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ABSTRACT
Due to increasingly large datasets, graph analytics—traversals, all-
pairs shortest path computations, centrality measures, etc.—are be-
coming the focus of high-performance computing (HPC). Because
HPC is currently dominated by many-core architectures (both CPUs
and GPUs), new graph processing solutions have to be defined to
efficiently use such computing resources. Prior work focuses on
platform-specific performance studies and on platform-specific al-
gorithm development, successfully proving that algorithms highly
tuned to GPUs or multi-core CPUs can provide high performance
graph analytics. However, the portability of such algorithms re-
mains an important concern for many users, especially the many
companies without the resources to invest in HPC or concerned
about lock-in in single-use parallel techniques.

In this work, we investigate the functional portability and per-
formance of graph analytics algorithms. We conduct an empirical
study measuring the performance of 3 graph analytics algorithms
(a single code implemented in OpenCL and targeted at many-core
CPUs and GPUs), on 3 different platforms, using 11 real-world and
synthetic datasets. Our results show that the code is functionally
portable, that is, the applications can run unchanged on both CPUs
and GPUs. The large variation in their observed performance in-
dicates that portability is necessary not only for productivity, but,
surprisingly, also for performance. We conjecture that the impact
of datasets on performance is too high to allow platform-specific
algorithms to outperform the portable algorithms by large margins,
in all cases. Our conclusion is that portable parallel graph analyt-
ics is feasible without significant performance loss, and provides a
productive alternative to the expensive trial-and-error selection of
one algorithm for each (graph,platform) pair.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems;
D.1.3 [Software]: Concurrent Programming
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Parallel Graph Analytics; Portability; OpenCL; GPU; Multi-core
processors; Many-core processors
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1. INTRODUCTION
While graph processing is at the core of a large variety of ap-

plications, from path finding in maps and networks to bioinform-
atics, from circuit floor planning to text and speech analysis, it is
probably large social and professional networks, like Facebook and
LinkedIn, that have brought graph analytics back into the spotlight.
Given the extreme scales of the datasets that need to be analyzed,
as well as the more extensive analysis that needs to be performed,
graph analytics has become a high-performance computing (HPC)
concern. This trend is probably best proven by the intense activity
and fast changes happening in the Graph5001 ranking, as well as in
the adoption of graph traversals as important benchmarks [6] and
drivers for irregular algorithms programming paradigms [26].

At the same time, the state-of-the-art in high performance com-
puting is massive parallel processing, backed up by a large vari-
ety of parallel platforms ranging from graphical processing units
(GPUs) to multi-core CPUs and Xeon Phi. Because traditional
graph processing algorithms are known for their parallelism-unfriendly
features - data-dependency, irregular processing, bad spatial and
temporal locality [1] - a lot of work has focused on developing
GPU-specific [17, 29, 5, 24], multi-core CPU-specific [2], or even
vendor-specific [7, 27] algorithms. None of these algorithms is
portable between different families of platforms. This platform
lock-in is undesirable for users that want to make the best use of
their resources for longer than a couple months - e.g., small and
medium enterprises (SMEs). Moreover, as graph processing work-
loads increase in size, single-node platforms quickly become un-
feasible, and multi-node solutions such as clusters and clouds must
be used to tackle "big-data" graphs [35]. For productivity reasons,
such platforms must rely on some degree of software stability. We
argue in this work that code portability is one way towards this sta-
bility, and we show that the performance of such a scenario is, for
the specific case of graph analytics, sufficient.

Programming models such as OpenCL2 allow users to write func-
tionally portable programs for massively parallel architectures with
controlled performance losses (if any) compared to native solu-
tions such as CUDA or OpenMP [15, 30]. In our study, we use
OpenCL to implement three well-known graph analytics workloads
- breadth-first search traversal (BFS), all-pairs shortest path com-
putation (APSP), and betweenness centrality calculation (BC). We
test the performance of these 3 algorithms on 3 platforms using 11
real-life and synthetic datasets, and we observe a large diversity in
our results: no (platform, algorithm) pair wins for all datasets, and
no (graph, platform) pair is superior for all algorithms. In other
words, given a graph and an algorithm, one needs to empirically
determine which platform is the best performing one. Having port-

1http://www.graph500.org
2https://www.khronos.org/opencl/
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able code enables this choice on any graph and any platform, and it
is agnostic to platform heterogeneity in multi-node systems.

The contribution of this work is three-fold:

1. We present three parallel graph analytics workloads imple-
mented in OpenCL (Section 3) and prove their functional
portability.

2. We provide empirical evidence that performance depends sig-
nificantly on three factors: datasets, algorithms and data struc-
tures, and platforms (Section 4).

3. We show empirical evidence that portability can improve per-
formance (Section 4) and discuss the operational impacts,
for real-life users, of the trade-off between performance and
portability.

2. BACKGROUND
In this section, we present the two families of hardware used for

this study and OpenCL, our programming model of choice.

2.1 The architectures: CPUs vs. GPUs
In 2007, the bundle of parallelism and multiple cores has been

proposed as the solution to increase performance. Since then, a
large variety of architectures - including Cell/B.E., the GPGPU
many-cores, multi-core and many-core CPUs, and the Fusion archi-
tectures - have been proposed, discussed, benchmarked, upgraded,
and/or dismissed. Currently, the HPC community focuses mostly
on multi-core CPUs and many-core accelerators (GPUs).

Multi-core CPUs are architectures that combine a few homogen-
eous cores (curently, 6 to 8, but slowly increasing over the years),
additionally augmented with hardware multi-threading. These cores
are complex architectures, much like the traditional CPUs. The
memory system uses relatively deep cache hierarchies (2-3 levels),
with both per-core and shared caches, as well as shared global
memory. In terms of parallelism, multi-cores have little restric-
tions, allowing both symmetric and asymmetric multi-threading
applications. Fine-grain parallelism is exploited by vector units.
Finally, multi-cores are stand-alone systems, and the mapping of
threads to cores is typically delegated to an operating system and/or
a runtime system.

By contrast, Graphics Processing Units (GPUs) have hundreds to
thousands simple processing elements (called “threads” by NVIDIA
and “processing units” (PUs) by OpenCL), which can be further
grouped in core-like entities (called “streaming multi-processors”
by NVIDIA and “compute units” by OpenCL). The memory model
is based on a large shared global memory, augmented with private
and distributed local memories. Using a relaxed memory model,
GPUs require the users to address memory consistency issues. In
terms of parallelism, GPUs focus on massively data-parallel ap-
plications. Thus, programmers write the operations one thread
needs to perform, and launch a sufficient (typically large) num-
ber of threads. Thread mapping and scheduling are done very effi-
ciently by the hardware. GPUs are typically used as accelerators,
to process compute-intensive tasks offloaded to them by a “host”
device.

To summarize, GPUs are aiming at speeding-up massively data
parallel applications, while multi-core CPUs are typically a better
option for more complex parallel processing patterns (e.g., asym-
metric multithreading or pipelining). As graph processing seems
to be neither of the two [1], we use both CPUs and GPUs in our
evaluation, in the (indirect) search of a clear winner in terms of
performance.

2.2 The programming model: OpenCL
Proposed in 2008 (by the KHRONOS group), OpenCL aims to

tackle the platform diversity problem by offering a common hard-
ware model for all multi- and many-core platforms. The user pro-
grams this “virtual” platform, and the resulting source code is port-
able on any OpenCL compliant platform3.

An OpenCL program has two types of code: the kernel(s), which
are the basic unit of computation to be executed on one or more
OpenCL devices, and the host program, which is executed on the
host. A host program defines the context for the kernels and man-
ages their execution. Note that the device and the host - and con-
sequently the kernel and the host program - have separate memory
spaces: any communication between them needs to be explicit.

A compute kernel can be thought of as similar to a C func-
tion which specifies the computation that each thread (i.e., work-
item in OpenCL terminology) needs to perform. The threads can
be grouped in work-groups, which allow for synchronization and
shared memory. On the host side, the programmer needs to write
the host code, which, besides application-specific initialization, needs
to setup the OpenCL context, choose a running configuration for
the kernel (i.e., the number of work-items and the size of the work-
groups), copy data to the device (if needed), launch the kernels, and
copy the results of the kernel.

The strongest point of OpenCL is its functional portability, a
result of using a common platform model as a virtual middleware.
This separates the design and implementation concerns: program-
mers are only concerned with designing a parallel application for
the given platform model, while it is the responsibility of the hard-
ware vendors to provide good OpenCL drivers to map the platform
to real hardware. Portability is the main reason for which we chose
OpenCL for our work: we want to avoid comparing different al-
gorithms and/or implementations for CPUs and GPUs.

3. APPLICATIONS
We study three common graph processing algorithms: breadth

first search (BFS), all-pairs shortest paths computation (APSP),
and betweenness centrality computation (BC). When implement-
ing these algorithms, we opted for a controlled parallelism increase:
each algorithm attempts to add extra parallelism on top of the previ-
ous one. Thus, APSP uses BFS, and BC uses both APSP and BFS.
While this is not the best implementation in terms of performance,
it is definitely a valid one (i.e., it leads to correct results), and al-
lows us to better isolate the impact of algorithm parallelism in the
overall performance. We will address the performance concerns in
more detail in Section 4.

We further note that the graph representation we have chosen is
edge-based - i.e., the graph is represented as a list of edges (similar
to the representation found in SNAP4. Moreover, our implementa-
tion does not attempt to reconstruct the graph, nor to transform it
to a different representation (such as adjacency lists or adjacency
matrix). Instead, we use the edge-based representation directly in
our parallel BFS, which propagates further into APSP and BC.

3.1 Breadth First Search (BFS)
A BFS traversal explores a graph level by level. Given a graph

G = (V,E), with V its collection of vertices and E its collection
of edges, and a source vertex s (considered as the only vertex on

3Currently (December 2014), these devices have hardware drivers
and compiler back-ends: AMD, NVIDIA, and ARM GPUs,
AMD’s multi-core CPUs and APUs, Intel’s CPUs and Intel’s Xeon
Phi, the Cell/B.E, and Altera’s FPGAs
4http://snap.stanford.edu/snap/
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level 0), BFS systematically explores edges outgoing from vertices
at level i and places all their destination vertices on level i + 1,
if these vertices have not been already discovered at prior levels
(i.e., the algorithm has to distinguish discovered and undiscovered
vertices to prevent infinite loops).

In a BFS that accepts an edge list as input, an iteration over the
entire set of edges is required for each iteration. By a simple check
on the source vertex of an edge, the algorithm can determine which
edges to traverse, hence which destination vertices to place in the
next level of the resulting tree.

Our parallel BFS works by dividing the edge list into sub-lists,
which are processed in parallel (see the kernel listed in Algorithm 3):
each thread will traverse its own sub-list in every iteration. Syn-
chronization between levels is mandatory to insure a full explora-
tion of the current level before starting the next one.

When mapping this parallel kernel to OpenCL, each thread is
mapped to an work-item. As global synchronization is necessary,
we implement a two-layer barrier structure: first at work-group
level (provided by OpenCL), then between work-groups (imple-
mented in-house). This solution limits the synchronization penalty
- see [25], Chapter 3 for more details, or check Algorithms 1 and 3
in the Appendix.

3.2 All Pairs Shortest Paths (APSP)
The problem of finding the minimal distance between all pairs

of nodes in a graph is called All-Pair Shortest Paths (APSP). The
APSP algorithm gets a graph G = (V,E) and computes, for each
pair of vertices (u, v) ∈ V , the shortest path from u to v. The
length of a path is the sum of its constituent edges.

There are multiple algorithms for computing APSP. For example,
Johnson’s algorithm [16] uses the Bellman-Form algorithm [3, 10]
to remove negative edges and then applies Dijkstra’s algorithm [23,
32] for finding the shortest paths. Another approach is based on dy-
namic programming, as shown by the Floyd-Warshall algorithm [9].
This algorithm gradually builds the full paths by choosing a next
best step in each iteration.

In this work, we see APSP as a collection of N = |V | shortest
path problems, where N is the number of vertices in the graph. By
systematically performing a BFS traversal (see Algorithm 2 in the
Appendix) for each shortest path problem (using different source
vertices), we solve the full query. Note that all the BFS traversals
are kept independent (i.e., we do not implement any optimizations)
in order to increase the parallelism level of the APSP algorithm as
compared with the BFS one.

To parallelize APSP, one could adopt three strategies: (1) ex-
ecute each BFS in parallel, and loop over all N vertices sequen-
tially, (2) execute each BFS sequentially (i.e., in a single thread),
and run all N instances of BFS concurrently, or (3) a mixed ap-
proach, where each BFS is parallelized itself, and more BFS in-
stances are executed in parallel. We choose option (3), as it maps
best to the two-layer parallelism of OpenCL: each BFS is paral-
lelized per work-group, and concurrent work-groups run multiple
BFS’s in parallel. To achieve the full APSP, each workgroup has to
sequentially iterate over an own sub-list of BFS sources (for more
details, please check Algorithm 4 in the Appendix).

Note that this design choice also reduces the complexity of our
BFS synchronization, replaced now by the built-in work-group syn-
chronization. However, statically assigning groups of vertices to
work-groups can lead to high imbalance between work-groups, po-
tentially leading to low platform utilization. Improving this point
is mandatory for a better performing BFS, but less important for
our parallelism analysis (a complete analysis of all these options is
presented in [25], Chapter 4).

3.3 Betweenness Centrality (BC)
Centrality analysis provides detailed information about the im-

pact of individual vertices in a graph structure, by measuring the
"influence" a vertex has on the connectivity of the graph.

A widely used BC algorithm, by Freeman [11], searches all the
shortest paths between any two vertices and assigns a degree of
betweenness (between 0 and 1) to the intermediate vertices. An
intermediate vertex has a degree of 1 if and only if all the shortest
paths between two other vertices pass through it, and 0 if no shortest
path passes through it. The BC index of a vertex v is the sum of de-
grees of betweenness for all pairs of vertices (see equation 1) whose
shortest connection passes through v. Here, σst denotes the total
number of shortest paths between s and t, and σst(v) the count of
shortest paths that pass through v.

BC(v) =
∑

s6=t6=v∈V

σst(v)

σst
(1)

To calculate the BC of a graph, we compute the number of shortest
paths between pairs of vertices, remember the vertices on each
of these paths, and determine the ratio of shortest paths passing
through each vertex in the graph. This procedure is repeated for
all pairs of vertices in the graph, with (s, t) = (t, s), and the pair-
dependencies are accumulated per vertex.

When implementing this algorithm, we distinguish three steps:
(i) a traversal to get the total number of shortest paths for a pair
of vertices, (ii) computing all ratios of (shortest) paths passing each
vertex for a pair of vertices, and (iii) adding the derived pair-dependencies
(i.e., the ratios of shortest paths) for each vertex to its BC value.
This sequence of steps is repeated for computing pair-dependencies
of all vertices for the different pairs of vertices, allowing us to use
the same strategy as for APSP: we iterate (partially in parallel) over
steps (i), (ii) and (iii) for each vertex.

A BFS is used for step (i), to derive the total number of shortest
paths for a pair of vertices. Based on a technique presented in [4],
we also use a reverse BFS traversal (i.e., a bottom-up BFS) to accu-
mulate the ratios of the counts for the intermediate vertices in step
(ii). At each step of the bottom-up BFS, the score δs•(v) of vertex
v is computed as the accumulated score of all individual children of
v, as seen in Equation 2. Finally, we retrieve the pair-dependency
values assigned to the vertices in the previous step and add them all
to compute the final BC value of each vertex (step (iii)). For more
details, on this implementation, please refer to [25], Chapter 5.

δs•(v) =
∑

c:v∈Parent(c)

σsv
σsc
· (δs• + 1) (2)

To summarize, our implementation uses one APSP that includes
2 ·N BFS traversals, allowing us to build upon the existing imple-
mentations of these kernels (for implementation details, Algorithm 5
is available in the Appendix).

4. EXPERIMENTAL RESULTS
In this section we describe our experiments and discuss their res-

ults, focusing on qualifying the impact of algorithms, datasets, and
architectures on performance.

4.1 Experimental Setup
Due to the portability of OpenCL, we are able to use the same

implementations of BFS, APSP, and BC for two different families
of architectures: multi-core CPUs and GPUs. The platforms we
have used for our experiments are presented in Table 1. For all
our CPU experiments, we have used Intels’s OpenCL SDK, version
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Table 1: The hardware platforms used for the experiments.
Name Memory Bandwidth PUs
CPU: Intel Xeon E5620 24 GB 25.6 GB/s 8 × 2
GPU: Tesla C2050 3 GB 144 GB/s 14 × 32
GPU: GeForce GTX480 1.5 GB 177.4 GB/s 15 × 32
"PUs" stands for processing units (CPU hardware threads
or GPU threads). It is computed as the number of "cores"
(CPU cores or GPU multiprocessors) × the number of
threads per core.

2.0. For the GPU experiments, we have the OpenCL implemntation
from NVIDIA CUDA 5.0.

The results presented in this work focus on the performance of
the kernels of each of these algorithms. We note that the over-
head due to the data transfer between the host (CPU) and the device
(GPU) is not included. This overhead is only significant for BFS
(due to its low-processing nature). Indeed, for BFS, when includ-
ing the data transfer overhead, more datasets show better overall
peformance for the CPU instead of the GPU (namely, 1M, ES, 64K,
WV, and 4K). However, taking this overhead into account does not
change the variability of the results which, as seen below, is the
most important observation in all our experiments. Moreover, we
believe that in realistic scenarios, BFS, APSP, and BC are not com-
puted in isolation, but rather used in more complex pipelines and/or
iterative applications. In these cases, the one-time overhead of data
copying can be ignored.

4.2 Datasets
As datasets, we chose eleven graphs covering a large spectrum

of variants in terms of numbers vertices and edges, diameters, and
in/out edge ratios. Our datasets are of three types: (i) synthetic
graphs, i.e. randomly generated graphs with predetermined proper-
ties, (ii) real world graphs, i.e. subsets of existing networks like
road networks, social media networks, and email exchange net-
works, and (iii) pathological graphs, i.e. artificial graphs reflecting
the expected worst and best case performance of the BFS, namely a
chain of vertices and a star. The three synthetic datasets we use are
from the Rodinia benchmark [6], and the remaining six real world
datasets are from the SNAP repository [20]. The properties of all
our 11 datasets are presented in Table 2.

4.3 BFS results
We execute our OpenCL implementation on the three different

hardware platforms and measure its execution time for all the 11
datasets and present our results in Figure 15. Note that the results
are normalized to the slowest platform.

We point out that he slowest and the fastest platforms are not al-
ways the same, showing high variability with the dataset and the
platform. We further make the following observations. First, the
performance difference between the CPU and the GPUs is similar:
either the CPU outperforms both GPUs, or the other way around.
Furthermore, GTX always shows a higher performance than Tesla,
which is due to the larger bandwidth of the former, an important ad-
vantage for memory-bound kernels such as BFS. For large graphs,
the performance gap can be as large as 20%, indicating that Second,
different graphs show very different preferences for platforms. For
example, for WT, the GPUs significantly outperforms the CPU. CR
and SW, on the other hand, perform best on the CPU. Three, and
last, the sizes of the graphs do not show any immediate correlation
5A full overview of all the results is beyond the scope of this paper
- therefore, more details can be seen in [25], Chapter 3

Figure 1: Parallel BFS performance for the Xeon CPU, the Tesla
GPU, and the GTX GPU. The execution time is normalized com-
pared with the slowest platform, which shows a relative perform-
ance of 1.

with the execution time. For example, the execution time difference
between WT and CR is an order of magnitude, despite a mere 20%
difference in size. This gap is probably explained by the BFS tra-
versing the node with the maximum numbers of connections (over
100,000 - see Table 2).

Overall, BFS is very sensitive to low parallelism in the input
dataset: graphs with low connectivity between nodes are not be
able to fully exploit parallel platforms, and their performance is
not significantly improved when compared with reference sequen-
tial implementations. This behavior is illustrated best by the Chain
and Star graphs, which show extreme low and high performance,
respectively.

To verify whether we introduced this chaotic behavior through
our edge-based implementation, we compare the performance of
our edge-based BFS with that of a vertex-based BFS, also imple-
mented in OpenCL, and included in the Rodinia benchmark suite [6].
The results, presented in Figure 2, show large performance dis-
crepancies between the two implementations, with no clear winner.
This in turn means that not only is performance significantly de-
pendent on the structure of the dataset, but it is also very sensitive
to implementation choices such as graph representation.

In summary, BFS and its parallelism are dominated by the amount
of parallelism available in the dataset. Furthermore, being a memory-
bound application, using platforms with higher bandwidth can bring
additional performance. Finally, using a platform that exceeds the
parallelism of the graph (i.e., its average or max connectivity) will
lead to severe platform underutilization and, consequently, the gap
between the achieved and expected performance will increase.

4.4 APSP results
Figure 3 shows the performance results for our APSP imple-

mentation in OpenCL.
We make the following observations. First, the GPUs clearly

outperform the CPU for all datasets. The achieved speedups are
between 1.4 and 11.4 for GTX, and between 1.2 and 6.8 for Tesla.
This gain is a direct consequence of the increased parallelism of
our APSP algorithm, which matches the massively-parallel GPUs
much better than the CPU. Second, we note that the two GPUs
perform similarly, with an advantage for the GTX. This is not sur-
prising, given that our APSP is, in fact, a massively concurrent ex-
ecution of the BFS, which also shows better performance for the
GTX card.

In summary, these results reflect the fact that our choice for im-
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Table 2: The datasets used in our experiments. D, AVG and MAX represent the diamter, the average and maximum number of vertex
connections, respectively.

Graph name Vertices Edges D AVG MAX Source
Wikipedia Talk Network (WT) 2,394,385 5,021,410 9 4.19 100,032 SNAP
California Road Network (CR) 1,965,206 5,533,214 850 5.63 24 SNAP
Random 1M (1M) 1,000,000 5,999,970 11 12.00 36 Rodinia
Stanford Web Graph (SW) 281,903 2,312,497 740 16.41 38,626 SNAP
EU Email Communication (EU) 265,214 420,045 13 3.17 7,636 SNAP
Chain 100K (CH) 100,000 99,999 99,999 2.00 2 synthetic
Star 100K (ST) 100,000 99,999 2 2.00 99,999 synthetic
Epinions Social Network (ES) 75,879 508,837 13 13.41 3,079 SNAP
Random 64K (64K) 65,536 393,216 9 12.00 48 Rodinia
Wikipedia Vote Network (WV) 7,115 103,689 7 29.15 1,167 SNAP
Random 4K (4K) 4,096 24,576 7 12.00 38 Rodinia
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Figure 2: Comparison of the performance of BFS, for an edge-based versus a vertex-based graph representation: our implementation, and
the OpenCL implementation from Rodinia, respectively.

Figure 3: Parallel APSP performance for the Xeon CPU, the Tesla
GPU, and the GTX GPU.The results are normalized to the slowest
platform, which shows a relative performance of 1.

plementing APSP exposes a lot more parallelism than BFS, This
increase is directly visible in the kernel performance: the GPUs
outperform the CPUs in all cases. For this APSP implementation,
"more parallel" architectures handle larger graphs better, as the per-
formance of the kernel is dominated by the number of iterations
needed to calculate the whole APSP.

4.5 BC results
The performance comparison for computing betweenness cent-

rality on our three platforms is presented in Figure 4.
As the core algorithm of our betweenness centrality is the APSP

calculation, we expected the GPUs to outperform the CPU. Instead,

Figure 4: Parallel BC performance for the Xeon CPU, the Tesla
GPU, and the GTX GPU. The results are normalized to the slowest
platform, which shows a relative performance of 1.

we see again different platforms performing best for different work-
loads.

To clarify this apparent contradiction, we recall that our BC im-
plementation first does a BFS from a vertex v, determining the
depth of every other vertex. Then it performs a bottom-up traversal
from every vertex back to the root v, annotating every vertex with
path information. This bottom-up traversal takes the same num-
ber of iterations as the initial BFS. After this the algorithm iterates
over every vertex, updating their betweenness score. Like APSP,
this process is done for every vertex. This is why we expected,
naïvely, to see a graph similar to that of APSP, given that BC ef-
fectively does twice the number of traversals of APSP plus another
|V | traversals of all vertices. However, the results shown in Fig-
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ure 4 do not confirm this expectation. This behavior comes from
the fact that, unlike APSP, BC has to update the state of a vertex
multiple times during the traversals. These updates are done using
atomic operations to avoid race conditions. Doing many parallel
traversals can result in high contention at these atomic operations,
reducing the performance. Because the atomic operations are much
more expensive on GPUs than on CPUs, the performance penalty
is much more significant, relative to the rest of the computation, for
the GTX and Tesla.

To verify this intuition we replaced the atomic operations with
non-atomic ones - this produces incorrect results, but eliminates
the contention. Indeed, when we ran the algorithm on our data-
sets graph, we saw a significant reduction in runtime for the GPU
platforms, confirming that the contention due to atomic operations
is having a significant impact on the performance of BC on the
GPUs.

4.6 Performance per platform
We revisit our experimental results, and present them clustered

per platform. Thus, Figure 5 presents the results for the Xeon CPU
and the GTX GPU. Presented this way, our results demonstrate the
impact of incremental complexity on the two different families of
platforms6.

We make the following observations. First, for the CPU, the
increase in complexity leads to an increase in execution time. Not
surprisingly, the APSP takes a lot longer than the BFS, given the
scale of the graphs and the limited number of available cores (16).
Futhremore, BC takes twice longer than APSP, due to the double
reuse of APSP inside the BC algorithm. Note that the differences
in performance are not the same between data sets, since they differ
in sizes and structure.

Second, for Nvidia GeForce GTX480, the performance differ-
ences between the three algorithms vary a lot. For example, for
the CR data set, the fraction of the increase in the execution time
between BFS and APSP is similar to that between APSP and BC.
However, for the WT data set, the difference between BFS and
APSP is much larger than that between APSP and BC. These results
show that the GPUs (again, we see the same behavior for NVIDIA
Tesla) are much more sensitive to the structure of the data set. We
note that the GPU performance gap between the APSP and BC is in
general very large. We believe this is an effect of the data depend-
encies for BC calculations: the ratios of each of the shortest paths
needs to be derived and accumulated for all vertices (i.e., each ratio
depend on the ratios of the neighboring vertices).

Third, we note the different behaviors between the CPUs and
GPUs: the differences in dataset size and structure affect the plat-
forms in different ways. We see this as additional proof for consid-
ering a graph processing workload as an (algorithm, dataset) pair,
and potentially choose a matching target using the characteristics
of the pair, and not of the algorithm in isolation.

4.7 Performance in Meps
A "traditional" measure for high-performance graph processing

is edges per second (eps) - i.e., how many edges are traversed by
the graph processing application in one unit of time (1s). eps of-
fers a normalized view of performance, as it implicitly takes into
account the size (through normalization) and the structure of the
graph (which impacts the execution time) 7.

An accurate measurement of the number of edges traversed in
total would require the addition of several counters inside the al-
6We only show the CPU and GTX 480 behavior due to because the
Tesla performance trends are very similar to those of the GTX.
7This is also the metric used in Graph500.

gorithms, which might in turn change the algorithm behavior. There-
fore, we choose to estimate the EPS for each of the algorithms
by using the theoretical number of edges they would traverse (i.e.,
based on the algorithm itself).

For BFS, multiply the diameterD of the graph (which approxim-
ates the number of iterations) with the number of edges M = |E|
(which approximates the number of edges visited in each iteration
- i.e., all of them) and divide by the execution time of the BFS
(TBFS):

EPSBFS =
D ·M
TBFS

(3)

For APSP, we use multiple BFS searches, hence we can use a
similar approach for computing the EPS: we multiply the diameter
of the graph (D) with the number of edges (M ) and with the num-
ber of shortest path searches (N = |V |). This number of edges tra-
versed is then divided by the execution time of the APSP (TAPSP ):

EPSAPSP =
D ·M ·N
TAPSP

(4)

For BC, the metric is more difficult to calculate (i.e. it uses an
APSP and additional computations to derive the centrality values).
In section 4.5, we see that the computations for the centrality val-
ues require backtracking of the shortest paths, making it similar to
traversing the search tree, in terms of traversal steps. Hence, for
simplicity, we can reduce this to an APSP to find the shortest paths
in the graph and an APSP to backtrack these shortest path in deriv-
ing the centrality values. This simplification allows us to derive a
formula for the eps of BC: we multiply the diameter of the graph
(D) with the number of edges (M ) and with the number of shortest
path searches (N ), this is divided by the execution time of the BC
(TBC ). This value is then multiplied by two, resulting in:

EPSBC = 2 · D ·M ·N
TBC

(5)

Figure 6 presents the performance of BFS, APSP, and BC in
Meps.

We make the following observations: First, APSP shows the best
eps, regardless of the platform or data set. This is because the al-
gorithm we have chosen for APSP is a massively parallel one, and,
in combination with the edge-based representation of the graph, it
is suitable for the chosen parallel platforms. Second, for BC, the
number of edges traversed/processed per second is lower, due to the
additional complexity of the computation performed to determine
the BC coefficients.

Third, we note again the different behavior of the two hard-
ware platforms. For the GPUs, a large performance gap is visible
between APSP and the rest, caused by the large potential of par-
allelism of our algorithm. For the CPU, the gap is smaller due
to coarser level of parallelism in the system. The only graph that
breaks the pattern is ST, which seems to favor fine-grained paral-
lelism also for the BC algorithm.

Overall, although eps provides normalized performance against
the graph size, it remains insufficient for quantifying/qualifying the
impact of the dataset structure on the overall performance of the
algorithm. In other words, eps can be used to compare different
implementations of the same algorithm, but provides too little in-
sight into matching workloads to platforms.
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Figure 5: The performance of our BFS, APSP, and BC (logarithmic scale) for the GTX and Xeon platforms.
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Figure 6: Million edges per second for the BFS, APSP, and BC algorithms, grouped per dataset.(logarithmic scale).

5. RELATED WORK
We discuss in this section two different related work fields: mod-

ern studies of parallel graph processing, targeted at multi- and many-
core architectures, and studies on performance portability.

Work on parallel graph processing stands out by its specific ap-
proaches: improved parallel algorithms, tuning parallel algorithms
to effectively use of modern parallel hardware, or building high-
level programming solutions to hide parallelism from programmers.

For example, previous work improves the throughput of graph
searches (based on BFS) on parallel systems by data partitioning
and message compression [33]. The queuing of visited graphs ver-
tices (also seen in BFS) have been replaced in [19] with bags, al-
lowing splitting and merging of queued operations such that they
can operate in parallel. For a centrality algorithm, recent work [21]
replaces the SSSP algorithm, used to calculate the pair-dependencies
for all pairs, with a BFS algorithm (as suggested in other work [4]),
and gain additional performance. Finally, work presented in [7,
27] shows how exploiting the lowest-level specifics of hardware
archiecture can lead to a high performance algorithm for graph pro-
cessing, which will outperform most of the competition, yet it will
not work efficiently on any other machine than the one it is de-
signed for.

Using GPUs to accelerate graph processing has also been tried,
by adapting traditional graph analysis to heterogeneous systems [8].
In [14, 31], the quantify the performance gain of GPU-enabled
graph analysis against the sequential version. The GPU shows

significant performance improvement for different algorithms, but
dataset impact is not quantified. In [17, 29], graph algorithms are
adapted for GPU execution by reordering operations and data ac-
cesses.

All these examples show that the research on modern architec-
tures for graph analysis focuses on specific algorithms, and their
improvement for a specific environment. In contrast to our work,
none of these studies quantifies the impact of the datasets on the
achieved performance, nor does it address the portability of the
approaches to a new/different generation of parallel architectures.
While the latter is, for many of them, out of the scope of their re-
search, the former is mandatory for a better understanding of the
observed performance.

An alternative approach to using CPUs and GPUs for graph pro-
cessing has emerged in the form of dedicated programming sys-
tems. MEDUSA [37] and TOTEM [12] are two examples of sys-
tems take into account some of the properties of the datasets to
schedule, at runtime, the computation of a graph analysis algorithm
on the different components of a heterogeneous system. TOTEM
is further improved in [13] with a systematic CPU-GPU partition-
ing algorithm that takes into account, at runtime, the characteristics
of the dataset and the hardware. Ultimately, we share the goal of
matching datasets with architectures, but this scheduling-driven ap-
proach in [13] does not pay enough attention to the algorithm; we
believe an analytical model that mixes dataset, algorithm, and plat-
form will be more useful in the context of portability.
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The second dimension of our work is related to performance
and portability (in the context of OpenCL), a controversial concept
in the current landscape of parallel processing. Several empirical
studies on performance portability [28, 18, 34] have shown, for dif-
ferent mixes of applications and platforms (all including GPUs and
CPUs), that OpenCL provides a good basis for performance portab-
ility. We note, however, that (1) none of the used benchmarks were
irregular applications, and (2) no dependence of the performance
on the dataset has been studied. Similar approaches in [36, 30]
have taken a more proactive approach, and showed how OpenCL
applications can be improved in terms of performance portability.
Again, no discussion on irregular algorithms or dataset perform-
ance dependency is included.

Another way to achieve portability is to build platform-agnostic
algorithms. In [26], the authors introduced the notion of amorph-
ous data parallelism, an attempt to parallelize highly irregular al-
gorithms by exposing the fine-grained parallelism within the al-
gorithm, which in turn can scale better with the available hard-
ware parallelism. Several studies on using amorphous data par-
allelism on GPUs have looked at the performance of graph al-
gorithms [5, 24]. However, these studies take the use of a GPU
as a given, and do not compare the GPU performance against CPU
performance. As our results demonstrate several cases when CPUs
outperform GPUs, such a comparison is necessary to prove the
portability and the high performance of these solutions.

This brief survey of related work demonstrates that performance
portability and parallel graph processing have been, so far, disjoint.
In this context, our work is the first to combine them in claiming
that performance portability assessment for irregular applications
must take all three variables - dataset, application, and platform -
into account. We finally argue (claim indirectly supported by the
work in [12, 13]) that portability allows for better usage of hetero-
geneous platforms, contributing to an overall increase in perform-
ance, especially in the context of large scale datasets.

6. CONCLUSION
Graph processing is one of the pillars of big data analysis, and

it becomes a real challenge for high performance computing and
its multi-layer massively parallel architectures of today (multi-core
CPUs and GPUs). Many different parallel graph analytics algorithms
have been proposed, all addressing the specific needs of one hard-
ware platform or another, and achieving good performance for vari-
ous datasets on their target platform. However, these solutions are
rarely evaluated, in terms of performance gain/loss in comparison
with different parallel platforms [22] and using a truly wide variety
of graphs. Without such an evaluation, users’ have little flexibility
in their choices: platform comes first.

We argue that a landscape with so many different flavors of graph
analytics algorithms and such incomplete evalution, is difficult to
navigate by regular users that want to focus more on productiv-
ity and efficiency than on software development and platform up-
dates. For such users, our work has showed that using relatively
simple, portable graph algorithms, one can make use of most of
their in-house resources without code changes. Due to the strong
dependency of graph analytics (such as BFS, APSP, and BC) on
the structure of the datasets, the performance loss across different
types of graphs is not significant - i.e., depending on the algorithm
and dataset, the right platform to be used can be a GPU, a CPU,
or a combination of the two. By having the same implementation
for both types of platforms (and many others, given the portabil-
ity of OpenCL), users can easily maintain a single codebase, and
perform a simple empirical check to find the right platform for
a new dataset. In this sense, portability can offer a performance

boost by providing multiple platform options: for algorithms such
as BFS and BC, over 40% of our tests show a CPU outperforming
the GPUs. We acknowledge that this approach might not offer the
best ever performance for a (platform,dataset,algorithm) at hand,
but we argue none of the alternatives will. The only option for
finding the absolute best remains a trial-and-error sweep to rank all
the existing solutions, a prohibitively expensive, low-productivity
approach given the tens of alternatives.

To summarize, our results have shown that graph analytics port-
ability (using OpenCL) is feasible for CPUs and GPUs. Our port-
able algorithms provide additional performance opportunities by
simply allowing alternative execution platforms to be used. We ob-
served that such flexibility pays off: we gained significant perform-
ance in more than 40% of the cases we tested, by simply replacing
a GPU with a CPU.

Our future work will focus on two directions: performance im-
provement and analytical modeling. On the short term, we aim
to improve the performance of these portable implementations by
generalizing the findings of the most promising platform-specific
solutions (see Section 5). On the longer term, we aim to build mod-
els of impact of both platforms and datasets characteristics on the
performance of the graph analytics workloads. Using such models,
we aim to predict the best platform for a given (dataset,algorithm)
pair for portable, platform-agnostic algorithms.
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APPENDIX
A. THE BFS, APSP, AND BC

ALGORITHMS
In this section we include all the pseudocode samples that
illustrate our sequential and parallel (i.e., OpenCL)
implementations of BFS, APSP, and BC.
Our sequential BFS is presented in Algorithm 1.

Algorithm 1 Edge-based BFS implementation for graph G =
(V,E), using start vertex s; N = |V | is the number of vertices
and M = |E| is the number of edges.

1: function ENDGEBASED_BFS(E, s)
2: Q← ∅
3: for e ∈ E do
4: e← UNV ISITED
5: end for
6: add(Q, s)
7: changed← 1
8: while changed = 1 do
9: changed← 0

10: for e ∈ E, e = UNV ISITED do
11: if Source(e) ∈ Q then
12: add(Q,Dest(e))
13: e← V ISITED
14: depth[Dest(e)]← depth[Source(e)] + 1
15: changed← 1
16: end if
17: end for
18: end while
19: end function

Our sequential APSP is presented in Algorithm 2.

Algorithm 2 A BFS-based APSP implementation. R is the result
as a collection of distances between pairs of vertices.

1: function APSP_USING_BFS(V )
2: R← ∅
3: for v ∈ V do
4: BFS(V, v)
5: for u ∈ V do
6: if v 6= u then
7: Add(R,Distance(v, u))
8: end if
9: end for

10: end for
11: end function

Our parallel BFS is presented in Algorithm 3.
Our parallel APSP is presented in Algorithm 4.
Our parallel BC algorithm is presented in Algorithm 5.

Algorithm 3 Parallel BFS implementation in OpenCL, for graph
G = (V,E) and start vertex s; Ethread ⊆ E is the edge list
assigned to this thread (PU); operations preceded by atomic are
executed atomically; barrier() is a global barrier.

1: function KERNEL_BFS(E, s)
2: Qi ← {s}
3: hasNextLevel← 1
4: i← 0 . Set Current Level
5: while hasNextLevel = 1 do
6: for e ∈ Ethread, e = UNV ISITED do
7: if Source(e) ∈ Qi then
8: . Attempt to lock.
9: while (atomic(CAS(Dest(e), 0, 1)))

10: . Lock succeeded.
11: add(Qi+1, Dest(e))
12: e← V ISITED
13: depth[Dest(e)]← depth[Source(e)] + 1
14: . Unlock.
15: atomic(Dest(e)← 0)
16: atomic(hasNextLevel← 1)
17: end if
18: end for
19: i← i+ 1 . Increase Level
20: barrier() . Level Synchronization
21: end while
22: end function

Algorithm 4 Our parallel APSP implementation in OpenCL, for
graph G = (V,E), with R being the result distance matrix,
Vgroup ⊆ V being the sources list assigned to this work-group,
and Ethread ⊆ E being the edge list assigned to this work-item.

1: function KERNEL_APSP(E, V )
2: for s ∈ Vgroup do
3: Qi ← {s}
4: hasNextLevel← 1
5: i← 0 . Set Current Level
6: while hasNextLevel = 1 do . Begin BFS
7: for e ∈ Ethread do
8: if e = UNV ISITED & Source(e) ∈ Qi

then
9: add(Qi+1, Dest(e))

10: e← V ISITED
11: R[s][Dest(e)]← depth[Source(e)] + 1
12: atomic(hasNextLevel← 1)
13: end if
14: end for
15: i← i+ 1 . Increase Level
16: barrier() . Level Synchronization
17: end while . End BFS
18: barrier()
19: end for
20: end function
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Algorithm 5 Our parallel BC implementation in OpenCL, for graphG = (V,E), withBC be the resulting vector containing the betweenness
centrality scores for all the vertices in V .

1: function KERNEL_BC(E, V )
2: for s ∈ Vgroup do
3: Qi ← {s}
4: σ ← ∅ . Path Count
5: δ ← ∅ . Pair-Dependency
6: hasNextLevel← 1
7: i← 0 . Set Current Level
8: while hasNextLevel = 1 do . Step II
9: for e ∈ Ethread do

10: if e = UNV ISITED & Source(e) ∈ Qi then
11: add(Qi+1, Dest(e))
12: e← V ISITED
13: σ[Dest(e)]← σ[Dest(e)] + σ[Source(e)]
14: atom_xchg(hasNextLevel, 1)
15: end if
16: end for
17: i← i+ 1 . Increase Level
18: barrier() . Level Synchronization
19: end while
20: i← i− 2
21: while i > 1 do . Step III
22: for e ∈ Ethread do
23: if Source(e) ∈ Qi &Dest(e) ∈ Qi+1 then
24: delta← σ[Source(e)]

σ[Dest(e)]
· (δ[Dest(e)] + 1)

25: atom_add(δ[Source(e)], delta)
26: end if
27: end for
28: i← i− 1
29: barrier() . Level Synchronization
30: end while
31: for v ∈ V do . Step IV
32: if v 6= r then
33: atomic(BC[v]← BC[v] + δ[v])
34: end if
35: end for
36: end for
37: end function
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