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ABSTRACT

Heterogeneous systems consisting of multi-core CPUs,
Graphics Processing Units (GPUs) and many-core accelera-
tors have gained widespread use by application developers
and data-center platform developers. Modern day heteroge-
neous systems have evolved to include advanced hardware
and software features to support a spectrum of application
patterns. Heterogeneous programming frameworks such as
CUDA, OpenCL, and OpenACC have all introduced new in-
terfaces to enable developers to utilize new features on these
platforms. In emerging applications, performance optimiza-
tion is not only limited to effectively exploiting data-level
parallelism, but includes leveraging new degrees of concur-
rency and parallelism to accelerate the entire application.

To aid hardware architects and application developers in
effectively tuning performance on GPUs, we have developed
the NUPAR benchmark suite. The NUPAR applications be-
long to a number of different scientific and commercial com-
puting domains. These benchmarks exhibit a range of GPU
computing characteristics that consider memory-bandwidth
limitations, device occupancy and resource utilization, syn-
chronization latency and device-specific compute optimiza-
tions. The NUPAR applications are specifically designed
to stress new hardware and software features that include:
nested parallelism, concurrent kernel execution, shared host-
device memory and new instructions for precise computation
and data movement. In this paper, we focus our discussion
on applications developed in CUDA and OpenCL, and focus
on high-end server class GPUs. We describe these bench-
marks and evaluate their interaction with different architec-
tural features on a GPU. Our evaluation examines the behav-
ior of the advanced hardware features on recently-released
GPU architectures.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; D.2.8 [Software Engineer-
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ing]: Metrics—Performance measures; H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Bench-
marking

General Terms

Profiling, Performance Measurement, Benchmarking,

Keywords
Benchmark suite, GPUs, CUDA, OpenCL

1. INTRODUCTION

Heterogeneous computing using accelerators such as multi-
core CPUs, GPUs, and FPGAs has gained a lot of traction
in recent years. The programmability and performance of
the GPUs have increased to support a range of throughput-
oriented workloads belonging to various scientific domains.
The availability of mature software frameworks has helped
GPUs become a commonly used device in throughput com-
puting.

In more recent accelerator platforms we are beginning to
see applications that come with stricter timing constraints,
stringent resource requirements, opportunities for concur-
rent execution and irregular memory access patterns. Many
of these applications have been successfully moved to GPU
platforms [33]. Programming frameworks such as CUDA,
OpenCL, and OpenACC have introduced new features that
address many of these challenges on GPUs. Modern GPU
architectures constantly evolve by adding support for such
advanced constructs introduced in the programming frame-
works. The performance of applications on GPUs can im-
prove dramatically if these programming features are used
efficiently. It is essential to provide researchers with a proper
set of benchmarks that can appropriately exercise such ad-
vanced features, to consider hardware and software perfor-
mance tradeoffs on different GPU platforms, and to identify
performance bottlenecks and evaluate potential solutions.

Researchers have developed a number of benchmark suites
to study different aspects of a GPU architecture [7, 10, 16,
31]. The goals of a benchmark suite can vary depending
on the class of system they target. As GPU systems have
evolved, older benchmark suites gradually become less rel-
evant. This evolution calls for the development of a new
generation of GPU benchmarks that target modern GPU
architectures using advanced programming frameworks.

In this paper, we provide NUPAR, a novel benchmark
suite to equip architects and application designers with



appropriate workloads to evaluate the performance of the
emerging class of GPUs. We incorporate a set of real-world
applications that appropriately exercise advanced architec-
tural features of the GPUs. The applications have been
developed using features from CUDA and OpenCL frame-
works [1, 17]. The NUPAR suite provides eight different
applications spanning seven different computing domains.
The nature of computation for each application is differ-
ent, providing a mix of behaviors. The properties of the
applications include real-time constraints, memory-bound
operations, compute-bound execution, heavy synchroniza-
tion, and concurrent execution. Each application highlights
one or more advanced architectural features of the GPU ac-
cording to the nature of their computation. The application
kernels are optimized to better utilize the GPU architecture.

The applications written in CUDA can be easily ported
to OpenCL, and vice versa. CUDA and OpenCL program-
ming models are quite similar to each other in many re-
spects. The OpenCL model is based on a Compute Device
that consists of Compute Units with Processing Elements.
These Compute Units are equivalent to CUDA’s Streaming
Multiprocessors, which contain CUDA cores. In OpenCL, a
host program launches kernel with work-items (vs. threads
in CUDA) over an index space. These work-items are fur-
ther grouped into work-groups (vs. thread blocks in CUDA).
Furthermore, both have similar device memory hierarchies
abstracted into different address spaces. However, CUDA
is currently supported on NVIDIA GPUs and multicore
CPUs [32], whereas OpenCL is supported on many differ-
ent heterogeneous devices including many GPUs, multi-core
CPUs and FPGAs.

We evaluate the CUDA workloads on an NVIDIA K40 and
OpenCL workloads on an AMD Radeon HD 7970 GPU. We
measure speedup against a GPU-accelerated baseline that is
unoptimized. We use NVIDIA’s Visual Profiler [23] for pro-
filing CUDA applications and AMD’s CodeXL [3] for profil-
ing OpenCL applications.

The major contributions of this paper include:

e we introduce a new benchmark suite to study advanced
architectural features of modern GPUs,

e we provide benchmarks that can cover a wide range of
computation models, exercising properties common in
emerging heterogeneous applications, and

e we utilize these benchmarks to exercise advanced ar-
chitectural features on GPUs to illustrate their impact
on the performance of applications.

The remainder of this paper is organized as follows. Sec-
tion 2 covers the motivation for our work. In Section 3, we
describe the architectural and programming features that we
are targeting in our applications. Section 4 introduces the
applications chosen from various domains that are included
in NUPAR. Section 5 discusses our evaluation methodology.
In Section 6, we discuss experimental results using the bench-
marks. Section 7 provides a comparison between different
programming frameworks. Section 8 surveys related work
and Section 9 concludes the paper and considers directions
for future work.

2. MOTIVATION
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NVIDIA Devices NVIDIA C2070 | NVIDIA K40
Microarchitecture Fermi Kepler
Fabrication 40nm 28nm
Compute Capability 2.0 3.5
CUDA Cores 448 2880
Core Frequency 575 MHz 745 MHz
Memory Bandwidth 144 GB/s 288GB/s
Peak Single Precision FLOPS 1288 GFlops 4290 GFlops
Peak Double Precision FLOPS 515.2 GFlops 1430 GFlops

Table 1: Evolution of NVIDIA GPU architecture

from Fermi to Kepler.

AMD Devices Radeon HD 5870 | Radeon HD 7970
Microarchitecture Evergreen Southern Islands
Fabrication 40nm 28nm
Stream Cores 320 2048
Compute Units 20 32
Core Frequency 850 MHz 925 MHz
Memory Bandwidth 153.6 GB/s 264 GB/s
Peak Single Precision FLOPS 2720 GFlops 3789 GFlops
Peak Double Precision FLOPS 544 GFlops 947 GFlops

Table 2: Evolution of AMD GPU architecture from
Evergreen to Southern Islands.

GPUs have increased in performance, architectural com-
plexity and programmability over the years. This trend
can be observed in various generations of GPUs from dif-
ferent vendors [21]. Table 1 shows how NVIDIA GPUs have
improved from Fermi to Kepler microarchitecture in terms
of their compute capability, architectural complexity, and
memory bandwidth. Table 2 shows similar improvements
that have been made in AMD’s Southern Islands genera-
tion of GPUs over its predecessor. Not only have the GPUs
evolved in terms of sophistication and capabilities, but the
programming frameworks have evolved dramatically to sup-
port the hardware changes in the GPU architectures.

Previous benchmark suites have been developed specifi-
cally to understand the performance of the GPU devices.
The Rodinia suite provides a set of GPU programs targeting
multi-core CPU and GPU platforms based on the Berkeley
dwarf taxonomy [7]. Rodinia benchmarks highlight architec-
tural support for memory-bandwidth, synchronization and
power consumption. Another important GPU benchmark
suite is the Parboil suite. Parboil provides GPU workloads
which exercise architectural features of GPUs such as float-
ing point throughput, computational latency and cache ef-
fectiveness [31]. Both of these benchmark suites have served
the GPU architectural research community well over many
years. In contrast to Rodinia and Parboil, the Scalable Het-
erogeneous Computing (SHOC) [10] benchmark suite pro-
vides a range of low-level benchmarks based on scientific
computing workloads. The Valar benchmark suite empha-
sizes the host-device interaction on Accelerated Processing
Units (APUs) and between multi-core CPUs and discrete
GPUs [16]. The workloads provided in the Valar suite utilize
multiple command-queue/streams features of a true hetero-
geneous programming framework that combines CPUs and
GPUs.

Unfortunately, the available GPU benchmark suites do
not provide that can applications to properly stress the lat-
est architectural features appearing on GPUs. Some of these
features include concurrent kernel execution, dynamic paral-
lelism, unified memory hardware, improved double precision



and atomic instructions. Many of these features are already
supported in the new CUDA-6 and OpenCL 2.0 standards.
These advances in runtime systems and architectures have
motivated us to assemble a new benchmark suite that fo-
cuses attention on the latest architectural features on GPUs.
These real world applications belong to a diverse set of do-
mains and perform computations to stress different combina-
tions of these new features. This allows us to study the im-
pact of each architectural feature. Architects are no longer
fully responsible for identifying why a particular benchmark
achieves a larger advantage than another benchmark when
studying a particular architectural feature. We have iden-
tified the characteristics of each benchmark, and users can
leverage this guidance as they explore the benefits of each
new feature.

3. USE OF ARCHITECTURAL AND PRO-
GRAMMING FEATURES FOR OPTI-
MIZATION

As mentioned in Section 2, today’s programming frame-
works and architectures have rapidly evolved to enable new
programming patterns and improve performance. In this
section, we describe some of the new architectural and pro-
gramming features that we target with our applications. Tra-
ditionally, optimizations applied to GPU workloads consist
of effective memory management techniques and use of so-
phisticated algorithms to leverage the parallelism offered by
GPUs. As new architectural features are being delivered to
the market, it is important that application developers un-
derstand the nature of these features so that they can reap
the full benefits of them when developing their applications.

The number of features appearing in new GPU devices
go well beyond the few that are summarized in this sec-
tion. Most of these features are available on both CUDA
and OpenCL frameworks using similar programming nomen-
clature.

3.1 Nested Parallelism

Nested parallelism is defined as the process of launching
child threads from a parent thread. A child kernel perform-
ing the same or different computation can be launched using
a thread from its parent kernel. Dynamic Parallelism is an
extension to the CUDA and OpenCL programming models.
It provides the user with constructs to implement nested
thread-level parallelism. The ability to create and control
workloads directly from the GPU avoids the need to trans-
fer execution control and data between the host and the
device. This reduces the overhead of invoking a GPU kernel
from the host CPU. Dynamic Parallelism also offers appli-
cations the flexibility to adapt thread assignments to cores
during runtime. Nested Parallelism enables the execution
pattern of the application to be determined at runtime (i.e.,
dynamically) by the parent threads executing on the device.
Additionally, since child threads can be spawned by a kernel,
the GPU’s hardware scheduler and load balancer are utilized
dynamically to support data-driven applications.

Nested parallelism provides several performance and pro-
grammability benefits. First, recursive execution, irregular
loop structures, and other complex control-flow constructs
that do not conform to a single-level of task-level parallelism
can be more transparently expressed. Moreover, the over-
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head of data transfers between kernel launches, as well as
PCle traffic, can be reduced or avoided in some cases since
flow control transfers can be implemented in a single kernel.
Furthermore, hierarchical algorithms can be written, where
the data from a parent kernel computation is used to decide
how to partition the next lower level of the computation.

3.2 Concurrent Kernel Execution

Concurrent kernel execution allows multiple kernels to exe-
cute simultaneously on the GPU. An application can launch
multiple kernels containing no inherent data dependency to
execute concurrently. Modern GPU architectures partition
the compute resources of the GPU to enable concurrent ex-
ecution. This partitioning is implemented by introducing
multiple hardware queues which acquire compute resources
to execute the queued kernels. Concurrent Kernel Execution
can improve GPU utilization and improve the occupancy of
the GPU. It can also increase cache efficiency by launching
kernels which operate on the same input data.

The Hyper-Q feature was introduced by NVIDIA on their
Kepler GK110 architecture devices [24]. Multiple CUDA
streams get mapped to different hardware queues, which
can schedule the execution of kernels on the device concur-
rently. Hyper-Q permits up to 32 simultaneous, hardware-
managed, concurrent executions, if the kernels have no data
dependency and the GPU has enough compute resources to
support such execution. NVIDIA Fermi architecture GPUs
map CUDA streams to a single hardware queue. This can
introduce false dependencies between kernels from different
streams. Such false dependencies can be avoided by using
the Hyper-Q feature. Applications that were previously lim-
ited by false dependencies can see a performance increase
without changing any code. The multiple streams of the
applications are handled by separate hardware queues and
data-independent kernels can be executed concurrently.

AMD introduced Asynchronous Compute Engines (ACE)
on their GPUs as a hardware queue to schedule workloads on
different compute units [15]. Work from different OpenCL
command queues is mapped to different ACE units on the
AMD hardware. The ACE units support interleaved execu-
tion of compute kernels on the GPU.

3.3 Memory Management

3.3.1 Shared Memory

On a GPU, shared memory is much faster than global
memory. By accessing shared memory, kernels can take ad-
vantage of the lower latency provided by shared memory, and
at the same time save global memory bandwidth. Moreover,
shared memory can be used to avoid non-coalesced mem-
ory accesses. Applications can issue loads/stores in shared
memory to reorder non-coalesced addressing.

3.3.2  Texture Memory

Texture memory is implemented on the GPU as special-
ized RAM that is designed for fast reads of texture data.
This memory is cached in a texture cache, which makes a
texture fetch very fast on a cache hit and costs one memory
read from the device memory on a miss. The texture cache
is optimized for 2D spatial locality, so the best performance
can be achieved if threads in a warp read 2D texture ad-
dresses that are close together. Also, texture memory has a
constant latency for streaming fetches.



Reading texture memory has four benefits over issuing
reads to global or constant memory:

1. When applications exhibit 2D spatial locality, they suf-
fer from a performance bottleneck introduced by in-
creased global or constant memory accesses. In such
cases, higher bandwidth can be achieved using texture
memory fetches.

2. Address calculations are performed using dedicated
hardware units.

3. Packed data may be broadcast to separate variables in
a single operation.

4. Texture-memory based instructions provide an easy
conversion of 8-bit and 16-bit integers to 32-bit
floating-point values.

3.3.3 Page-Locked Host Memory

When applications use pageable memory to carry out data
transfers between a host and a device, allocation of a block of
page-locked memory is necessary. The allocation is followed
by a host copy from pageable memory to a page-locked block,
the data transfer, and then deallocation of the page-locked
memory after the transfer. The overhead on the host for this
process can be reduced when page-locked memory is directly
used.

Using Page-locked host memory has three benefits:

1. Data transfers between page-locked memory and de-
vice memory can be performed concurrently with ker-
nel execution.

2. Page-locked memory can be mapped into the address
space of the device, which can avoid frequent data
transfers between the host and the device.

3. Bandwidth between page-locked memory and device
memory is higher on systems with a front-side bus.

3.4 Specialized Intrinsic Function

3.4.1 Warp Shuffle Functions

Warp shuffle functions exchange a variable between
threads within a warp without the use of shared memory. All
active threads simultaneously perform exchanges to transfer
4 bytes per thread per function call. The SHFL instruction
was introduced in the CUDA programming model to imple-
ment warp shuffle.

3.4.2 Mathematical Intrinsic Functions

Compared to standard mathematical functions, intrinsic
functions trade accuracy for execution speed. They exe-
cute faster since they are mapped to fewer native instruc-
tions. Intrinsic functions may also cause some differences
when handling special cases such as half precision compu-
tations, divide-by-zero operations and rounding operations
for transcendental functions. Therefore, standard mathe-
matical functions are often selectively replaced by intrinsic
functions in order to achieve better performance, and at the
same time, generate acceptable results.
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Application

Dwarf
omy

Taxon-

Domain

Connected Compo-
nent Labeling

Unstructured Grid

Object Detection

Dense Linear

Level Set Segmen- | Structured Grid Image Segmenta-
tation tion
Spectral Clustering | Spectral Method, Clustering

Mean-shift Object

N-Body Method

Computer Vision

Tracking
Periodic Greens | Dynamic program- | Electromagnetics
Function ming

Infinite Impulse Re-
sponse Filter

Branch and Bound

Signal Processing

Local Kernel Den-

Dense Linear,

Feature Extraction

sity Ratio
Unstructured Grid

Finite-difference
Time-domain

Dynamic program-
ming

Electromagentics

Table 3: NUPAR applications with corresponding
dwarf taxonomy and computation domain.

3.4.3 Atomic Functions

An atomic function performs a read-modify-write atomic
operation on a 32-bit or 64-bit word. An atomic operation is
guaranteed to be performed without interference from other
threads. In other words, this address can be accessed exclu-
sively by one thread until the operation is complete.

4. THE NUPAR BENCHMARK SUITE

The Berkeley dwarves offer benchmark application guide-
lines that have been used as a guiding set of principles for
parallel computing benchmarks [4]. However, with the ad-
vent of GPU computing, a number of computational barri-
ers have been overcome, enabling researchers to push the
limits of applications that were previously inhibited by com-
puting capabilities or resources. In order to stress these
new parallel architecture capabilities, NUPAR presents eight
sophisticated applications implemented using CUDA and
OpenCL. Each application represents one or more dwarves.
Table 3 lists the applications, along with their corresponding
dwarves and general application domains.

4.1 Applications

4.1.1 Connected Component Labeling (CCL)

Connected Component Labeling (CCL) is a well-known la-
beling algorithm that is commonly used for object detection.
The accuracy of the labeling process can greatly impact the
fidelity of the overall object detection task. Typically, CCL
performs two passes over a binary image, analyzing every
pixel in an attempt to connect multiple pixels based on their
position. If the current pixel is not a part of the background,
then its label is determined by comparing the labels of neigh-
boring pixels. The North and West side pixels are considered
first to determine the label of a particular pixel. Once la-
beled, the contiguous pixels with same label are assigned the
same component [36].

Our Accelerated CCL (ACCL) implementation uses two
scanning phases [22]. The first phase scans the image in
parallel in a row-wise fashion to find contiguous pixels in



Application | Programming Framework | Typical Bottleneck in an Unoptimized implementation Optimizations Applied
CCL CUDA Nested loop with dependencies Dynamic Parallelism
LSS CUDA Sequential execution of instances of same kernel Dynamic Parallelism, Hyper-Q
SC CUDA Global Memory Bandwidth Utilization Hyper-Q
1R CUDA Synchronization Stall, Execution Dependency Shuffle Instruction
LoKDR CUDA Sequential execution of data-independent kernels Dynamic Parallelism, Hyper-Q, Local Memory
MSOT OpenCL Global Memory Bandwidth Local Memory, -cl-mad-enable
PGF OpenCL Intensive Floating Point Operations Math Intrinsics, Vector Types
FDTD OpenCL Intensive global memory accesses Local Memory, Texture Memory

Table 4: Characterization of NUPAR applications and potential areas for optimization.

the same row that can be assigned the same label. It also
creates an intermediate matrix to store the labels of each
component. The second phase merges the components pre-
viously found and updates the respective labels using child
threads(dynamic parallelism).

4.1.2 Level Set Segmentation (LSS)

Level set is an algorithmic approach commonly used in
image segmentation. The goal is to partition an image into
regions of interest. Using LSS, a curve is implicitly described
by the level set of a multivariate surface. One significant
advantage of using the level set method is that the curve
can easily handle topological changes, including merges and
breaks [25].

We employ the version of level set algorithm described
by Shi et al.as the basis of our CUDA GPU implementa-
tion [29]. Points in the discretized grid are characterized in
four ways: i) in L;, (immediately inside the curve), ii) in
Loyt (immediately outside the curve), iii) in the interior of
the curve but not in L;,, and iv) in the exterior of the curve
but not in Ley:. Evolving the contour is simply a matter
of switching points from L, to Loyu: or vice versa. Dynamic
parallelism allows us to switch points using child kernel calls,
thus eliminating the need to communicate with the CPU dur-
ing the image segmentation process. Additionally, multiple
instances of the parent kernel can be run concurrently by
utilizing NVIDIA’s Hyper-(), which enables more than one
image to be processed at the same time.

4.1.3 Spectral Clustering (SC)

Among the many choices to perform cluster analysis, spec-
tral clustering is commonly used for non-convex structures.
One key advantage of spectral clustering is its ability to
cluster data that is connected, but potentially sparse and
unclustered within convex boundaries [20].

The spectral clustering algorithm included in NUPAR is a
matrix-based implementation which is well-suited for GPUs.
We define 4 steps present in the algorithm based on the Ng-
Jordan-Weiss approach [20]: (1) form the affinity matrix,
(2) apply Laplacian normalization, (3) run an eigen solver
and (4) cluster using k-means. Using multiple kernels, we
can leverage the latest features offered by the CUDA frame-
work such as: Hyper-Q and pinned memory. Our parallel
approach uses a tile-based approach and Hyper-@Q allows ex-
ecution of concurrent kernels over different tiles. Dynamic
parallelism is used to compute the nearest cluster during the
k-means step. Pinned memory leverages the higher band-
width between host memory and the device memory.

4.1.4 Mean-shift Object Tracking (MSOT)

Mean-shift is an algorithm for tracking non-rigid objects
in a sequence of images. The mean-shift algorithm uses the

257

color histogram of the target object in the current frame,
and iteratively searches the neighborhood in the next frame
to find the location whose color histogram is closest to the
target. The Bhattacharyya coefficient is used to measure
the distance between two histograms [9].

We implement the Mean-shift algorithm using multiple
levels of granularity with OpenCL. At a coarse-grained level,
the program tracks multiple objects at the same time. The
program also calculates the histogram for the neighbors of
each object to reduce the total number of iterations and
therefore the execution time. Working at a fine-grained level,
the histogram calculation is distributed to the work-items
in a work-group. Each work-item calculates a portion of
the histogram — we use a reduction method to compute the
overall histogram. We also use a lookup table to reduce the
memory size and shared memory usage. With our parallel
approach, we can modify the work-group/work-item ratio in
order to stress a specific GPU architecture.

4.1.5 Periodic Green’s Function (PGF)

The Periodic Green’s Function is a discrete implementa-
tion of the continuous function used in the integral equation
(IE) to solve computational electromagnetics (CEM) prob-
lems by application of the Method of Moments (MoM) [30].
In its standard representation, the PGF involves a slowly
converging series of free space Green’s Function. When ap-
plying a windowed summation method, we are able to com-
pute the PGF several million times for different points in
the lattice [6]. This accelerated function evaluation fits into
a larger array integral equation designed to parallelize in-
finitely periodic electromagnetic problems. When the prob-
lem of interest involves infinite periodic structures, the PGF
provides a fast and efficient method to solve CEM problems
with a windowed summation method, requiring the evalua-
tion of the PGF on the order of several million times. Our
OpenCL GPU code achieves the best performance when the
number of PGF evaluations is large, as we assign each work-
item a unique call to the PGF.

When considering alternative data types, we chose dou-
ble2 for our complex output type to improve the global
memory store efficiency and improve memory transfers from
the device to the host. In an effort to reduce the computa-
tional cost of the large number of transcendental functions
and multiply-add calculations, we replace these functions
with their equivalent math intrinsic calls and use the “cl-
finite-math-only” compiler flag during clBuildProgram.

4.1.6  Infinite Impulse Response Filter (IIR)

Finite Impulse Response (FIR) and Infinite Impulse Re-
sponse (IIR) are used in signal processing applications such
as speech and audio processing. IIR is preferred to FIR
if some phase distortion is either tolerable or unimportant.



Application | Baseline Implementation Application Input Baseline GPU
CCL CUDA with less workload on child | 5 Images (512 x 512) NVIDIA K40
kernels
LSS CUDA with fewer threads per child | Over 256 (512 x 512) Images NVIDIA K40
kernel
SC CUDA with serial kernel call(non- | Tile Basis of 900 elements (Only NVIDIA K40
Hyper-Q) first two kernels)
IIR CUDA with Shared Memory Use | Input 1024 (floats) 128 Channels, NVIDIA K40
(without SHFL instruction) 256 parallel biquad filters/channel
LoKDR CUDA with serial kernel calls (non- | Input data set with 7129 features NVIDIA K40
Hyper-Q) and no nested parallelism | and 99 samples
MSOT OpenCL without shared memory | 10 objects tracked over 120 frames | AMD Radeon 7970
and cl-mad-enable
PGF OpenCL  without cl-finite-math- | Number of PGF Evaluations = | AMD Radeon 7970
only and fma, hypot 3 million, FFT Sample Rates =
(120,120,120)
FDTD Naive OpenCL without use of local | (nx, ny, nz) = (240, 80, 80), (dx, dy, | AMD Radeon 7970
and Texture memory dz) = (0.005, 0.005, 0.005)

Table 5: Baseline configuration for each NUPAR application and associated input datasets.

Due to its nature, IIR performs a smaller number of calcu-
lations per time step than FIR.

Our parallel implementation of IIR [26] starts by decom-
posing the transfer function into parallel second-order IIR
sub-filters. Each sub-filter reduces the waiting period for
the next output calculation. A multi-channel high order IIR
should improve IIR filtering efficiency on a GPU [28].

We have implemented a parallel IIR using the CUDA
framework, leveraging the shuffle (SHFL) instruction on the
Kepler architecture to achieve a fast summation to produce
the output signal. Each channel’s coefficients are cached in
constant memory along with the input signal. Filtering mul-
tiple channels works in a block-wise fashion (i.e., the number
of channels is equal to the number of blocks launched on the
GPU). Our grid configuration attempts to stress GPU occu-
pancy by increasing the number of channels.

4.1.7 Local Kernel Density Ratio (LoKDR) for Fea-
ture Selection

Selecting the best set of features is an important step
in all machine learning tasks. The focus is to determine
and choose features relevant for classification and regression
of the given data. Our next application presents a non-
parametric evaluation criterion for filter-based feature selec-
tion to enhance outlier detection [5]. The method identifies
the subset of features that represents the inherent character-
istics of the normal dataset, while also identifying features
to filter out outliers.

Our CUDA application utilizes GPUs for computation of
the K-nearest neighbors in a dataset. These kernels have to
be launched for each feature and each set of features to deter-
mine outliers. Data parallelism offered by the computation
is nicely exploited using the GPU. Computation includes
kernels to compute the distance between pairs of points in
the data set and includes sorting of the k-nearest neighbors.
We utilize dynamic parallelism and develop a pipelined ap-
proach for outlier detection for each feature. Hyper-(Q is used
to facilitate concurrent execution of these pipelined kernels.
Computations launched for different features are also exe-
cuted concurrently.
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4.1.8 Finite-Difference Time-Domain (FDTD)

The Finite-Difference Time-Domain (FDTD) method is
a widely-used computational method for solving Maxwell’s
equations in many electromagnetics problems. FDTD is a
grid-based marching-in-time algorithm that calculates the
electric and magnetic fields over every cell in a computa-
tional domain at each time step [18].

When using FDTD, the entire computational domain
needs to be divided into a number of Yee cells whose size
must be sufficiently small to resolve smaller electromagnetic
wavelength and smaller geometrical features in the model. A
medium-sized computational domain can often lead to days
or even weeks of solution time. Thus, we employ GPUs as a
highly multi-threaded data-parallel processor to accelerate
FDTD simulation. In our implementation of FDTD, up to
35 kernels are launched for the computation based on the
size of the input.

For each iteration, we advance the time by At, which is
a configurable unit for the benchmark. FDTD computes
the H(magnetic) and F(electric) fields for each cell. Then,
the computation advances time by At and begins the next
iteration. A leap-frog integration scheme is used to compute
the H and E values of each cell. The value at time ¢ is
dependent on the previous value at time step t—At, and thus
sequential iterations cannot be run in parallel. However, the
computation of each cell at a specified time ¢ is independent
of other cells, and so can be run in parallel.

S. EVALUATION METHODOLOGY

Next, we describe the platforms used for evaluating the
performance of the NUPAR applications, implemented in
either CUDA or OpenCL. The baseline used for evaluating
each application is also described in this section.

5.1 Evaluation Platforms

The NVIDIA K40 and the AMD Radeon HD 7970 GPUs
are used to evaluate the NUPAR applications developed us-
ing CUDA and OpenCL, respectively. These platforms are
comparable in terms of clock rate, number of cores, peak
bandwidth and FLOPS. Table 6 compares the specifications



NVIDIA AMD
Device Name K40 HD7970
GPU Architecture Kepler Southern Islands
Peak Single Precision FLOPS (Gflops) 4291 3789
Peak Bandwidth (GB/s) 288 264
Streaming Cores 2880 2048
Clock Rate (MHz) 876 925
Global Memory (GB) 12 3
L2 Cache (KB) 1536 768
Constant Memory (KB) 64 128
Shared Memory Per Block (KB) 48 64
Warp/Wavefront Size 32 64

Table 6: Architectural specifications of GPU plat-
forms used for evaluation.

of these two GPU platforms. The CUDA workloads are
profiled using NVIDIA’s Visual Profiler. AMD’s CodeXL
profiler is used for profiling OpenCL workloads. The appli-
cations supporting CUDA were developed for the CUDA-6
version of the programming framework. The OpenCL appli-
cations were developed for both OpenCL 1.2 and OpenCL
2.0 versions. The OpenCL 2.0 applications utilize modern
features described in Section 3. Due to the unavailability
of platforms supporting OpenCL 2.0 during the time of de-
velopment of this paper, the evaluation of applications on
OpenCL 2.0 has not been performed yet. The current evalua-
tions of the OpenCL applications are done with the OpenCL
1.2 version of the programming framework.

5.2 Baselines

The NUPAR suite focuses on exercising new GPU archi-
tectural and programming features. Each application in the
NUPAR benchmark suite has been optimized using one or
more features to tackle an inherent bottleneck present in the
unoptimized implementation. To evaluate the NUPAR work-
loads, each application is compared with an unoptimized im-
plementation as its baseline. The SC workload uses Hyper-Q
as an optimization feature. This workload is compared with
the same CUDA implementation with serial kernel calls in-
stead of using Hyper-Q. The CCL and LSS workloads are
also compared with a CUDA version that places less work-
load on child kernels and uses fewer threads per child kernel,
respectively. The baseline for MSOT and FDTD use their
original OpenCL implementations, their optimized runs use
shared or texture memory and the cl-mad-enable optimiza-
tion. Table 5 summarizes the baselines used for evaluating
each application.

6. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the NU-
PAR applications on the platforms described in Section 5.
We also investigate the performance benefits obtained when
applying the optimizations described in Section 3.

6.1 Computational Characteristics of NU-
PAR Applications

Each of the NUPAR applications stresses different archi-
tectural features on the GPU or in the updated program-
ming models. We characterize the behavior of the applica-
tions based on seven factors: 1) Global memory bandwidth
utilization, ) Occupancy, iii) Register Utilization, i) Lo-
cal/Shared memory usage, v) Control Flow/Divergence, vi)
Cache utilization, and vii) ALU usage.

CCL LSS SC

MSOT PGF IR

LoKDR FDTD

. Occupancy

. Control Flow/Divergence

ALU Utilization

. Register Utilization

. Local/Shared Memory Utilization

. Cache Utilization

1
2
3.
4.
5
6.
7

. Global Memory Bandwidth

Figure 1: Kiviat-charts describing computational
characteristics of NUPAR applications.

Figure 1 presents a Kiviat-chart to clearly characterize
the different architectural features exercised by each NU-
PAR application. Each axis of the Kiviat diagram denotes
a different feature. The values for each architectural feature
are obtained using the profiling tools described in Section 5.
The values show the percent utilization for each architectural
feature. The applications from the NUPAR suite exhibit di-
versity in their characteristics, as seen in Figure 1. For ex-
ample, the CCL, SC, MSOT, and LoKDR applications show
heavy utilization of the global memory bandwidth, whereas
PGF and FDTD utilize the cache on the GPU. Local/shared
memory performance can be evaluated using the LSS, IIR
and LoKDR applications.

Speedup Obtained Over Baseline

CCL LSS SC

Figure 2: Normalized speedup of NUPAR applica-
tions over their corresponding baseline.

o
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6.2 Speedup Analysis

We evaluate the speedup obtained by the NUPAR applica-
tions after applying the optimizations required to sensitize
the new architectural features that were described in Sec-
tion 3. The baseline for each application is described in
Table 5.

The speedup obtained by the benchmark applications is
shown in Figure 2. The average speedup observed for all
applications is 5.1x. The FDTD sees the greatest speedup
by using local memory and texture memory available on the
GPU. Applications such as MSOT and PGF benefit by us-
ing optimized multiply-add instructions for integer and float-
ing point operations. Dynamic parallelism is used in CCL to
cache the data for sub-kernels on the device without trans-
ferring intermediate results back to the host and then back
to the device. CCL achieves an overall speedup of 9.7x by
launching multiple image processing kernels simultaneously.
LoKDR also sees a 4.3x speedup using NVIDIA’s Hyper-Q),
which allows for concurrent execution of data-independent
kernels. Similarly, a speedup of 5.9x is seen for SC and
speedup of 2.3x is seen for LSS when using Hyper-Q and
dynamic parallelism. IIR utilizes the SHF'L intrinsic for per-
forming inter-thread memory operations and sees a speedup
of 2.2x.

Figure 3 shows the pre-optimization (baseline) and post-
optimization resource utilization mix of the NUPAR appli-
cations. LSS and LoKDR experience an increase of 19% in
occupancy, improvements in cache utilization by 7%, and a
rise in ALU utilization by 9% on average after applying the
optimizations. For SC, the occupancy increases from 74%
to 92% by using the Hyper-Q feature. As observed, an in-
crease in occupancy is tied to a more efficient use of the cores
through concurrent kernel execution using Hyper-Q. For the
IIR benchmark, the use of the SHFL instruction increases
the number of blocks that can be allocated on each stream
processor. This leads to an 18% improvement in occupancy,
and an increase in cache utilization from 21% to 26%, and
an increase in ALU utilization from 22% to 28% for the IIR
application.

6.3 Performance of Nested Parallelism

Nested parallelism is described in Section 3 and is referred
to as Dynamic Parallelism by the CUDA and OpenCL pro-
gramming frameworks. Many classes of algorithms (e.g.,
CCL and LoKDR) can potentially benefit from Dynamic
Parallelism. CCL requires thread-level parallelism to reduce
the overhead of updating labels of multiple components that
belong to the same object during its detection of connected
components. Similarly, LoKDR utilizes dynamic parallelism
to detect outliers by calculating the distance between the
nearest neighbors. The overhead of launching kernels to per-
form the distance calculation is reduced through dynamic
parallelism.

We evaluate the speedup obtained using nested paral-
lelism for the CCL, LSS and LoKDR applications. Fig-
ure 4 shows the speedup obtained for these applications
when varying the number of threads per child kernel. We
observe that we achieve more speedup as we increase the
number of threads per child kernel. This can be attributed
to the increase in overall occupancy of the GPU. Increas-
ing the number of threads for the child kernel reduces the
effective number of child kernel launches. This avoids the
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Figure 3: Resource utilization of the NUPAR ap-
plications, (a) Pre-Optimization and (b) Post-
Optimization.

overhead of launching multiple child kernels on the GPU.
An increased number of threads per child kernel results in
higher ALU utilization for these three applications, as illus-
trated in Figure 3b. The peak speedup reported by CCL,
LSS and LoKDR is 13.9X, 5.8X and 6.2X, respectively. The
CCL, LSS and LoKDR applications can be used to evalu-
ate how the number of threads per child kernel impacts the
performance when using dynamic parallelism.

The communication between the threads of the parent ker-
nel and child kernel can be carried out only using global
memory for dynamic parallelism. Applications such as CCL,
LSS and LoKDR impose a heavy communication penalty
due to communication between the parent and child threads.
Figure 5 shows the throughput obtained for accessing data
between parent and child kernels while varying the num-
ber of threads per child kernel. Figure 5 shows that our
CUDA implementation for CCL, LSS and LoKDR achieves
higher global memory throughput as we increase the work
on the child kernel. The average global memory through-
put achieved by CCL, LSS and LoKDR is 14.6 Gb/s, 16.1
Gb/s and 15.3 Gb/s, respectively. The number of coalesced
global memory accesses increases as we increase the number
of threads for a kernel. The efficient utilization of the global
memory load/store unit results in a clear improvement in
global memory throughput. These benchmarks can be used
to judge the global memory throughput of the GPU.

6.4 Utilizing Concurrent Kernel Execution
Concurrent kernel execution is an important feature sup-
ported by modern GPUs, as described in Section 3. NVIDIA
GPUs utilize the new Hyper-Q mechanism and AMD GPUs
use the ACE (Asynchronous Compute Engine) units to man-
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Figure 4: Speedup obtained using nested parallelism
for CCL, LSS and LoKDR. Speedup is reported
while varying the number of threads per child ker-
nel.
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for parent-child kernel communication for CCL, LSS
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Q based implementation and (b) Hyper-Q based im-
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age concurrent kernel execution. We explore the perfor-
mance of this class of features using three different appli-
cations from the NUPAR suite: SC, LSS, LoKDR.

The occupancy improvement of any implementation that
uses multiple streams depends on the resources utilized by
each stream. As seen in Figures 6a and 6b, LSS and LoKDR
do not find any improvement in occupancy. This is because
the kernels executed in each stream have already saturated
the available resources. SC exploits a new level of paral-
lelism exposed by Hyper-Q, since each stream occupies less
than 70% of the GPU when executed sequentially.

Concurrent execution of kernels on the GPU using Hyper-
Q also results in improved L2 cache utilization. We can
see in Figure 6 that applications such as LoKDR and LSS
see an improvement of 32% and 20% in cache utilization,
respectively. The overall cache utilization of all the kernels
launched by the application is recorded using the profiler
tools. Hyper-Q facilitates concurrent execution of kernels
which operate on same input data (e.g., LoKDR), which
results in an overall improvement in cache utilization.

We have also studied the global memory bandwidth uti-
lization for all three applications. Figure 6 shows the pos-
itive impact of Hyper-Q on the memory efficiency. Hyper-
Q helps concurrent kernels keep the load/store units on the
GPU busy. This improves global memory bandwidth utiliza-
tion of the GPU. The LoKDR and LSS applications experi-
ence an increase greater than 15% in terms of global memory
bandwidth utilization. The SC application already has high
global memory bandwidth utilization and does not show a
significant improvement in bandwidth utilization when us-
ing Hyper-Q. These three applications can also be used to
test queuing mechanisms on the GPU by using concurrent
execution of kernels.

6.5 Specialized Intrinsics and Instructions

Programming frameworks such as CUDA and OpenCL
from time to time introduce specialized intrinsic functions
and compiler optimizations for improving performance of
complex computations. Intrinsic functions provide the user
with the ability to perform complex math calculations ef-
ficiently, including execution of transcendental operations,
square-root operations and atomic operations. Different
compiler optimizations can leverage new GPU hardware fea-
tures and carry out operations using special instructions.

For cases where a potential reduction in accuracy is toler-
able, fast math operation intrinsics can be turned on during
GPU code generation. Use of these intrinsics shrinks the
size of the executable binaries by reducing the number of in-
structions executed on the GPU. The NUPAR applications,
such as MSOT and PGF, use the fast-math intrinsics for
compile-time optimizations.

MSOT uses the -cl-mad-enable optimization option,
which leverages special instructions for multiply-add oper-
ations. The impact on a range of performance factors is
shown in Table 7. Using the -cl-mad-enable switch re-
duces vector register usage per work-item by 87%. This
results in an increase in the number of active waves, which
enhances the kernel occupancy by 60%. The improvement
in such factors is responsible for the 1.9x speedup obtained
by MSOT, as seen in Figure 2. Besides the computational
speedup, the occupancy ratio also affects the kernel execu-
tion time and can be improved by reducing the amount of
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shared memory usage. NVIDIA’s Kepler architecture pro-
vides new SHFL (shuffle) instructions as an efficient solu-
tion for fast intra-warp communications. The use of the
SHFL reduces shared memory usage. Though inter-warp
communication still requires some shared memory, the total
amount of shared memory used could ideally be lowered by
32 times [1]. As a result, the number of instructions and
barriers for SHFL are less than the number of instructions
using shared memory.

The IIR consists of multiple parallel biquad filters. The
output signal is produced by summing up the independent
biquads results for each time step. The Parallel reduction
used in [1R is an ideal fit for the shuffle instructions. It is re-
quired for summation among the threads where each thread
functions as a biquad filter. We observe a 2.1x speedup in
kernel execution time when launching 128 channels for a
parallel IIR program. We use the nwvvp profiler to extract
the related performance counters for the execution of IIR.
As shown in the Figure 7 (which includes the selected per-
formance counters), the SHFL instruction increases the In-
structions Per Cycle (IPC) by 35%. The number of synchro-
nizations is reduced by 38% and the shared memory usage
(load/store) drops by 30% on an average.

Performance Counters Un-Optimized | Optimized
Vector Registers per Work-item 167 22
Number of waves limited by vector registers 40 4
Number of active waves 4 28
Occupancy 10.00% 70.00%

Table 7: Comparison of performance counters for
un-optimized and optimized versions of MSOT.

Floating point performance is an important metric to eval-
uate overall GPU performance. Double precision optimiza-
tions are included in the vendor-specific implementations of
many FFT and linear algebra routines. We include the pe-
riodic Green’s function which requires millions of floating
point calculations per iteration for evaluating the double
precision performance of the GPU.

We use the fused-multiply-add (FMA) optimization to
evaluate floating point performance of the GPU using the
PGF application. Figure 8 shows the execution time of the
PGF application when varying the number of PGF evalu-
ations. The analysis is done for Single Precision, Double
Precision and Double2 variables, with and without FMA
support. As observed in Figure 8, the computations using
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PGF Execution with Float-Multiply-Add(FMA)
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Figure 8: Kernel time comparison of PGF for 2 to
8 million PGF evaluations using different precision
types to represent the complex output of the PGF.

single precision variables and using FMA yield the best ex-
ecution performance. Double precision operations use two
single precision registers and operations are performed by
specialized double precision units on modern GPUs. An av-
erage slowdown of 9.3% is observed due to the use of double
precision over single precision. FMA optimizations force the
hardware to utilize instructions for the specialized double
precision units on the GPU. The double precision perfor-
mance with FMA shows an average speedup of 3.9% over
the regular double precision execution.

We also tested the performance of the PGF with the dou-
ble2 complex output data type. As seen in Figure 8, the
double2 evaluation shows a minor loss in performance as
compared to the real and imaginary double kernel code. The
differences between the two versions are exaggerated due to
the scaling of the Y-axis in Figure 8.

7. DISCUSSION

NUPAR covers eight applications across a wide spectrum
of domains. The features described in Section 3, such as
Nested Parallelism, Concurrent Kernel Execution, Shared
memory, and Texture memory are available on both the
OpenCL and CUDA frameworks. In NUPAR, we use fea-
tures implemented in CUDA 6. The same features are
also available on OpenCL 2.0, and can be implemented
when hardware supporting OpenCL 2.0 is available [17]. Ta~
ble 8 demonstrates the features available in OpenCL 2.0 and
CUDA 6. Nested Parallelism is referred to as Dynamic Par-
allelism in both CUDA and OpenCL terminologies. Concur-
rent Kernel Execution is referred to as Hyper-@ in CUDA.
The OpenCL 2.0 specification also incorporates Shared Vir-
tual Memory and Pipe-based communication channels as ad-
vanced features. Shared Virtual Memory is known as unified
virtual addressing in CUDA terminology and was introduced
in CUDA-4. The advanced constructs such as SHFL are only
supported on CUDA architectures developed by NVIDIA.

The new architectures developed using the HSA (Het-
erogeneous System Architecture) standard will provide ad-
vanced features such the shuffle intrinsic [27]. HSA also sup-
ports other new features, such as the Architected Query Lan-
guage (AQL), a simple job queuing mechanism which han-
dles the memory transfers and kernel execution. Another
important feature for Inter-Kernel Communication known
as Pipes is supported on HSA and OpenCL 2.0, but is not



CUDA 6 | OpenCL
2.0
Nested Parallelism v v
UVA v v
Concurrent Kernel Execution | v/ -
Inter-Kernel Communication | - v
Atomics v v

Table 8: Comparison of Programming Features Be-
tween CUDA 6 and OpenCL 2.0

yet part of the CUDA standard. The present HSA standards
for GPUs and accelerators are supported by many vendors
such as AMD, ARM, Qualcomm, Samsung, and Imagina-
tion. Many of the features introduced in HSA and OpenCL
2.0 will be supported on hardware provided by all of these
vendors. The NUPAR suite can be used for evaluating the
performance of this new class of GPUs.

8. RELATED WORK

Several benchmark suites have been developed in the past
for evaluating the performance and architectural character-
istics of GPU systems. Rodinia [7] and Parboil [31] bench-
mark suites target GPUs and multi-core CPUs using CUDA.
However, their scope is limited to traditional GPU architec-
tures and do not exercise the newer hardware features of
modern GPUs and other accelerators. The NUPAR suite
fulfills this requirement of GPU benchmarks by targeting
modern heterogeneous systems. SHOC is a scalable bench-
mark suite implemented in CUDA and OpenCL to measure
the performance and stability of both NVIDIA and AMD
platforms [10]. Valar also targets both AMD and NVIDIA
devices, while focusing on evaluating the interaction between
host and device in heterogeneous systems [16]. We devel-
oped the NUPAR suite for CUDA and OpenCL to provide
the user with programming flexibility. Volkov and Demmel
have benchmarked linear algebra applications using CUDA
on NVIDIA GPUs [34]. NUPAR, however, covers a larger
spectrum of applications. CUDA-NP proposes a compiler-
level solution to leverage nested parallelism for GPGPU ap-
plications [35]. Y. Liang et al. demonstrate a performance
improvement over Hyper-Q using their technique which al-
lows spatial and temporal multitasking on GPUs [8]. But
they do not provide researchers with a set of applications to
evaluate these features on the GPUs.

Another common way to benchmark GPUs includes mea-
surement of frames per second (FPS) achieved by computa-
tionally demanding games such as Crysis [11]. Also, pro-
prietary GPU benchmark softwares such as 3DMark are
designed to determine the performance of GPUs using Di-
rectX [2]. Other parallel benchmark suites for CPUs that
have been developed include MediaBench [14] for multime-
dia applications, BioParallel [12] for biomedical applications,
and MineBench [19] for data mining applications. These
benchmark suites target a specific application domain and
do not provide a diverse range of workloads. Lonestar is an
attempt to extract amorphous data-parallelism from graph-
based real world applications [13]. NUPAR is distinct from
these works as it primarily targets modern GPUs using
OpenCL and CUDA and provides a set of diverse applica-
tions to highlight changes in the evolving GPU architectures.
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9. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the NUPAR bench-
mark suite designed to provide a rich set of parallel pro-
grams to study the performance of emerging architectural
features and programming constructs targeting modern het-
erogeneous platforms. The applications help the user judge
the performance of the new class of GPUs and accelerators
with features such as nested parallelism, concurrent kernel
execution and advanced computational and memory instruc-
tions. We provide eight publicly available implementations
of real-world applications belonging to different scientific do-
mains. The applications are developed using both CUDA
and OpenCL programming frameworks. The paper charac-
terizes the different applications according to the architec-
tural features stressed by such applications. We also high-
light the performance obtained by the use of different archi-
tectural optimizations as described in the paper.

We plan to support the NUPAR applications on different
OpenCL-compatible platforms including FPGA platforms
and embedded SoCs from vendors such as Qualcomm and
NVIDIA. We would like to extend the NUPAR suite to in-
clude applications developed for graphics and for interopera-
ble compute-graphics. We are planning to add additional ap-
plications which utilize the unified virtual memory model in-
troduced in CUDA 6 and OpenCL 2.0. The benchmark suite
is available for download https://code.google.com/p/nupar-
bench/.
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