
Introducing Software Performance Antipatterns in
Cloud Computing Environments: Does it Help or Hurt?∗

Catia Trubiani
Gran Sasso Science Institute

L’Aquila, Italy
catia.trubiani@gssi.infn.it

ABSTRACT
Performance assessment of cloud-based big data applications
require new methodologies and tools to take into consider-
ation on one hand the volume, the variability and the com-
plexity of big data, and on the other hand the intrinsic dy-
namism of cloud environments. To this end, we introduce
software performance antipatterns as reference knowledge
to capture the well-known bad design practices that lead to
software products suffering by poor performance.

This paper discusses some of the challenges and oppor-
tunities of research while introducing software performance
antipatterns in cloud computing environments. We present
a model-based framework that makes use of software perfor-
mance antipatterns to improve the Quality-of-Service (QoS)
objectives of cloud-based big data applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Per-
formance Attributes; D.2.8 [Software Engineering]: Met-
rics—performance measures

Keywords
Software Performance Antipatterns; Cloud Computing En-
vironments; Big Data Applications

1. INTRODUCTION
Cloud computing environments offer a variety of solutions

and services to their customers in fact they provide new op-
portunities while performing the service provisioning, i.e.
the capability of acquiring and releasing resources on de-
mand. However, beside the advantages, cloud computing
introduced new issues and challenges. In particular, the
heterogeneity of the services offered while dealing with big

∗This work has been developed in the context of the Mi-
crosoft Azure Research Award for the project DESPACE
(DEtecting and Solving Performance Antipatterns in Cloud
Enviroments).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2695528.

data applications makes the process of identifying a deploy-
ment solution that minimizes costs and guarantees Quality-
of-Service (QoS) very complex.

In last years many EU projects were targeting cloud en-
vironments and their quality assessment, for example:

- Artist (http://www.artist-project.eu) aims to migrate
legacy software to gain improved performance from the
service provisioning of cloud infrastructures;

- MODAClouds (http://www.modaclouds.eu/) aims to
provide a run-time environment that guarantees QoS
for applications deployed on multi-Clouds;

- CloudScale (http://www.cloudscale-project.eu/) aims
to provide an engineering approach for building scal-
able cloud applications and services;

- Cloud-TM (http://www.cloudtm.eu/) aims to provide
a data-centric middleware platform facilitating devel-
opment and abating costs of cloud applications;

- PaaSage (http://www.paasage.eu/) aims to provide
an open source integrated platform to support both
design and deployment of Cloud applications;

- SeaClouds (http://www.seaclouds-project.eu/) aims to
guarantee agility after deployment by considering dif-
ferent aspects of the cloud development life-cycle.

All these projects confirm the growing interest for cloud
environments not only in the academic field, but also in
the industry. In fact, many existing issues have not been
fully addressed by academic research, and new challenges
keep emerging from industry applications. Automated ser-
vice provisioning, virtual machine migration, server consol-
idation, energy management, traffic management and anal-
ysis, data security, etc. are cited as key features of cloud
computing that also represent the major barriers to broader
adoption [7, 28].

This paper is focused on the cloud capability to provide
automated service provisioning (i.e. the ability of acquiring
and releasing resources on demand) while dealing with big
data applications. The goal of a cloud provider is to allo-
cate and de-allocate resources from the cloud to satisfy the
QoS while minimizing their operational costs. However, it
is not obvious how a cloud provider can achieve this objec-
tive. In the context of big data applications it is even more
difficult to determine the migration of services, as well as
allocating and de-allocating resources from the infrastruc-
ture offered by the cloud. In fact, services are conceived
as abstract specifications, typically defined and managed by
third party organizations, aimed at modeling dynamic and
complex business workflows [1].

207

In this context we propose to introduce Software Perfor-
mance Antipatterns (SPA) [21] to drive the process of de-
ploying big data applications on cloud-based environments.
The rationale of using performance antipatterns is two-fold:
on the one hand, a performance antipattern identifies a bad
practice in the big data application that negatively affects
the performance indices, thus to support the identification
of performance flaws; on the other hand, a performance an-
tipattern definition includes a solution description that lets
the software architect devise refactoring actions, thus it aims
to improve the system performance.

Goal of this paper is to discuss the challenges and op-
portunities of research in the area of using performance
antipatterns in cloud computing environments. In partic-
ular, we propose a model-based framework (named SPA-
CloudMeter) that makes use of software performance an-
tipatterns to optimise the QoS of big data applications de-
ployed on cloud environments. To this end, we focus on
modelling, analysis, and feedback software performance en-
gineering activities to highlight the current open issues of
the domain and the expected benefits.

The paper is organised as follows. Section 2 presents re-
lated work. Section 3 discusses the research vision of our
model-based framework that aims to estimate the benefit of
using SPA in cloud computing environments. Finally Sec-
tion 4 concludes the paper with remarks for future research.

2. RELATED WORK
In the last decades software architects have proposed and

implemented several concepts and best practices to build
highly scalable applications. However, due to ever-growing
datasets, unpredictable traffic, and the demand for faster re-
sponse times these concepts need to be adapted in the con-
text of cloud computing. The business and technical benefits
of cloud computing as well as the issues and challenges of
architecting cloud-based systems have been formulated and
discussed in [13, 26].

In literature a variety of solutions have been provided to
the individual challenges, e.g. virtual machine migration,
server consolidation, energy management, traffic manage-
ment and analysis, etc. [28]. In this paper we focus on the
challange of automated service provisioning that is not a new
problem. Dynamic resource provisioning has been studied
extensively in the past [25, 29, 9, 3, 12]. These approaches
typically involve: (i) constructing a performance model that
predicts the number of application instances required to han-
dle the demand, in order to satisfy quality requirements; (ii)
predicting future demand and determining resource require-
ments using the performance model. However, to the best
of our knowledge, none of the existing approaches proposes
the usage of performance antipatterns as support for the au-
tomated service provisioning. Several approaches have been
recently introduced to specify and detect code smells and
antipatterns [16, 10, 20, 27, 18]. They range from manual
approaches, based on inspection techniques [22], to metric-
based heuristics [14, 17], using rules and thresholds on vari-
ous metrics [15] or Bayesian Belief Networks [11].

Our previous work in software performance antipatterns
includes the following latest contributions: (i) in [4] we tack-
led the problem of providing a more formal representation by
introducing first-order logic rules that express a set of system
properties under which an antipattern occurs; (ii) in [24] we
introduced a methodology to rank performance antipatterns

and optimise the solution process; (iii) in [23] we explored
the synergies in the process of combining performance an-
tipatterns with bottleneck analysis; in [6] we introduced a
model-driven approach to broaden the detection of software
performance antipatterns at runtime.

3. SPA-CLOUDMETER
This section presents the model-based framework, named

SPA-CloudMeter, we propose to introduce software perfor-
mance antipatterns for improving the QoS of big data ap-
plications deployed on cloud environments.

Figure 1 schematically represents the operational steps of
our SPA-CloudMeter framework: in the modelling phase, an
application model is built to design the software and hard-
ware artifacts for the big data application under study; in
the analysis phase, a QoS model is built to monitor the
software and hardware cloud resources employed by the big
data application, and such model is solved to obtain QoS
results of interest; in the feedback phase, the QoS results are
interpreted and, if necessary, antipattern-based refactoring
actions are devised with the goal to improve (from a perfor-
mance perspective) the application under study.

(1)

Modelling

(2)

Analysis

(3)

Feedback

SPA-CloudMeterOFramework

SOFTWARE

PERFORMANCE

ANTIPATTERNS

Figure 1: SPA-CloudMeter framework.

A preliminary step consists in the specification of cloud-
related antipatterns. In fact, big data applications deployed
on cloud environments include new performance related chal-
lenges, and practitioners continuously highlight more ad-
vanced pattern problems, e.g. for Hadoop1 and Cassandra2.
We are investigating the problems that have an analogy with
the high-level specifications of the performance antipatterns
we considered up to now [21]. For example, we found that
some practitioners found that Hadoop map/reduce is not ef-
ficient for data locality, i.e. the more data nodes and data
implies the less locality, especially larger clusters tend not to
be complete homogeneous and data distribution and place-
ment is not optimal. This latter problem is very similar to
the Circuitous treasure hunt antipattern [21] that basically
refer to software applications retrieving data in a not effi-
cient way, i.e., such applications retrieve data from a first
location, use those results to search in a second location,
and so on until the ultimate results are obtained.
1http://hadoop.apache.org/
2http://cassandra.apache.org/

208

The first work-in-progress activity is the specification of
the performance antipatterns, in the context of big data ap-
plications deployed on cloud environments, we are able to
handle. Inspired by the DECOR method [15], we identified
the following operational steps to specify antipatterns in the
cloud computing context: (i) Domain Analysis: key con-
cepts are identified in the text-based descriptions of reports
provided by experienced big data technologists in their sum-
mits. They form a unified vocabulary of reusable concepts to
describe bad practices and their solution; (ii) Specification:
the concepts, which constitute a vocabulary, are combined
to systematically specify performance antipatterns; (iii) Pro-
cessing : the specifications are translated into operational
ones that can be directly applied for the detection.

The second work-in-progress activity is the specification
of QoS properties, in the context of big data applications de-
ployed on cloud environments, we are able to analyse. In [2]
we presented a graph of relationships highlighting the depen-
dencies among some QoS attributes. In the cloud comput-
ing context we started focusing on performance and security
that are related by a trade-off relationship, hence we aim to
quantify the performance degradation incurred to achieve
certain security requirements. From our previous work [5,
19] we experimented that the values of indices coming from
the solution of the performance model (i.e. the one that
includes security aspects) can be compared to the ones ob-
tained for the same model (i) without security solutions,
(ii) with different security mechanisms and (iii) with differ-
ent implementations of the same security mechanism. Such
comparisons help software designers to decide whether it is
feasible to introduce/modify/remove security strategies on
the basis of the stated performance requirements.

Modelling. SPA-CloudMeter allows to model big data
applications deployed on cloud computing environments by
specifying their functionalities, i.e. software and hardware
services and their provisioning. It is necessary to model what
are the application’s software and hardware resources (e.g.
software components, active virtual machines, hypervisors,
etc.) and their expected resource demand or consumption.
Key features of this domain are: for big data applications the
volume, the variability and the complexity of data software
services need to manage; for cloud computing environments
the dynamic behaviour of hardware services that have the
ability to scale workload peaks. In case of dynamic deploy-
ment of software services it is necessary to explicitly model
elastic methodologies for hardware services while avoiding
premature resource release. Finally, it is fundamental to
model the security properties of software and hardware ser-
vices as well to devise strategies suitable to protect them
against not authorised accesses.

Analysis. SPA-CloudMeter allows to transform the big
data application and the cloud computing environment model
along with their security settings into a performance model.
The performance indices [8] we expect to calculate are: the
system response time, the throughput of software resources,
and the utilization of hardware resources. All these indices
contribute to quantify the QoS of the modelled big data
application deployed on the cloud computing environment.
QoS analysis results have to be interpreted in order to de-
tect, if any, performance problems. Once performance prob-
lems have been detected (with a certain accuracy) some-
where in the application model, solutions have to be applied
to remove those problems. A performance flaw originates

from a set of unfulfilled requirement(s), such as the esti-
mated average response time of a software service is higher
than the required one. In case of unfulfilled requirement(s),
our framework makes use of software performance antipat-
terns as reference knowledge to capture the well-known bad
design practices that lead to software products suffering by
poor performance.

Feedback. SPA-CloudMeter allows to detect and solve
software performance antipatterns. In particular, antipattern-
based rules interrogate the model elements to look for occur-
rences of the corresponding antipattern, whereas antipattern-
based refactoring actions can be applied on the model ele-
ments with the final goal to improve (from a performance
perspective) the application under analysis. The feedback
operational step takes as input an application model (AM)
and a set of performance results (PR), and it is consti-
tuted by two main operational steps. First, the detection of
performance antipatterns is performed on the AM applica-
tion model by running the antipatterns operational specifica-
tions, and it returns the detected antipattern instances with
the list of suspicious model elements involved in them. Sec-
ond, the solution of performance antipatterns is performed
on the AM application model by using the antipattern-based
refactoring actions that are a set of design alternatives sug-
gested by the detected antipatterns. This step returns a
set of refactored AM application models (AM ′

1, . . . , AM ′
n)

where the detected antipatterns have been removed, and
each of these models undergo the same process of the initial
model hence their analyses lead to a corresponding set of
performance results (PR′

1, . . . , PR′
n).

Note that the process of solving performance antipatterns
includes further issues that may hurt the application under
study. For example, a certain number of antipatterns can-
not be unambiguously applied due to incoherencies among
their solutions. It may happen that the solution of one an-
tipattern suggests to split a software resource (with a high
volume of data) into three finer grain resources, while an-
other antipattern at the same time suggests to merge the
original resource with another one (with a low volume of
data). These two actions obviously contradict each other,
although no pre-existing requirement limits their applica-
tion. Even in cases of no explicit conflict between antipat-
tern solutions, coherency problems can be raised from the
order of application of solutions. In fact the result of the se-
quential application of two (or more) antipattern solutions
is not guaranteed to be invariant with respect to the ap-
plication order. Criteria must be introduced to drive the
application order of solutions in these cases. Furthermore,
antipattern-based refactoring actions do not a priori guar-
antee performance improvements, because the entire process
is based on heuristic evaluations.

Summarizing our SPA-CloudMeter framework provides the
following contributions: (i) specifying software performance
antipatterns for cloud computing environments; (ii) mod-
elling the activity flow in the specification of big data appli-
cations deployed on cloud environments; (iii) defining met-
rics and indices to evaluate the QoS of such applications; (iv)
devising feedback strategies to optimise software and hard-
ware services. SPA-CloudMeter currently considers only
performance and security goals of big data applications de-
ployed on cloud computing environments, however it can be
extended to other quality criteria such as reliability, avail-
ability, etc., thus to support trade-off decisions.

209

4. CONCLUSION
In this paper we presented the research vision of a model-

based framework that makes use of software performance
antipatterns to optimise the quality of big data applications
deployed on cloud environments. Modelling, analysis, and
feedback activities have been discussed to highlight the cur-
rent open issues of the domain and the expected benefits.
We showed that both big data applications and cloud com-
puting environments offer very promising challenges for re-
search. As future work it is necessary to implement the
SPA-CloudMeter framework for the performance assessment
of real-world systems, thus to estimate its effectiveness.

5. REFERENCES
[1] A. Barker, C. D. Walton, and D. Robertson.

Choreographing web services. IEEE T. Services
Computing, 2(2):152–166, 2009.

[2] S. Becker, L. Happe, R. Mirandola, and C. Trubiani.
Towards a methodology driven by relationships of
quality attributes for qos-based analysis. In ICPE,
pages 311–314, 2013.

[3] P. Bod́ık, R. Griffith, C. Sutton, A. Fox, M. Jordan,
and D. Patterson. Statistical machine learning makes
automatic control practical for internet datacenters. In
HotCloud, 2009.

[4] V. Cortellessa, A. Di Marco, and C. Trubiani. An
approach for modeling and detecting software
performance antipatterns based on first-order logics.
Software and System Modeling, 13(1):391–432, 2014.

[5] V. Cortellessa and C. Trubiani. Towards a library of
composable models to estimate the performance of
security solutions. In WOSP, pages 145–156, 2008.

[6] A. Di Marco and C. Trubiani. A model-driven
approach to broaden the detection of software
performance antipatterns at runtime. In International
Workshop FESCA, pages 77–92, 2014.

[7] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel.
The cost of a cloud: Research problems in data center
networks. Computer Communications Review, 2009.

[8] R. Jain. The Art of Computer Systems Performance
Analysis. SIGMETRICS Performance Evaluation
Review, 19(2):5–11, 1991.

[9] E. Kalyvianaki, T. Charalambous, and S. Hand.
Self-adaptive and self-configured cpu resource
provisioning for virtualized servers using kalman
filters. In ICAC, pages 117–126, 2009.

[10] F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, and
G. Antoniol. An exploratory study of the impact of
antipatterns on class change- and fault-proneness.
Empirical Software Engineering, 17(3):243–275, 2012.

[11] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. A.
Sahraoui. Bdtex: A gqm-based bayesian approach for
the detection of antipatterns. Journal of Systems and
Software, 84(4):559–572, 2011.

[12] J. Kirschnick, J. Alcaraz Calero, L. Wilcock, and
N. Edwards. Toward an architecture for the automated
provisioning of cloud services. Communications
Magazine, IEEE, 48(12):124–131, 2010.

[13] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh.
Automated control in cloud computing: challenges
and opportunities. In Workshop on Automated control
for datacenters and clouds (ACDC). ACM, 2009.

[14] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In ICSM, pages
350–359, 2004.

[15] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L.
Meur. Decor: A method for the specification and
detection of code and design smells. IEEE Trans.
Software Eng., 36(1):20–36, 2010.

[16] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G.
Guéhéneuc, B. Baudry, and J.-M. Jézéquel.
Specification and detection of soa antipatterns. In
ICSOC, pages 1–16, 2012.

[17] R. Oliveto, F. Khomh, G. Antoniol, and Y.-G.
Guéhéneuc. Numerical signatures of antipatterns: An
approach based on b-splines. In European Conference
on Software Maintenance and Reengineering (CSMR),
pages 248–251, 2010.

[18] R. Peters and A. Zaidman. Evaluating the lifespan of
code smells using software repository mining. In
European Conference on Software Maintenance and
Reengineering (CSMR), pages 411–416, 2012.

[19] R. J. Rodŕıguez, C. Trubiani, and J. Merseguer.
Fault-Tolerant Techniques and Security Mechanisms
for Model-based Performance Prediction of Critical
Systems. In ISARCS, 2012.

[20] D. Romano, P. Raila, M. Pinzger, and F. Khomh.
Analyzing the impact of antipatterns on
change-proneness using fine-grained source code
changes. In Working Conference on Reverse
Engineering (WCRE), pages 437–446, 2012.

[21] C. U. Smith and L. G. Williams. More New Software
Performance Antipatterns: Even More Ways to Shoot
Yourself in the Foot. In Computer Measurement
Group Conference, pages 717–725, 2003.

[22] G. Travassos, F. Shull, M. Fredericks, and V. R.
Basili. Detecting defects in object-oriented designs:
using reading techniques to increase software quality.
In ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 47–56, 1999.

[23] C. Trubiani, A. Di Marco, V. Cortellessa, N. Mani,
and D. C. Petriu. Exploring synergies between
bottleneck analysis and performance antipatterns. In
ICPE, pages 75–86, 2014.

[24] C. Trubiani, A. Koziolek, V. Cortellessa, and
R. Reussner. Guilt-based handling of software
performance antipatterns in palladio architectural
models. Journal of Systems and Software, 95:141–165,
2014.

[25] B. Urgaonkar and A. Chandra. Dynamic provisioning
of multi-tier internet applications. In ICAC, pages
217–228. IEEE Computer Society, 2005.

[26] J. Varia. Amazon Web Services - Architecting for the
Cloud: Best Practices, May 2010.

[27] A. F. Yamashita and L. Moonen. Do code smells
reflect important maintainability aspects? In ICSM,
pages 306–315, 2012.

[28] Q. Zhang, L. Cheng, and R. Boutaba. Cloud
computing: state-of-the-art and research challenges. J.
Internet Services and Applications, 1(1):7–18, 2010.

[29] Q. Zhang, L. Cherkasova, and E. Smirni. A
regression-based analytic model for dynamic resource
provisioning of multi-tier applications. In ICAC, 2007.

210

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20141211082252
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 2
 AllDoc
 2

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20141211082252
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 2
 AllDoc
 2

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

