
A Framework for Emulating Non-Volatile Memory Systems
with Different Performance Characteristics

Dipanjan Sengupta1,2, Qi Wang1,3, Haris Volos1, Ludmila Cherkasova1, Jun Li1,
Guilherme Magalhaes4, and Karsten Schwan2

1Hewlett-Packard Labs, 2Georgia Institute of Technology, 3The George Washington University,
4Hewlett-Packard

2dsengupta6@gatech.edu, 3interwq@gwu.edu, 1,4{haris.volos, lucy.cherkasova, jun.li,
guilherme.magalhaes}@hp.com, 2karsten.schwan@cc.gatech.edu

ABSTRACT
Exponential increase of online data and a corresponding
growth of data-centric applications (Big Data analytics)
forces system architects to revisit assumptions and require-
ments of the future system design. New non-volatile mem-
ory (NVM) technologies, such as Phase-Change Memory
(PCM) and HP Memristor offer significantly improved la-
tency and power efficiency compared to flash and hard drives.
Many future systems are expected to have both DRAM and
NVM. This can radically change system and software design,
and enable new style of Big Data processing applications.
However, the commercial unavailability of new NVMs tech-
nologies and uncertainty of their performance characteristics
make it difficult to assess new system software stacks and
to study their performance impact on future workloads. To
bridge this gap and encourage an early design phase, we are
building a DRAM-based performance emulation platform1 ,
called NVMpro, that leverages features available in commod-
ity hardware, to emulate different latency and bandwidth
characteristics of future NVM technologies. NVMpro enables
an efficient and accurate emulation of a wide range of NVM la-
tencies and bandwidth characteristics for performance evalua-
tion of emerging byte-addressable NVMs and their impact on
applications performance without modifying or instrument-
ing their source code.

Categories and Subject Descriptors: C.4 [Com-
puter System Organization] Performance of Systems,
D.2.6.[Software] Programming Environments.

General Terms: Measurement, Performance, Design.
Keywords: Performance modeling, benchmarking, profil-

ing, performance counters, memory throttling

1. INTRODUCTION
Emerging byte-addressable, non-volatile memory technolo-

gies such as phase-change-memory and memristors offer an
alternative to disk for persistence and provide performance
within the order of magnitude of DRAM. Forward-looking
projects like Firebox [7] and HP’s The Machine [6] envision
future scale-out machines that have enormous amount of non-
volatile memories (NVMs). There are many open questions
about possible system software design with NVMs such as:

1
This work was originated during Dipanjan Sengupta and Qi Wang

internship at HP Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’15, January 31-February 4, 2015, Austin, TX, USA.
Copyright 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2695529.

• Shall we consider DRAM as a caching layer for NVM?

• Shall we build systems with two types of memory:
DRAM (fast) and NVM (slow)?

• Given two memory types, how shall we design new ap-
plications to benefit from this memory arrangement and
decide on the efficient data placement?

• How sensitive the applications are to different ranges of
NVM access latency and bandwidth?

Apparently, many design and data placement decision might
depend on the performance characteristics (latency and band-
width) of future NVMs. However, NVMs are not commer-
cially available yet, and a few existing hardware prototypes [8,
9] have limited accessibility. Therefore, there is a high need
for an emulation platform that mimics performance char-
acteristics of different NVM technologies for assisting re-
searchers in design of new software stacks for emerging NVMs
and studying their performance on future workloads (without
modifying or instrumenting the application source code).

In this work, we introduce a novel performance emulation
platform, called NVMpro, that we are implementing on top of
existing DRAM to emulate different performance charac-
teristics of future NVM technologies. NVMpro utilizes sev-
eral features available in commodity hardware to “slow down”
DRAM and emulate a wide range of NVM latencies and band-
width characteristics that can be used for performance eval-
uation of emerging byte-addressable NVMs. Thus, we are
not after an accurate simulation of NVM functionality, but
rather after emulating the NVM performance characteristics.

Since the next-generation NVMs are not currently avail-
able, it is a non-trivial task to assess the effectiveness of our
approach and accuracy of performance models used in the em-
ulator design. In order to achieve“physically slower”memory,
we perform our experiments on a multi-socket machine with
different access latencies for local and remote DRAM. In our
validation experiments, we analyze a set of specially designed
memory-intensive applications and SPEC CPU2006 bench-
marks. The completion times of the test applications in the
emulation platform are on average within 5% of the measured
ones on the remote memory configuration. The remainder of
the paper presents our results in more detail.

2. MEMORY PERFORMANCE MODEL
In this section, we discuss subtleties in emulating NVM

using DRAM and the requirements for separately mimicking
two performance characteristics of NVM when compared to
DRAM: lower memory bandwidth and higher latency.

Bandwidth Model.
We emulate bandwidth by leveraging the DRAM thermal

control feature available in commodity processors to limit
available memory bandwidth similarly to other efforts [9].

317

Specifically, we utilize thermal control registers found in the
integrated memory controller of modern Intel Xeon proces-
sors [1] to programmatically throttle DRAM bandwidth in a
per channel basis. The configuration registers we used are
THRT PWR DIMM [0:2], and we use the setpci command
to programmatically configure these thermal control registers.

Latency Model.
Unlike DRAM bandwidth, which can be programmatically

controlled in modern processors as described above, mod-
elling NVM latency is more challenging as commodity hard-
ware does not provide a similar knob to physically control
the DRAM latency. Therefore, we employ a software-based
solution for emulating memory latency. As software intro-
duces a very high overhead for slowing down each individual
memory access, we instead focus on modelling average ap-
plication perceived latency to be close to NVM latency. The
key idea of the model is to dynamically inject software cre-
ated delays to account for higher NVM latency of combined
memory accesses. We avoid the overhead of instrumenting
every memory access by adopting a coarse grain approach,
in which we divide the application lifetime into time intervals
called epochs and by inserting appropriate delays at the end of
each epoch. Our emulator monitors and collects application’s
compute and memory characteristics for a given epoch using
hardware performance counters, and at the end of each epoch
it dynamically injects an appropriate amount of software de-
lay in the application. The length of the epochs (and their
frequency) is configurable. Figure 1 shows the memory access
pattern of an application before and after the introduction of
additional memory delay.

(a) Before the injection of software generated delay.

(b) After the injection of software generated delay

Figure 1: Emulation of NVM latency by injecting soft-
ware delay at the end of each epoch.

The proposed model has two inter-related aspects: the logic
behind the calculation of the additional delay for a given
epoch, and the construction of the epochs, i.e., defining the
size and frequency of these epochs.

For a single threaded application the epoch creation is as
simple as creating the fixed-size intervals, but for multi-
threaded applications it is more complex because of inter-
thread dependencies and communications. In this work, we
demonstrate our approach by considering a single threaded
application model. (However, we have the model extention
for the multi-threaded case, which is under performance eval-
uation.) In our model, we use the following denotations:

• NV Mlat - the average NVM access latency (in ns).

• DRAMlat - the average DRAM access latency (in ns).

• Mi - the total number of memory references going to
the memory system in epoch i.

• LDM STALLi - the total number of processor stall
cycles caused by serving memory requests in epoch i.

• ∆i - software delay injected at the end of epoch i.

A very simple memory model for emulating the NVM latency
is to count the total number of memory references made in
a given epoch and multiply it by a difference in the aver-
age NVM and DRAM latencies. But the point to note is
that not all the memory references issued by the applica-
tion are served by DRAM, because some of the references are
served by the processor’s private caches and/or shared last
level cache. Moreover, the hardware prefetching in modern
processors can further reduce the memory references actually
going and being served from DRAM. Therefore, we need to
count only those memory references that miss the caches and
are actually served from memory (Mi). So the additional
delay for a particular epoch i can be defined as

∆i = Mi · (NV Mlat −DRAMlat) (1)

This simple model works correctly if we assume that all the
memory references are issued serially to DRAM one after an-
other. However, this assumption does not hold for most mod-
ern processors that support multiple memory requests to be
issued and served in parallel. This feature is also known as
memory level parallelism (MLP). Figure 2 shows pictorially
different memory reference processing patterns, that require
injecting different delays for emulating a slower NVM latency.

Figure 2: Impact of memory level parallelism on calculat-
ing the software delay injected at the end of each epoch.

We can observe that LoadA, LoadB , and LoadC are issued
serially in Epoch1, and therefore, Eq. 1 correctly models the
additional delay for this epoch. However, in Epoch2, this
simple model over-estimates the additional delay by a factor
of 3, because of not considering the impact of MLP during
memory reference processing (MLP=3 in this epoch). There-
fore, to account for MLP we should approximate the average
number of sequential memory accesses for computing the ad-
ditional delay in a given epoch i as follows:

∆i =
LDM STALLi

DRAMlat
· (NV Mlat −DRAMlat) (2)

Therefore, using only one hardware performance counter that
measures LDM STALLi, the equation Eq. 2 computes the
additional delay per epoch.

3. EVALUATION
In this section, we evaluate the accuracy of the proposed ap-

proach by using a set of specially designed memory-intensive
applications and SPEC CPU2006 benchmarks.

Experimental Testbed.
Our emulation platform is implemented and evaluated on

the dual-socket system with Intel Xeon E5-2450 processor
that supports up to 3 DDR3 channels and a total of 16 two-
way hyper-threaded cores running at 2.1 GHz. Cache sizes of
L1I, L1D, L2 and L3 are 32 KB, 32 KB, 256 KB and 20 MB
respectively, and the total amount of DRAM is 32 GB.

Validating Accuracy of Memory Bandwidth Emulation.
As bandwidth emulation is solely based on hardware fea-

tures, we are primarily interested in verifying that the mem-
ory bandwidth can be indeed controlled through the thermal
control registers.

318

Figure 3 shows the memory bandwidth measured using
copy kernel of STREAM benchmark [5] for varying thermal
control register values. The measured memory bandwidth
changes linearly as a function of specified register values, until
the application’s maximum attainable bandwidth is reached.

As DRAM memory bandwidth can be controlled linearly
using thermal control registers, we conclude that the desired
bandwidth for NVM can be realized with good accuracy.

Figure 3: Relationship between memory throttling us-
ing thermal control registers and memory bandwidth of
STREAM benchmark (copy kernel).

Approach for Validating Memory Latency Emulation.
Validating the memory latency model requires comparing

the application performance as predicted by the performance
model to the application performance as measured on real
hardware with “physically slower” (higher-latency) memory.
This validation is non-trivial as commodity hardware plat-
forms do not support configuring different memory latencies.
The lack of such hardware feature has served as a primary
motivation for our software emulation approach.

To validate our model against physically increased mem-
ory latency, we leverage the different access latencies of local
and remote DRAM in a multi-socket machine as follows. We
create two different configurations for our experiments:

• Conf 1 - a single socket is used for executing applica-
tions, i.e., processor and memory from the same socket;

• Conf 2 - a processor from one socket and remote mem-
ory from the other socket are configured to run the same
applications. We use the numactl tool to bind the ex-
periment’s computation on the local socket and force
the experiment to use memory from the remote socket:
this way we can physically increase memory latency.

First, we run a set of latency-sensitive experiments on Conf 1
with NVMpro which injects software created delays based on
the proposed memory latency model to mimic the latency of
remote socket memory. Thus, we specify the NVM latency
as the average latency to access remote socket memory. The
epoch size is 10 milliseconds in all our experiments. We use
Linux perf monitoring tool [2] to monitor the raw processor
events needed by our latency model including memory stall
cycles (LDM STALL), and last level cache hit and miss ratios
(LLC HIT, LLC MISS).

Then for validation and comparison, we measure applica-
tion completion times executed on Conf 2 (without NVMpro).

Applications and Benchmarks.
Pointer-Chasing Microbenchmark: We designed a
memory-latency bound microbenchmark with a configurable
degree of memory parallelism. The microbenchmark creates
a pointer chain as an array of 64-bit integer elements. The
contents of each element dictate which one is read next; each
element is read exactly once. We choose the array size to
be much larger than the size of the last-level cache so that
each element’s memory access results in a cache miss that is
guaranteed to be served from memory.

The microbenchmark is memory-latency sensitive because
the next element to be accessed is determined only after the

current access completes. The microbenchmark can also cre-
ate multiple independent chains to experiment with differ-
ent degrees of memory parallelism. During each iteration the
microbenchmark accesses the current element of each chain
before proceeding with the next element. This results in mul-
tiple parallel memory requests as element accesses from dif-
ferent chains are independent. To minimize memory accesses
due to TLB misses, we configure the virtual memory subsys-
tem to use 2 MB hugepages.

SPEC CPU2006 Bench: We use twenty applications from
the SPEC CPU2006 [4] benchmark suite that offer a broad
and representative coverage of real applications with diverse
compute and memory characteristics.

Validating Accuracy of Memory Latency Emulation.
Pointer-Chasing Microbenchmark. Figure 4 compares

the additional execution times of the pointer-chasing mi-
crobenchmark as estimated by our latency model (Eq. 2 used
by the emulator) on Conf 1 and the actual additional ex-
ecution times measured by running the same benchmark on
Conf 2 compared against the base line execution on Conf 1)2.
The X-axis reflects the memory level parallelism of the mi-
crobenchmark, which is defined by the number of independent
memory accesses issued by microbenchmark at each iteration.

Figure 4: Comparison between the measured additional
execution time in Conf 2 vs estimated delay with the emu-
lation platform in Conf 1 for Xeon E5-2450-based system.

We observe that our model very closely matches the mea-
sured additional times. The average absolute error is 4.6%,
and the minimum and maximum errors are being 0.16% and
11% respectively. This validates the correctness and high ac-
curacy of the proposed model.

SPEC CPU2006 Benchmark. Figure 5 shows the LLC
misses per 1000 instructions across the executed benchmarks
in the suite. This signifies the memory intensity of different
benchmark applications, i.e., how often they access the mem-
ory system. We can observe that mcf, omnetpp, and milc
have a relatively high LLC miss rate, and they are memory-
intensive, while applications like hmmer, h264, etc., have very
low memory intensity and are rather compute-intensive.

Figure 5: LLC miss of various SPEC benchmarks.

2
All the experiments are performed five times, and the measurement

results are averaged. This comment applies to all results in this section.

319

In order to formally evaluate the accuracy of the designed
memory model we compute the prediction error as follows:

error =
|CT remote

native − CT remote
emulated|

CT remote
native

(3)

where CT remote
native is the measured application completion time

when benchmarks are executed (without the emulator) on
the memory allocated in remote socket (i.e.,Conf 2), and
CT remote

emulated is the measured application completion time when
benchmarks are executed with NVMpro emulator on memory
allocated in local socket (i.e., Conf 1) while emulating the
memory latency of the remote socket.

Figure 6 depicts the accuracy results of the validation ex-
periments. We can observe that for most benchmarks the
errors for measured vs estimated execution times are low
with an average and maximum errors of 1.8% and 5.36% re-
spectively. As a sanity check, we also analyzed a variability
of benchmarks’ completion times without the emulator: the
measured completion times are very consistent (less than 2%
of corresponding average completion times).

Figure 6: Validating the emulation accuracy for various
SPEC benchmarks on Xeon E5-2450 system.

These experiments validate that the proposed memory
model not only mimics the NVM performance specification
but also achieves it with a high accuracy.

4. RELATED WORK
Several previous projects attempted to emulate performance

of NVRAM using DRAM. Dulloor et al. [9] describe an emu-
lation platform that requires special hardware and firmware.
Similar to our approach, they inject delays derived using a
simple stall model. However, they rely on special hardware
hooks to monitor the amount of time a core is not commit-
ting instructions. Instead, we base our model on performance
counters commonly available in commodity processors.

Pelley et al. [12] make use of offline analysis using the PIN
binary instrumentation tool to estimate the average number
of cache misses per program regions. Then they use the cache
miss estimates to introduce additional delay during actual
runs on bare metal. Instead, we focus on an online model
that does not require the extra step of offline analysis.

Finally, Volos et al. [15, 14] emulate only NVRAM write-
latency by injecting a software created delay, whenever a
programmer explicitly flushes a cache line out of the pro-
cessor. The memory latency model presented in our paper
extends the earlier model by injecting delays to account for
slow NVRAM reads.

Previous work [11] has proposed that DRAM bandwidth
throttling can be used for impacting the application per-
ceived latency (as a result of created resource contention).
This method can only be applied if the application’s band-
width requirement is higher than the throttled bandwidth,
and there is a difficulty with achieving an accurate latency
“slowdown” using this method. Moreover, this assumption
is not true for latency-bound applications whose bandwidth
requirements are very small. In contrast, our approach de-
couples latency emulation from bandwidth emulation.

There is a body of works that utilize performance counters
for analyzing application memory performance. Green gover-
nor model [10] monitors the last level cache (LLC) misses and
memory stall cycles. They multiply average memory latency
by LLC misses to get an estimated time spent in memory.
However, this model ignores memory-level parallelism, which
might lead to an over estimate of the actual memory time.
Recent work [13], proposes a memory model based on miss
handling status register (MSHR) introduced in AMD proces-
sors. However, these performance counters are not readily
available in other platforms (e.g., Intel).

5. CONCLUSION
In this work, we introduce a novel platform, called NVM-

pro for emulating NVM systems with different performance
characteristics. NVMpro offers two performance knobs for
changing NVM’s bandwidth and NVM’s latency. The ex-
periments with specially designed memory-intensive applica-
tions and SPEC CPU2006 benchmarks on the multi-socket
machine show that the emulation platform supports a high
degree of accuracy: the completion times of emulated appli-
cations are within 5% (on average) of the measured ones.

To control memory latency we implemented a software-
based solution that injects a pre-computed delay in the stream
of memory references to achieve a desirable (average per-
ceived) NVM latency. The solution is based on the memory
model that leverages hardware performance counters. The
counters are read with perf tool at specified time intervals to
dynamically compute the additional delay to inject. As the
perf tool uses a system call to monitor the events, there is an
overhead associated with crossing the user-kernel protection
boundary. To minimize this overhead, we are exploring an
alternative implementation for reading performance counters
directly via RDPMC instruction [3]. Our next steps also in-
clude extending the emulator for multi-threaded applications
by taking into account synchronization primitives.

6. REFERENCES
[1] Intel Xeon Processor E5-1600/2400/2600/4600 (E5-Product

Family.) http://www.intel.com/content/dam/www/public/us/en/
documents/datasheets/xeon-e5-1600-2600-vol-2-datasheet.pdf.

[2] Perf. https://perf.wiki.kernel.org/index.php/Main_Page.
[3] RDPMC– Read Performance Monitoring Counters.

http://www.rcollins.org/p6/opcodes/RDPMC.html .
[4] SPEC CPU2006. https://www.spec.org/benchmarks.html.
[5] STREAM benchmark: http://www.cs.virginia.edu/stream/.
[6] With The Machine, HP May Have Invented a New Kind of

Computer. http://www.businessweek.com/articles/2014-06-11/
with-the-machine-hp-may-have-invented-a-new-kind-of-computer.

[7] K. Asanovic. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In Proc. of FAST, 2014.

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K. Gupta,
and S. Swanson. Moneta: A High-performance Storage Array
Architecture for Next-generation, Non-volatile Memories. In
Proc. of MICRO’43, 2010.

[9] S. R. Dulloor, S. Kumar, A. Keshavamurthy, , P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System Software for
Persistent Memory. In Proc. of EuroSys, 2014.

[10] S. Eyerman and L. Eeckhout. A Counter Architecture for Online
DVFS Profitability Estimation. IEEE Transactions on
Computers, 59(11), 2010.

[11] H. Hanson and K. Rajamani. What Computer Architects Need
to Know about Memory Throttling. In Proc. of ISCA, 2010.

[12] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
Management in the NVM Era. In Proc. of PVLDB, 2013.

[13] B. Su, J. L. Greathouse, J. Gu, M. Boyer, and Z. Wang.
Implementing a Leading Loads Performance Predictor on
Commodity Processors. In Proc. of Usenix ATC, 2014.

[14] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena,
and M. M. Swift. Aerie: Flexible File-System Interfaces to
Storage-Class Memory. In Proc. of EuroSys, 2014.

[15] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. In Proc. of ASPLOS 16, ASPLOS ’11, 2011.

320

