic versioning of models. Instead of
working with textual representations of the models in exist-
ing systems such as Apache Subversion (SVN)3, EMFStore
uses the Ecore model elements and their relationships to
manage models stored in a repository. For example, a struc-
tural change between two model versions is not represented
as multiple lines in their textual representation. EMFStore
rather stores the change in the Ecore model itself [8].

Users can access, analyze and edit models in the EMFS-
tore using the EMF Client Platform (ECP)4. ECP supports
collaborative editing of model versions using multiple clients
at the same time. By using ECP as a plugin for the Palladio-

2http://www.eclipse.org/modeling/emf/
3http://subversion.apache.org/
4http://www.eclipse.org/ecp/

322

Bench, model versions in a repository are directly accessible
to performance analysts [4]. A PMMR can thus be seen
as an organization-wide replacement of the PCM repository
model. System architects, deployers and domain experts in
distributed teams can use component model versions in a
PMMR to build their PCM model cases on demand.

To allow for a comparison of different component model
versions, we are also leveraging the fact, that the generated
performance models are based on EMF. By using the EMF-
Compare framework5, the differences between two model
versions can be analyzed. Such capabilities allow for effi-
cient version-to-version comparisons, to evaluate the perfor-
mance impact of changes introduced in a specific component
version [4].

The second research question is concerned with the repre-
sentation of PMMR component relationships. Performance
model component relationships are specified in PCM by
their dependencies. Components in PCM repository mod-
els can require one or more other components to be usable.
As these components are managed independently from each
other in a PMMR, these require references now need to re-
spect the specific version of a component. A meta-model ex-
tension is therefore necessary to specify these relationships
across component versions in a PMMR. The Palladio-Bench
also needs to be extended to support the user while inter-
acting with different component versions.

Another reason for the difficulty of representing the com-
ponent relationships is that the PMMR content can be de-
rived from static (e.g., software designs) or dynamic (e.g.,
runtime measurements) analysis. It is very important to en-
sure that software components that are dependent on each
other in a software architecture are represented in a com-
patible way in a PMMR. The easiest way to ensure this,
is to agree on a common abstraction level for representing
software systems in performance models. Following Wu and
Woodside [18], we suggest that software systems represented
in a PMMR should reflect the actual component subdivision
in terms of encapsulated sets of functionality.

A PMMR only contains PCM repository model compo-
nents in different versions. However, the PCM repository
model components can contain resource demands (i.e., CPU
or hard disk drive (HDD) demands) that are specified rela-
tive to a specific hardware resource. A PMMR should there-
fore be able to handle the heterogeneity of hardware environ-
ments on which different components are deployed. To han-
dle different hardware environments and, thus, to address
research question three, all resource demands of repository
model components stored in a PMMR are specified relative
to a common baseline. Following Menascé and Almeida [13],
this common baseline is specified by benchmark scores for
hardware resources supported by the PCM meta-model (i.e.,
CPU, HDD).

Using these benchmark scores in a PMMR allows to trans-
form the resource demands specified in repository model
components during PMMR check-ins and PMMR check-
outs. Users can specify benchmark scores for all hardware
resources referenced by repository model components they
are intending to check-in or to check-out. These benchmark
scores are then used during check-in to calculate the baseline
resource demands relative to the common baseline bench-
mark scores. For one specific resource type (e.g., CPU)

5http://www.eclipse.org/emf/compare/

the resource demand (rbaseline) relative to a baseline hard-
ware resource benchmark score (bbaseline) during check-in
is calculated as shown in Equation 1. In this equation,
rcheckinvalue denotes the resource demand in a component
model that a user checks-in to a PMMR. The benchmark
score of the hardware resource used to derive the resource
demand, which is also given by the user during check-in, is
specified by bcheckinbenchmarkvalue:

rbaseline =
bbaseline

bcheckinbenchmarkvalue
∗ rcheckinvalue (1)

During check-out, the resource demand for the user
(rcheckoutvalue) is calculated relative to the benchmark score
provided by the user (bcheckoutbenchmarkvalue) as follows:

rcheckoutvalue =
bcheckoutbenchmarkvalue

bbaseline
∗ rbaseline (2)

This calculation is possible for different hardware resources.
For CPU benchmarks it is important that the benchmark
can evaluate the performance of a single core (e.g., SPEC
CPU20066), otherwise it is much harder to adapt the re-
source demand from one server to another. Without such
a transformation, users of PMMR components would need
to know which hardware resources have been used to derive
resource demands for the component models. This approach
simplifies the reuse of component performance models. If re-
source demands are estimated instead of measured [15] and
no benchmark scores are available, we propose the use of
the baseline benchmark scores during check-in and check-
out. The check-in and check-out capabilities of ECP for
models in the EMFStore need to be extended to support
this transformation process.

3. RELATED WORK
Several approaches for versioning model artifacts exist in

literature [1]. However, these approaches do not address
the specific requirements which arise from the versioning of
performance models of individual components.

The work that is most closely related to the PMMR con-
cept is the Performance Knowledge Base (PKB) introduced
by Woodside et al. [17]. The PKB is broader in its scope.
It is envisioned as central performance repository. The au-
thors propose to store measurement and model prediction
results in a PKB instead of the models itself. In this way the
PMMR concept differs from the PKB idea as it is designed
so that performance models can be stored in it directly. It
is not intended to be used as result repository. However,
Woodside et al. [17] also note that the PKB should allow to
build performance models on demand. These models should
be built based on the current state of parameters and a so
called model base that builds the foundation for modeling a
system.

Koziolek [11] also argues that central performance model
repositories (called model libraries) ”... could allow rapid
performance predictions ...”. However, the author does not
propose a solution for the realization of such a repository.

4. CONCLUSION AND FUTURE WORK
The proposed approach enables distributed (or even cross-

organizational) teams to contribute and maintain perfor-

6http://www.spec.org/cpu2006/

323

mance models concurrently and provides access to a coherent
and consistent model of interrelated components.

Future work includes a better integration of existing ap-
proaches that support the performance evaluation of com-
ponent-based enterprise applications using the PCM meta-
model with the PMMR concept. For example, an approach
proposed in [7] supports developers with insights on the re-
sponse times of the component they are currently develop-
ing by employing the PCM meta-model. The response time
of components is calculated based on component reuse and
could therefore be derived using the PMMR. As explained in
Section 2, existing performance evaluation approaches using
PCM need to agree on a common abstraction level for repre-
senting software components in performance models before
they can be managed by a PMMR.

Another challenge for future work is to define at which
level performance models can be abstracted to reduce the
amount of components that need to be represented in a per-
formance model. For example, if someone evaluates a spe-
cific enterprise application, one might not be interested in
a detailed representation of all dependencies of an existing
component used by the current application. It would thus
be an interesting research direction to evaluate how detailed
white-box and high-level black-box models for the same com-
ponent can be stored in a PMMR [10]. A black-box represen-
tation could, for example, only represent the response time
behavior of a component in a specific deployment scenario
[16]. Whereas a white-box representation would model the
component behavior in detail including its dependencies to
other components. Clients of a PMMR should be able to
choose between such representations during check-out time.

Once the PMMR prototype is completely implemented, it
will be evaluated in an experimental setup to validate the
feasibility of the approaches described in this work. After-
wards, the PMMR prototype needs to be evaluated in a cor-
porate environment to validate the intended improvements.

5. REFERENCES
[1] K. Altmanninger, M. Seidl, and M. Wimmer. A survey

on model versioning approaches. International Journal
of Web Information Systems, 5(3):271–304, 2009.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Transactions
on Software Engineering, 30(5):295 – 310, 2004.

[3] S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3 –
22, 2009.

[4] A. Brunnert and H. Krcmar. Detecting performance
change in enterprise application versions using
resource profiles. In Proceedings of the 8th
International Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS ’14, New
York, NY, USA, 2014. ACM.

[5] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff,
M. Mayer, and H. Krcmar. Performance management
work. Business & Information Systems Engineering,
6(3):177–179, 2014.

[6] A. Brunnert, C. Vögele, and H. Krcmar. Automatic
performance model generation for java enterprise
edition (ee) applications. In M. S. Balsamo, W. J.

Knottenbelt, and A. Marin, editors, Computer
Performance Engineering, volume 8168 of Lecture
Notes in Computer Science, pages 74–88. Springer
Berlin Heidelberg, 2013.

[7] A. Danciu, A. Brunnert, and H. Krcmar. Towards
performance awareness in java ee development
environments. In S. Becker, W. Hasselbring, A. van
Hoorn, S. Kounev, and R. Reussner, editors,
Proceedings of the Symposium on Software
Performance: Descartes/Kieker/Palladio Days 2014,
pages 152–159, November 2014.

[8] M. Koegel and J. Helming. Emfstore: A model
repository for emf models. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE ’10, pages 307–308,
New York, NY, USA, 2010. ACM.

[9] S. Kounev. Performance Engineering of Distributed
Component-Based Systems - Benchmarking, Modeling
and Performance Prediction. Shaker Verlag, Ph.D.
Thesis, Technische Universität Darmstadt, Germany,
Aachen, Germany, 2005.

[10] S. Kounev, F. Brosig, and N. Huber. The descartes
modeling language. Technical report, Universität
Würzburg, Institut für Informatik, 2014.

[11] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 67(8):634–658, 2010.

[12] M. Mayer, S. Gradl, V. Schreiber, H. Wittges, and
H. Krcmar. A survey on performance modelling and
simulation of sap enterprise resource planning systems.
In The 10th International Conference on Modeling and
Applied Simulation, pages 347–352. Diptem Universitá
di Genoa, 2011.

[13] D. A. Menascé and V. A. F. Almeida. Capacity
Planning for Web Services: Metrics, Models, and
Methods. Prentice Hall, Upper Saddle River, New
Jersey, 2002.

[14] A. Schmietendorf, E. Dimitrov, and R. R. Dumke.
Process models for the software development and
performance engineering tasks. In Proceedings of the
3rd International Workshop on Software and
Performance, WOSP ’02, pages 211–218, New York,
NY, USA, 2002. ACM.

[15] C. Smith. Introduction to software performance
engineering: Origins and outstanding problems. In
M. Bernardo and J. Hillston, editors, Formal Methods
for Performance Evaluation, volume 4486 of Lecture
Notes in Computer Science, pages 395–428. Springer
Berlin Heidelberg, 2007.

[16] A. Wert, J. Happe, and D. Westermann. Integrating
software performance curves with the palladio
component model. In Proceedings of the third joint
WOSP/SIPEW international conference on
Performance Engineering, ICPE ’12, pages 283–286,
New York, NY, USA, 2012. ACM.

[17] M. Woodside, G. Franks, and D. C. Petriu. The future
of software performance engineering. In Future of
Software Engineering (FOSE), pages 171–187,
Minneapolis, MN, USA, 2007.

[18] X. Wu and M. Woodside. Performance modeling from
software components. SIGSOFT Softw. Eng. Notes,
29(1):290–301, 2004.

324

