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ABSTRACT
In performance engineering, metrics are often used to track
the progress over time. Concerning the potential bias of us-
ing a single metric, performance engineers tend to use mul-
tiple metrics for reasoning. However, this approach has its
own challenges. In this work we study one of the challenges
in the context of analyzing trends in server energy propor-
tionality. We examine a wide range of metrics for measur-
ing energy proportionality, trying to determine which met-
rics are essential and which are redundant. We do this by
comparing the trend curves of the metrics for the published
results of the SPECpower ssj2008 benchmark. While the
context is specific, the proposed analysis method is quite
general. We hope that this method would help us do per-
formance engineering more effectively.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—measurement techniques, performance attributes;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Design, Measurement, Performance, Standardization

Keywords
Metrics; Energy proportionality; SPECpower

1. INTRODUCTION
In performance engineering, metrics are often used to track

the progress over time. Concerning the potential bias of
using a single metric, performance engineers tend to use
multiple metrics for reasoning. However, this approach has
its own challenges. For example, what if two metrics give
the opposite indications? How does one evaluate the added
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value of each metric? In this work we study the latter prob-
lem in the context of analyzing the progress in server-level
energy proportionality.

In an energy-proportional server, the power consumption
of the server is proportional to its load. When the server
is idle, the server would ideally consume no power. As the
load increases, the server consumes gradually more power.
In 2007, Barroso and Hölzle made a case why this is impor-
tant [1]. Specifically, most servers in a data center stay at
low utilization levels most of the time in order to accom-
modate occasional load spikes. Unfortunately, a traditional
server has low energy efficiency at low utilization levels. An
energy-proportional server, in contrast, has the same peak
energy efficiency across all utilization levels. While this new
server design does not address the issue of low utilization, it
alleviates its consequence. As the annual energy cost for a
server surpasses its purchase cost [2], more and more efforts
have been made to improve server-level energy proportion-
ality (e.g., [11,14]).

Seven years have passed, and there have been some studies
analyzing trends in server energy proportionality (e.g., [6,7,
13, 14]). Many of these studies use the SPECpower ssj2008
benchmark results published by the Standard Performance
Evaluation Corporation (SPEC). However, they use differ-
ent metrics because there is no consensus on how to measure
energy proportionality. In this work we examine these met-
rics as well as several other new metrics, trying to determine
which metrics are similar in their evaluation of server energy
proportionality. To the best of our knowledge, this has never
been done before.

In this work metrics can be similar empirically or analyt-
ically. We determine whether two metrics are empirically
similar by calculating the correlation between two time se-
ries, each of which is derived from one metric applied to the
common historical data archive. The higher the correlation,
the more similar the metrics empirically. We say that two
metrics are analytically similar if we can establish a mathe-
matical equation between them. Empirical similarity gives
us a hint on the possible analytical similarity. A new metric
has no added value if it is similar to an existing metric.

Taking the aforementioned approach with the data be-
ing all 459 SPECpower ssj2008 benchmark results published
by SPEC until June 2014, we have found that the metric
EP [7] can be considered as a good metric for measuring
server energy proportionality. We have also established a
mathematical relationship between EP and the overall score
of the SPECpower ssj2008 benchmark set forth by SPEC.
The relationship allows us to understand how much improve-
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ment in energy efficiency comes from improvement in energy
proportionality. The paper also argues for the importance
of another aspect of energy proportionality, linearity. This
aspect is often overlooked but it impacts the potential for
achieving the greatest energy proportionality at cluster level.
Since none of existing linearity metrics provides this kind of
insight, the paper calls for the development of a good lin-
earity metric in the context of energy proportionality.

The rest of the paper is organized as follows. Section 2
provides information on how trends in server energy pro-
portionality were studied in the past. The method for ana-
lyzing the empirical similarity of two metrics is detailed in
Section 3. Section 4 shows how the method can be used to
reach the conclusion that EP is a good metric. Sections 5
highlights the many ways to measure the linearity aspect of
server energy proportionality, and Section 6 discusses why
they all fail to provide important insight relating to cluster-
level energy management. Section 7 concludes the paper
with some future research directions.

2. RELATED WORK
This section describes how trends in server energy pro-

portionality were studied in the past. Two key elements of
these studies are the data and methods used for analysis.
We discuss each element in details.

2.1 The SPECpower_ssj2008 Benchmark
To study trends in server energy proportionality, many

past studies [6,7,13,14] use the SPECpower ssj2008 bench-
mark results published by the Standard Performance Eval-
uation Corporation (SPEC). This benchmark takes the ap-
proach of graduated workload [3], thus allowing energy pro-
portionality to be measured. Specifically, the benchmark
measures the performance and power of eleven load levels
from zero to 100% of a given server’s full capacity to process
business transactions with a server side Java application.

The results published by SPEC are arguably the best data
available for analyzing trends in server energy proportion-
ality. Many other power benchmarks [5] have very limited
data, making it impossible to do any meaningful trend anal-
ysis. For example, GBench implements graduated workload
but does not have much data [10]. The Green500 [4] has
more data, but its workload does not have any sense of
graduated workload, making it impossible to measure en-
ergy proportionality. In addition, there are serious concerns
about its measurement bias [8]. In contrast, the SPEC-
published results may have less measurement bias. In order
for a result to be published by SPEC, a set of rigorous run
rules must be complied with, including the proper setup for
taking the measurements.

SPEC maintains an archive 1 of all the results it has pub-
lished since December 2007. The archive currently contains
over 450 results from major server vendors such as Acer,
Dell, Fujitsu, HP, Huawei, and IBM. As the previous stud-
ies, our study also uses these results for trend analysis.

2.2 Measuring Energy Proportionality
Any trend analysis of energy proportionality requires a

measure of energy proportionality. Unfortunately there is
no consensus on what metric should be used. As a result,

1http://www.spec.org/power ssj2008/results/

the previous studies differ mainly in the metric each uses for
quantifying energy proportionality.

Historically, server energy proportionality has been mea-
sured by the difference in power between the 0% load level
and the 100% load level [1]. In this paper we call this metric
DR (Dynamic Range) [14]:

DR =
P (1)− P (0)

P (1)
(1)

where P (`) represents the power consumption (in watts) of
a server at load level `, 0 ≤ ` ≤ 1. DR is between 0 and 1,
with 1 being fully energy-proportional.

Another commonly used metric is called EP (Energy Pro-
portionality) [7]. Like DR, EP is between 0 and 1, with
1 being fully energy-proportional. In contrast to DR, EP
accounts for the power usage in intermediate load levels:

EP = 2−
∫ 1

0
P (`) d`∫ 1

0
PE(`) d`

(2)

where

PE(`) = P (1) · ` (3)

represents the power-consumption behavior of the fully energy-
proportional server, i.e., the EP (also DR) of PE(`) is 1.

Some metrics measure energy disproportionality instead.
For example, the metric IPR (Idle-to-peak Power Ratio) [13],

IPR =
P (0)

P (1)
, (4)

is also between 0 and 1, but the IPR of PE(`) is 0. In fact,
IPR and DR are duals, i.e., IPR + DR = 1.

Some metrics measure nonlinearity because the geometri-
cal interpretation of PE(`) is a line. For example, the metric
LD (Linear Deviation) [14] quantifies the deviation from a
linear function PL(`):

LD =

∫ 1

0
P (`) d`∫ 1

0
PL(`) d`

− 1 (5)

where

PL(`) = P (0) + [P (1)− P (0)]` (6)

represents a particular power-consumption behavior. A server
is called superlinearly energy-proportional if LD > 0 and
sublinearly energy-proportional if LD < 0. Geometrically,
sublinearity occurs when the curve P (`) lies under the line
PL(`). The LD of PE(`) is 0, so is that of PL(`).

Another metric, LDR (Linear Deviation Ratio) [13], mea-
sures the deviation differently:

LDR =
|·|

max
`

(
P (`)

PL(`)
− 1

)
(7)

where
|·|

max is the maximum by absolute-value comparison
so as to retain the sign of the maximum value. Like LD,
LDR distinguishes between superlinearity and sublinearity.
The LDR of PE(`) is 0, so is that of PL(`).

This paper will discuss the similarity of these metrics and
whether new metrics are still needed.

3. THE ANALYSIS METHOD
How can one tell that the insights from two metrics are

the same? This section will present a method that casts
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the problem as computing the similarity of two time series
called trend curves in this paper. This method is in contrast
to visual analysis used in the previous studies.

Define a trend curve as a sequence of n elements sorted
according to some temporal order. Each metric has a cor-
responding trend curve. In this work, the trend curve of a
metric contains n = 459 elements, and each element holds
the metric value for one SPECpower ssj2008 benchmark re-
sult. For example, the EP value for a benchmark result can
be approximated via the trapezoidal rule for integration as

EP ≈ 2−
m−1∑
j=1

(`j − `j−1)

[
Pj−1 + Pj
Pm−1

]
(8)

where the result contains m = 11 data points {(τj , Pj)},
0 ≤ j ≤ m − 1 and τ0 < τ1 < . . . < τm−1, describing the
performance and power behavior of a server. These data
points are viewed as the samples of P (`) where P (`j) =
Pj for `j = τj/τm−1. The value of a metric can then be
calculated based on these samples.

The similarity of two trend curves ~u = (u1, u2, . . . , un)
and ~v = (v1, v2, . . . , vn) can be computed using Pearson’s r:

r(~u,~v) =

∑
i(ui − ū)(vi − v̄)√∑

i(ui − ū)2
√∑

i(vi − v̄)2
(9)

where

ū =
1

n

∑
i

ui and v̄ =
1

n

∑
i

vi. (10)

Pearson’s r measures the strength of the linear relationship
between variables ~u and ~v based on the data {(ui, vi)}. It
ranges from -1 to 1, with -1 (or 1) being a perfect negative
(or positive) linear relationship and 0 no linear relationship.
One nice property of this measure is that the two trend
curves do not have to be on the same scale, thereby allowing
us to study a larger set of metrics.

According to our method, the trend curves of DR and EP
have a similarity (or linear correlation) of 0.91. In other
words, the two curves are similar but not identical. This
justifies the existence of both metrics.

3.1 Verification
Now consider visual check. Figure 1 shows the two trend

curves. We see that server energy proportionality has stag-
nated since 2009 according to DR. In contrast, there was
a uplift in 2012 according to EP. In other words, EP cap-
tures the uplift that DR does not. On the other hand, DR
provides an insight that the early improvement in EP can
be correlated to the widening dynamic range of the power.
Therefore, both metrics are valuable, and EP can be con-
sidered better for the current time. This exercise also shows
that the proposed method enables us to determine whether
two metrics provide different insights or not. The uplift in
2012 has been attributed to the result of using dynamic pro-
cessor over-clocking (e.g., Intel Turbo Boost) [6].

In fact, we can establish a mathematical relationship be-
tween EP and DR as follows:

EP ≈ 2− (2−DR)(LD + 1) (11)

where LD is a nonlinearity measure. This equation indicates
two ways to increase EP: to increase DR or to decrease LD.
Since the trend in DR has stagnated since 2009, much of
the later improvement in EP comes from the decrease in
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Figure 1: The trend curves of DR and EP.

LD. Wong and Annavaram noted that DR and LD can af-
fect EP [14], but here we establish the math form for that
observation. This exercise also shows how empirical similar-
ity can give us a hint on the possible analytical similarity.

4. METRICS BASED ON DEVIATION
In this section and next, we examine a series of metrics

for measuring server energy disproportionality. The metrics
discussed in this section all measure the deviation from the
behavior described by PE(`) = P (1) · `.

Given a set of m samples {(`j , Pj)}, the following are a
few possible metrics for measuring the deviation:

L∞ = max
j
|εj |, (12)

L1 =
∑
j

|εj |, (13)

and

L2 =

√∑
j

|εj |2, (14)

where

εj =
Pj − PE(`j)

P (1)
. (15)

These are common deviation metrics, but we are not aware
of any previous work that uses one of these metrics to eval-
uate energy disproportionality.

Based on our method, these metrics are very similar to
each other. The curves of L∞ and L1 have the least similar-
ity which is 0.98. In fact, these metrics can be viewed as the
dual of EP. Mathematically, we can establish the following
relationship between EP and L1:

EP ≈ 1− 2L1

m− 1
. (16)

In summary, EP is a good energy-proportionality metric
because metrics L∞, L1, and L2 do not add any new insight.

4.1 The Impact to Energy Efficiency
Ryckbosch et al. [7] compared EP with the overall score

(SCR) of the SPECpower ssj2008 benchmark. While SCR
is a metric for measuring server energy efficiency, its cal-
culation involves the power numbers at multiple load levels
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Figure 2: The imperfect correlation between metrics
SCR and EP.

and thus includes some notion of energy proportionality:

SCR =

∑
j τj∑
j Pj

. (17)

Through visual analysis, Ryckbosch et al. noted that SCR
correlates well with EP, but not perfect. A server with a
high EP does not necessarily have a high SCR, and vice
versa. Figure 2 shows this imperfect correlation. Using our
method, the correlation can be quantified as 0.83.

In fact, we can do more. Through some mathematical
manipulation, we can establish the following relationship:

SCR ≈
(
τ10
P10

)(
1.1

2.1− EP

)
. (18)

This equation indicates two ways to increase SCR: to im-
prove the performance-power ratio at the 100% load level
or to improve EP. Since the improvement in EP has stag-
nated since 2012, much of the recent improvement in SCR
has come from the increasing performance-power ratio at
the 100% load level.

5. METRICS BASED ON LINEARITY
In this section we examine metrics for measuring nonlin-

earity. We start by comparing metrics LD and LDR.
Based on our method, the similarity of the two metrics is

only 0.85. So both metrics are valuable. We are unable to
establish a mathematical equation connecting them. How-
ever, we have found that their dissimilarity is largely due
to the different design bias. In the following we will discuss
where they are similar and dissimilar.

On the similarity side, both metrics indicate the same
trend. As shown in Figure 3, the metric values were mostly
positive in 2007–2011. Beginning 2012, more negative values
have appeared. This timing matches what we have discussed
earlier about the EP’s uplift in 2012. Clearly, these curves
provide additional evidence on why the uplift occurs. They
also supplement Equation (11) by showing that LD not only
decreases but also falls below zero. In other words, modern
servers show more sublinear energy proportionality.

On the dissimilarity side, the two metrics treat the devi-
ation at the same load level unequally. LDR weighs more
on deviations at low load levels. In contrast, LD treats de-
viations at all load levels equally. Specifically, both metrics
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Figure 3: The trend curves of LD and LDR.

can be rewritten as

LD ≈ 2

(m− 1)(IPR + 1)

∑
j

Pj − PL(`j)

P (1)
. (19)

and

LDR ≈
|·|

max
j

1

IPR + (1− IPR)`j
· Pj − PL(`j)

P (1)
. (20)

While both metrics calculate the deviation from the same
linear function PL(`) as

εj =
Pj − PL(`j)

P (1)
, (21)

LDR weighs more on deviations at low load levels. Due to
their different weight assignments, the trend curves of LD
and LDR become somewhat dissimilar.

In terms of insight, Varsamopoulos et al. [13] noted two
trends in LDR: one positive trend and one negative trend.
However, the positive trend in LD is not as obvious in Fig-
ure 3. In other words, LDR shows the continuing difficulty
in achieving sublinear energy proportionality at low load lev-
els. LD shows that either sublinearity occurs at more load
levels or sublinearity becomes higher or both.

Probably a better way to gain the above kind of insight is
to look into the range of the deviations at various load lev-
els. Using Equation (21) as the deviation measure, Figure 4
shows the maximum and minimum of these deviations. We
see that both extremes tend to have the same sign before
2013. They are either all positive or all negative. Starting
2013, the maximum is positive and the minimum is negative.
In other words, curve P (`) and line PL(`) intersect.

This insight has led us to study the impact of the shape of
P (`). The next section will discuss how it plays an important
role in achieving great cluster-level energy proportionality.

5.1 Other Possible Metrics
The rest of this section shows that there are many other

ways to measure linearity or nonlinearity. Table 1 lists a
sample of them in three different types. The first two types
are related to curve fitting. For the first type, we see that
many functional forms can be used to describe the curve,
and fitness or function parameter can be used to measure
linearity. For the second type, linearity is measured in terms
of complexity. A line is expected to be modeled by a simple
function with a good fitness (or numerical accuracy). The
more complex the function, the more nonlinear the curve.
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Figure 4: The range of the linearity deviations based
on Equation (21).

The third type comes from image processing. In image
processing applications, a line is often needed to be rec-
ognized. There are also many ways to recognize the line
pattern. AO is considered to be one of the most effec-
tive methods for this task [9]. AO assumes the curve as
a piecewise-linear function which passes through all data
points {(`j , Pj)}. Since there are 11 points, there are 10 line
segments in this curve. AO uses the average of all the normal
unit vectors of these line segments to measure linearity.

According to our method, the trend curves of these met-
rics are different from each other, except that the curves
of RMSE and MAPE have a similarity of 0.99. We have
tried other correlation measures such as Spearman’s ρ and
Kendall’s τ , but none helped. Smoothing the curves before
computing their similarity helped but not much. We were
only able to derive a high similarity of POW and COE using
the median trend-lines of their curves.

More importantly, we cannot associate any of these met-
rics with implications on how to improve energy proportion-
ality. As we will discuss in the next section, a metric that
characterizes the shape of P (`) may provide such insight.

6. IS LINEARITY IMPORTANT?
This section tries to justify the importance of a good shape

of P (`) that the existing metrics may have overlooked. We
start with the shape of PE(`) = P (1) · `.

Consider a cluster of homogeneous servers. Curve PE(`)
has two properties that affect cluster-level energy manage-
ment. The property of P (0) = 0 affects server provisioning.
Servers can be added at any time without power penalty.
The property of linearity affects load distribution. Load can
be distributed in any way without power penalty. In the
case of two servers, this means there are many ways to serve
the input load level of 0.8 with the same amount of aggre-
gate power usage, whether it be one server at the 0.8 load
level, two servers at the 0.4 load level each, or two servers
at the 0.2 and 0.6 load levels respectively.

In reality, the first property is not met by any real server.
In other words, any server that is on will introduce some
power penalty. To achieve better energy proportionality,
cluster management can use the Packing scheme which pro-
visions a minimum number of servers to handle the input
load level. In the case of two servers, provisioning one server
at the 0.8 load level consumes the least power.

For a cluster of s servers, the following formula calculates

the cluster-level energy proportionality ÊP if managed by
the Packing scheme:

ÊP = 1− 1− EP

s
. (22)

Assume each server is very energy disproportional, say EP =
0.1. A cluster of 100 such servers with the Packing scheme
can easily achieve the cluster-level energy proportionality of
0.9, and this applies to all shapes of P (`).

The above formula is only correct in the ideal scenario
in which servers can be provisioned instantaneously. Ac-
cording to a simulation-based study done by Wong and An-

navaram [15], ÊP saturates around 0.8 in more realistic sce-
narios. They suggested to forego dynamic server provision-
ing and distribute the input load evenly among all servers.

Using this Uniform scheme, ÊP is equivalent to EP. Since
some of modern servers have their EP greater than 0.8 (see
Figure 1), the Uniform scheme effectively improves cluster-
level energy proportionality.

The Uniform scheme is sometimes optimal. In the case
of two servers, the scheme will provision two servers at the
0.4 load level each. If the server behavior can be described
as P (`) = 0.2 + 0.8 · `2, then the total power usage based
on this scheme is the lowest. In fact, the Uniform scheme
remains optimal if P (`) depicts a convex curve. Once the
curve is not convex, the optimality will not be guaranteed.
This is where the shape of P (`) can impact how to achieve
the best cluster-level energy proportionality.

As we continue to create solutions, such as [12, 15], to
further improve server energy proportionality, we may need
to consider its impact on the complexity of achieving near-
optimal cluster-level energy management. If linearity is de-
sired, we should increase its weight when creating these new
solutions. If convexity is desired, we need metrics that can
capture this. Metric LD falls short because LD < 0 does
not imply that P (`) is convex. If curve P (`) and line PL(`)
intersect, P (`) is definitely not convex.

In short, we are lacking metrics that can provide insight
on the good shapes of P (`) for enabling simple yet effective
cluster-level energy management.

7. CONCLUSIONS AND FUTURE WORK
This paper starts with the question of how to evaluate the

added value of each metric when multiple metrics are used
during performance engineering. This is important because
a high degree of redundancy in results hinders the efficiency
in gaining insight. This paper presents a general method to
address the question. The method is demonstrated in the
context of analyzing trends in server energy proportionality.
It enables the identification of a good energy-proportionality
metric from which more focused studies, such as mathemat-
ical relationships, can be conducted. While the identified
metric is considered better than other existing metrics, this
paper argues that the metric fails to capture an important
aspect of server energy proportionality, linearity. The paper
outlines why this aspect is also equally important and con-
cludes that none of the existing metrics has captured it in a
satisfactory manner.

Obviously, the lack of a good linearity metric is one of
several directions for the future work. In addition, the argu-
ment provided in the paper is rather analytical. Simulation-
based studies can be conducted to further strengthen the
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Table 1: The many ways to measure linearity. SEG uses piecewise linear functions of different line segments.
COD and AO measure linearity, and all the other metrics measure nonlinearity.

Name Definition Notes Range
Type 1: Fitting by the least squares method

COD [r(~̀, ~P )]2 [0, 1]

RMSE

√
1
m

∑
j

[
P (`j)−Pj

Pm−1

]2
P (`) = c0 + c1 · ` [0, 1]

MAPE 1
m

∑
j

|P (`j)−Pj |
Pj

[0,∞]

POW α P (`) = c0 + c1 · `α [0,∞]

COE c2 P (`) = c0 + c1 · `+ c2 · `2 [0,∞]
Type 2: Finding the smallest k such that RMSE is below 0.01

DEG k P (`) =
∑k
i=0 ci ∗ `

i [0,m− 1]

SEG k P (`) = c0 + c1 ∗ x+
∑k
i=2 ci ∗ |x− βi| [1,m]

Type 3: Recognizing pattern in planar point sets

AO 1
m−1

√
(
∑
j

−sj√
s2j+1

)2 + (
∑
j

1√
s2j+1

)2 sj =
Pj+1−Pj

`j+1−`j
, 0 ≤ j < m [2/π, 1]

argument. If linearity is indeed very critical, new server de-
signs will need to be judged based on this aspect as well. In
terms of trend analysis, one idea is to approximate {(`j , Pj)}
with a curve, measure the energy proportionality of the
curve, and see if it makes any difference.
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