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ABSTRACT

The majority of existing application profiling techniques ag-
gregate and report performance costs by method or call-
ing context. Modern large-scale object-oriented applications
consist of thousands of methods with complex calling pat-
terns. Consequently, when profiled, their performance costs
tend to be thinly distributed across many thousands of loca-
tions with few easily identifiable optimisation opportunities.

However experienced performance engineers know that
there are repeated patterns of method calls in the execution
of an application that are induced by the libraries, design
patterns and coding idioms used in the software. Automati-
cally identifying and aggregating costs over these patterns of
method calls allows us to identify opportunities to improve
performance based on optimising these patterns.

We have developed an analysis technique that is able to
identify the entry point methods, which we call subsuming
methods, of such patterns. Our offline analysis runs over
previously collected runtime performance data structured in
a calling context tree, such as produced by a large number
of existing commercial and open source profilers.

We have evaluated our approach on the DaCapo bench-
mark suite, showing that our analysis significantly reduces
the size and complexity of the runtime performance data
set, facilitating its comprehension and interpretation. We
also demonstrate, with a collection of case studies, that our
analysis identifies new optimisation opportunities that can
lead to significant performance improvements (from 20% to
over 50% improvement in our case studies).

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Optimiza-
tion; D.2.5 [Software Engineering]: Testing and Debug-
ging—Debugging aids
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1. INTRODUCTION

Performance is a crucial and often elusive attribute for
modern applications. Trends such as mobile application de-
velopment, where resources are limited, cloud deployment,
where running costs are directly impacted by software ef-
ficiency, and online solutions, where low latency response
times are key, means that software performance analysis is
often a vital part of software engineering today. Enabled by
the increase in hardware capacity over the last three decades,
the size and complexity of software has increased to a sim-
ilar or even greater extent [13]. This growing scale of the
software under development means that analysing and im-
proving the performance of these systems has become in-
creasingly difficult.

Many of the challenges faced when analysing the perfor-
mance of modern large-scale systems are exacerbated by spe-
cific characteristics of object-oriented software. Following
object-oriented principles tends to lead to applications with
inter-procedural rather than intra-procedural control flow
and a great number of methods. Additionally many object-
oriented methodologies focus on developer productivity, pro-
ducing maintainable and flexible software, and promoting
componentisation and reuse. As a result most applications
are built from reusable generalised frameworks and leverage
established design patterns, making them very layered and
complex.

For example, a Java service-oriented application might im-
plement SOAP web services using the apache Axis web ser-
vice framework, running in the apache Tomcat servlet engine
and using the Hibernate persistence framework to access a
relational database. This approach means that the han-
dling of even the simplest request in these framework-based
applications goes through many layers and will require hun-
dreds, maybe thousands, of method calls to complete [17].
This excessive activity to achieve seemingly simple results
is a problem that has become known as runtime bloat |26].



It makes the applications difficult to profile and it has led
many large scale object-oriented applications to suffer from
chronic performance problems [15].

Traditional application profilers provide method-centric
feedback on where an application is consuming resources, in
particular memory allocation and execution time. Therefore
profiling the extremely complex runtime behaviour exhibited
by these large-scale object-oriented applications typically re-
ports resource costs that are thinly distributed across a large
number of methods, and results in a massive dataset that
is very difficult to interpret. This also means that compile
time and dynamic runtime optimisation approaches strug-
gle to mitigate runtime bloat because of the lack of easily
identifiable optimisation targets [26].

This is the challenge that we are interested in: how can
we provide more useful feedback on the performance of large-
scale object-oriented applications so that it can be improved?
How can we help software engineers to reduce runtime bloat?

Our key insight in this paper is that there are repeated
patterns of method calls induced by the libraries and design
idioms used in the implementation of the software. These
repeated patterns represent coherent units of aggregation
for the resource costs recorded by traditional profilers. We
show that identifying and aggregating performance costs
over these repeated patterns will facilitate a better under-
standing of the performance characteristics of the software
and highlight new, high potential candidates for optimisa-
tion that would led to useful performance improvements.

One of our key goals is to automatically identify the key
repeated patterns of method calls. It is not practical to man-
ually detect these patterns in a large-scale application with
complex runtime behaviour spanning thousands of methods.

Our approach to identifying these repeated patterns of
method calls is to identify the key methods, which we call
the subsuming methods, in the application that represent the
entry point or root of these repeated patterns. The other
methods we call the subsumed methods and we attribute
their execution costs to their parent subsuming method.

The main contributions of this paper are:

e We introduce the concept of automatically identifying
repeated patterns of method calls in an application
profile and using them to aggregate performance costs.

e We describe subsuming methods, a specific technique
for identifying the entry points to repeated patterns of
method calls.

o We define a novel metric, minimum dominating method
distance, used to help identify subsuming methods.

e We demonstrate that our approach can be applied ef-
ficiently to large scale software.

e We empirically evaluate our approach over standard
benchmarks to characterise the typical attributes of
subsuming methods.

e We demonstrate the utility of subsuming methods in
several case studies.

The remainder of this paper is structured as follows. Sec-
tion [2] motivates our work and presents background infor-
mation. Section [3] covers related work. Section Ml describes
our approach. Section [§] presents an evaluation using the
DaCapo benchmark suite and several case studies. Section
discusses the results of our evaluation and areas of future
work. We conclude in Section [0
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2. MOTIVATION AND BACKGROUND

Traditional profiling tools typically record measurements
of execution cost per method call, both inclusive and exclu-
sive of the cost of any methods they call. Usually of the
most interest are the top exclusive cost methods, known as
the hot methods. The cost measurements are usually cap-
tured with calling context information, that is, the hierarchy
of active methods calls leading to the current call, and are
aggregated in a calling context tree.

A calling context tree (CCT) records all distinct calling
contexts of a program. Each node in the tree has a method
label representing the method call at that node and has a
child node for each unique method invoked from that calling
context [3]. Therefore the method labels on the path from
a node to the root of the tree describe a distinct calling
context. For multithreaded programs containing multiple
execution entry points a virtual root node is used to collate
the multiple traces into a single tree. A CCT is an interme-
diate representation in the spectrum of data structures that
trade off size for richness of information. It retains more in-
formation than either a flat method level aggregation of data
(also known as a vertex profile), which discards all calling
context information, or a dynamic call graph (also known as
an edge profile), which retains only a single level of calling
context information. It is more compact than a full call tree,
which captures every unique method invocation separately
but grows in size linearly with the number of method calls
and hence is unbounded over time.

For example the small program in Examplewill generate
the CCT shown in Figure[I] Table [I] shows the aggregated
costs for each method assuming the per-call costs given in
column one. The per-call costs are arbitrary numbers that
we have assumed to complete the example.

The objective of performance profiling is to identify sec-
tions of source code that are performance critical, as these
represent optimisation opportunities. The simplest approach
to this is to identify the hot methods — methods with the
highest exclusive cost. This is easily done by aggregating the
performance data in the CCT for each method i.e. creating
a flat method profile as in Table

Example 1

1: void main() { 13: void b() {
2: aQ); 14: cQ;
3: aQ); 156: cO;
4: b0 16: x();
5: } 17: x(0);
6: 18: }

7: void a() { 19:

8: b0 20: void c() {
9: yO; 21: x(O;
10: } 22: }

11: 23:

12: void x() { ... } 24: void yO) { ... }

Table 1: Costs for Example 1

Method  Per-call Invocations Exclusive Inclusive
main 3 1 3 71
a 2 2 4 50
b 4 3 12 54
c 1 6 6 24
X 3 12 36 36
v 5 2 10 10




Figure 1: CCT for Example 1

The numbers shown for each node are the invocation count, exclu-

sive cost, and inclusive cost for that node. Each node maintains the

aggregated totals for a calling context.

Unfortunately the list of hot methods often isn’t useful
because the identified methods are difficult to optimise or
avoid. For example Table [2] shows the top ten hot meth-
ods from a case study (discussed in section we com-
pleted on the fop benchmark from the DaCapo-9.12-bach
benchmark suite [8]. The fop benchmark is a relatively
small library used in many applications for applying XSL-
FO stylesheets to XML documents to produce PDF or other
formatted output. Only one of the top ten hot methods is
actually a method in the fop codebase, all the others are
support methods from the Java runtime library, methods
that are heavily used and already well optimised. Also the
method calls typically occur a large number of times within
the CCT, each occurrence representing a different calling
context in which the method was invoked. This makes it
difficult to target the code that calls the method in order
to avoid invoking the costly method. Finally, by the time
we reach the fifth method we are considering methods using
less than 2% of the total execution time, so even if we could
remove this cost completely the benefit would be minor.

Apart from investigating hot methods, another common
approach to identifying performance critical code is to per-
form a top-down search of the CCT, looking for a compact

Table 2: Top 10 hot methods in the fop benchmark

Method Occ. % Exc. % Inc.
sun.misc.FloatingDecimal.dtoa 348 6.904 9.428
java.text.DigitList.set 374 5.266 6.166
java.text.DecimalFormat.subformat 374 3.123 5.614
org.apache.fop.fo.properties.

PropertyMaker.findProperty 1501 2.471  11.675
sun.nio.cs.US_ASCII$Encoder.encode 568 1.795 1.796
sun.misc.FloatingDecimal.countBits 348 1.563 1.563
java.util. HashMap.hash 10663 1.512 3.534
java.lang.String.equals 4620 1.454 1.454
java.util. HashMap.getEntry 6081 1.348 4.950
java.lang.String.indexOf 3343 1.300 1.300

Occ. - is the number of occurrences of the method in the full CCT
i.e. the number of distinct calling paths that lead to the method call
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Figure 2: Usages of formatDouble in fop

sub-tree that has a high total cost. The sub-tree should be
compact so that it represents a constrained piece of dynamic
behaviour that can be understood and optimised. If such a
sub-tree even exists, finding it within a large CCT is diffi-
cult; nodes near the root of the CCT, which have high total
costs, encompass very large sub-trees and nodes near the
leaves of the CCT, which are compact, have low total costs.

Consequently traditional hot method analysis and top-
down searches are often ineffective with a large CCT, and
they can grow very large for object-oriented programs. The
CCT generated by the relatively small fop benchmark con-
tained over six hundred thousand nodes, real-world applica-
tions can create CCTs with tens of millions of nodes |10].

However there does exist within the fop benchmark a clear
cut performance optimisation opportunity. A single method,
org.apache.xmlgraphics.ps.PSGenerator.formatDouble,
accounts for (by inclusive cost) over 26% of the total ex-
ecution time. Figure [2]is a calling context ring chart [18|
1] visualising the full CCT with all the occurrences of this
method and its sub-trees highlighted. The chart depicts the
CCT as a series of concentric rings broken into segments,
each segment representing a node in the CCT with the root
node in the centre. Moving away from the middle each seg-
ment is divided into a new segment for each child node, so
nodes deeper in the CCT are further away from the middle
and leaf nodes in the CCT have no surrounding segments.
The arc length covered by each segment is proportional to
the inclusive cost of the associated calling context, so the
more cost the sub-tree rooted at a node accounts for the
longer the ring segment. Figure [2 illustrates the fact that
formatDouble occurs in multiple locations deep within the
CCT and in aggregate accounts for a significant amount of
the total execution time.

The formatDouble method uses java.text.NumberFormat
(Java’s general purpose floating point number formatter) for
producing a simple three decimal place format. It induces
the same expensive pattern of method calls each time it is
used, but that cost is distributed over a number of low-level
string manipulation and floating decimal inspection meth-
ods. Once we have found this method it is easy to see it



represents just the sort of opportunity we are looking for,
a compact repeated pattern of method calls that accounts
for a significant proportion of the overall cost, but finding it
amongst the full CCT or deducing it from the list of low-level
hot methods is difficult.

This is a classic example of the type of runtime bloat ex-
perienced by many large-scale object oriented applications.
The use of a conveniently available and powerful generic li-
brary routine has a significant performance impact that is
later difficult to detect amongst the mass of performance
data produced when the application is profiled. We were
able to refactor this method to use a much more specialised
approach that drastically reduced its relative cost, improv-
ing the overall execution cost of the benchmark by 22%. Our
aim is to help identify these types of opportunities.

3. RELATED WORK

There is a significant body of work into investigating soft-
ware performance that we cannot adequately describe here
due to space limitations. This includes extensive research
into model-based performance prediction methods that are
complementary to our empirical performance analysis ap-
proach and many papers on novel performance data col-
lection (profiling) approaches that are applicable to object-
oriented software (e.g. [4} |6l 7} |20]). Typically these data
collection approaches are either striving for lower overheads,
better accuracy or better contextual information (e.g. argu-
ment, loop or data centric profiling). By contrast our work
is focussed on improving the analysis rather than the collec-
tion of performance data.

The most closely related work to ours in terms of its moti-
vation is the existing research into runtime bloat [26]. Gen-
erally they have focussed on memory bloat (excessive mem-
ory use)(e.g. |9, 5]) or they have taken a data-flow centric
approach [16} |17], looking for patterns of inefficiently cre-
ated or used data structures, collections and objects |22} 25|
27, |24} 28, 119]. This includes approaches specifically look-
ing at the problem of object churn, that is the creation of
a large number of short-lived objects [11} [12]. In contrast,
we investigate a control-flow centric approach, searching for
repeated inefficient patterns of method calls.

Also related are approaches to aggregating calling context
tree summarised performance data [14}[23]. These are based
on grouping by package and class name, aggregating meth-
ods below a certain cost threshold into the calling method or
the manual specification of aggregation groupings. None of
these approaches attempt to automatically detect repeated
patterns of method calls.

4. SUBSUMING METHODS

Our aim is to identify repeated patterns of method calls
within the CCT over which we can aggregate performance
costs. The intuition behind idea this is two-fold:

1. Consolidating costs within the CCT in this way re-
duces the size and complexity of the tree, making it
easier to interpret to discover performance bottlenecks.

2. The traditional unit of aggregation, individual meth-
ods, often identifies bottlenecks that are difficult to
optimise. By contrast a pattern of methods calls is
more likely to encapsulate a range of behaviour that
contains optimisation opportunities.

(b)) =36+ 18 =54

Subsumed sub-trees

Figure 3: Subsumed subtrees for Example 1
We have chosen main and b as subsuming methods. The numbers

shown for each node are the exclusive and induced costs at that node.

Our approach to consolidating costs within the CCT is
to identify the methods that are the most interesting from
a performance standpoint and use these to identify consol-
idation points within the tree, we call these the subsuming
methods. All other methods we call subsumed methods and
we attribute their costs to their parent node in the CCT.
We attribute costs recursively upwards until we find a node
labeled with a subsuming method, where the costs are ag-
gregated. We call this cost the induced cost for the node
as it represents the cost induced by the subsuming method
at that node. Figure [3] illustrates the subsuming concept
using the CCT from our earlier example. Here we have cho-
sen methods b and main as our subsuming methods (the
method at the root of the CCT always becomes a subsum-
ing method).

Each node labeled with a subsuming method becomes the
root of a subsumed subtree and represents a pattern or block
of code consisting of itself and the nodes it subsumes, either
directly or transitively through other subsumed nodes. The
induced cost of a subsuming method is the sum of the in-
duced costs for all the nodes in the tree labeled with that
method. In our example the total induced cost for method
b is 36 4+ 18 = 54. As the exclusive cost of each CCT node
is consolidated into exactly one subsuming node (and each
node is labeled with exactly one method) the sum of the
induced costs of all the subsuming methods equals the total
cost of the CCT. Effectively the subsuming methods form
a new way of partitioning the CCT at a coarser granularity
than the initial method level partitioning.

This approach can be used to subsume any type of re-
source cost recorded in the CCT, or multiple costs at once.
Typically these costs are execution time, invocation count
or memory allocations but our approach can be applied to
any recorded cost value.

More formally: Let V' be the set of nodes in the CCT. Let
M be the set of methods of the application, used as labels
of nodes in the CCT. Let S C M be the set of subsuming
methods. Let function I(v) : V' — M denote the method
label of a node v and function ¢(v) : V' — R denote the cost.



Then we define nodes(m) = {v : v € V,I(v) = m} i.e. the
subset of V that have the label m, and the induced cost for

anodev € V:
0
i(c)

and the induced cost for a method m € S:

I(m) Y i

vEnodes(m)

4.1 Identifying Subsuming Methods

Our approach is based upon identifying a subset of the
methods in an application that are interesting from a per-
formance standpoint i.e. the subsuming methods. Using
different sets of subsuming methods leads to different re-
sults and potentially different insights into application per-
formance. In this paper we have considered two characteris-
tics of methods in order to define a set of subsuming methods
that give us interesting and useful results. We are confident
that there are many other approaches to selecting the sub-
suming methods that would also be effective. We discuss
some of these in section [6l The two characteristics are:

cesS
c¢ S

cechild(v)

Methods that induce only a very limited range of be-
haviour at runtime. These methods are not interesting
from a performance standpoint because they tend to be sim-
ple code that is difficult to optimise. We have used the height
of the method as a measure of the range of behaviour it in-
duces. The height of a method is the maximum height of
any sub-tree within the CCT rooted at a node labeled by
the method. For example the height of method a from our
earlier example is 3 (see Figure[4)). The trivial case is a leaf
method that never calls any other method and therefore has
a height of zero.
More formally the height hA(v) of any node v € V is:

0 |child(v)] =0

maxeecnitav) (1 4 h(c)) |child(v)| >0
and the height H(m) of any method m € M is:
H(m) h(v)

h(v)

max
vEnodes(m)

7 \ AN
{ DMDmin(x) = 2)
\ ~

|
|
Hla) =3 |
[ - — - [ \
\ b | | \ x
\ / I | N__/
/‘*\’ ! i I
|
I/ \\\ : | J/’\\\
X l—— X
I - )
\\ J - N /
|
|
|

~ -

Figure 4: CCT for Example 1 showing height and
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Methods that are called in a very constrained set of
circumstances. Specifically each call to the method can
be traced back to a nearby dominating method, a distinct
calling method responsible for its invocation. A dominating
method appears in the call stack for every invocation of the
dominated method i.e. if a method p dominates a method
m, then any call to m is preceded by a call to p and followed
by the return of that same call to p. Whilst potentially
interesting from a performance standpoint these dominated
methods are generally less interesting than the dominating
method, as the dominating method is always invoked shortly
before and encapsulates their invocation.

We have used the distance from a method to its nearest
dominating method as a measure of this characteristic. The
trivial case is when a method is only ever called from a single
call site i.e. every occurrence of the method within the CCT
has the same parent method. In this case that single parent
will be the dominating method and the dominating method
distance will be 1.

Formally for methods p and m, we say p is a dominat-
ing method of m (or p dominates m) if p # m and Vv €
nodes(m) there exists a node n € V such that i(n) = p
and n is an ancestor of v in the CCT. By definition this
means that the method label assigned to the root node dom-
inates all other methods. Hence every method except the
root method is guaranteed to have at least one dominating
method i.e. the root method.

We define a distance function for the dominating method
p of a method m as:

d(p,v)

where d(p, v) is the length of the path from node v to the first
ancestor node n such that I/(n) = p (such an ancestor node
must exist otherwise, by definition, p does not dominate m).
We call this the dominating method distance (DMD) for m
to p.

The minimum DMD for a given method m then is:

dmd(p,m) = max

vEnodes(m)

dmdmin(m) = Zr)IélI\I} dmd(p, m)

i.e. the smallest DMD amongst all the dominating methods
of m. Figure [ illustrates the minimum DMD for method =
from Example 1. Table [3| lists the dominating method and
dmd i for each method from Example 1.

Table 3: Height and dmd,,;, for Example 1

Method Height Dominating Method dmdin
main 4 — —
a 3 main 1
b 2 main 2
c 1 b 1
'S 0 b 2
y 0 a 1

Using our height and dmdmi, attributes we can define a
condition for identifying subsuming methods by specifying
a bound on the minimum height and/or dmdm:» a method
must have in order to be considered subsuming i.e. we
can define that all subsuming methods must have a height
greater than Hpouna and dmdm:n greater than Dpound:

S = {m tm e M, H(m) > Hpound, dmdmm(m) > Dbound}

It is also straightforward to efficiently implement an in-
teractive analysis where these bounds can be dynamically
changed as we need to only recalculate the induced costs
after changing these bounds.



Figure 5: CCT before (1) and after (2) the recursive
adjustment

4.2 Adjusting for recursive calls

Our discussion so far has ignored the impact of recursive
calling patterns on the CCT and its subsequent analysis.
Even conceptually simple recursive algorithms can result in
very deeply nested call paths. These create subtrees with
very large heights and dominating method distances that
we would like to reduce to a single representative repetition
of the recursion.

To achieve this we identify and reduce these recursive call
paths in the CCT before we perform our height and DMD
calculations. That way we can calculate the height and
DMD in the adjusted tree to ensure our subsuming char-
acterisation appropriately adjusts for recursion. We then
perform our induced cost calculation on the original tree to
ensure we aggregate the full costs from the tree. To build
the adjusted tree we traverse the original tree from the root
node downwards calculating, at each node, the ancestor node
that we want to use as the adjusted parent. We perform an
in-order traversal of the original tree to ensure that all an-
cestor nodes of the current node have already been added
to the adjusted tree. Figure |5]illustrates this recursive ad-
justment with a simple example. There is a recursive path
from method a to method b back to method a. We find each
repetition of the sequence after the first and insert it as a
child of that first sequence. The exact algorithm we use is
detailed in the next section.

4.3 Implementation

We have developed a tool which implements our subsum-
ing methods analysis. The tool takes as input a CCT rep-
resenting a captured execution profile. We represent a CCT
using a typical tree data structure made up of Nodes as de-
tailed in Listing Each Node has a Method label, a cost, a
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link to its parent and a list of children, all of which are popu-
lated when the CCT is input. Each Method has a populated
list of the Nodes it is associated with, i.e. for all Nodes n
it is true that n.method.nodes.contains(n). The remaining
fields in the Node and Method data structures are the ones
that we calculate as part of our analysis. There is a Method
object for each distinct method used by the application at
runtime. In practice our Method object has fields for the
method’s name, owning class and signature, but these are
not important for the description of the algorithms that fol-
low. The root Node of the tree has a null parent.

Algorithm 1 Data-structures

class Tree
Node root
List<Method> methods

class Node
Method method
integer cost
Node parent
List<Node> children
Node adjustedParent
List<Node> adjustedChildren
integer height
integer induced

class Method
List<Node> nodes
integer maxHeight
integer minDM D
integer induced

This input data can be obtained from a number of differ-
ent open-source or commercial profilers that capture CCT
structured profiles. We have implemented adapters for the
popular commercial tool JProfiler and the open-source pro-
filer JP2. We have also implemented a tool which will parse
a series of thread dumps captured from a running JVM and
build from them a rough statistical CCT profile. The details
of these adapters are not interesting for the current discus-
sion except to highlight the fact that our approach can be
used in conjunction with a number of existing profiling tools
and frameworks for a variety of languages and platforms.

The first algorithm we apply is the recursive reduction
process shown in Listing It traverses the CCT finding
and then linking each node with its adjusted parent. To
find the adjusted parent for a node we scan back through
its ancestor nodes looking for the last two nodes with the
same method label as the current node. We then compare
the two subpaths, from the current node to the most recent
occurrence of the same method and from the most recent
to the second most recent occurrence of the method, and if
they match we set the adjusted parent to be the parent of the
most recent occurrence of the method, effectively removing
the last repetition of the recursion. We do this scanning
process not in the original tree but in the adjusted tree,
meaning that earlier repeats of the recursion have already
been removed, therefore all consecutive repetitions of the
same recursion are reduced to a single occurrence.

The result of this algorithm is the adjusted tree with re-
peated recursive call patterns reduced to a single instance



Algorithm 2 Reduce Recursive Paths

Algorithm 4 Calculate Minimum DMD

function REDUCERECURSIVEPATHS(Node n)
n.adjustedParent < FINDADJUSTEDPARENT(n)
n.adjustedParent.adjustedChildren.add(n)
for all Node c in n.children do

REDUCERECURSIVEPATHS(n)

function FINDADJUSTEDPARENT(Node current)
Node matchl < null, match2 < null
Node n <+ current.parent
while n # null & match2 = null do
if n.method = current.method then
if matchl = null then
matchl < n
else
match2 < n
n < n.adjustedParent
if matchl = null||match2 = null then
return current.parent
Node nl <« current.parent
Node n2 <~ matchl.adjustedParent
while nl # matchl & n2 # match2 do
if nl.method # n2.method then
return current.parent
nl < nl.adjusted Parent
n2 < n2.adjusted Parent
if nl # matchl||n2 # match2 then
return current.parent
return matchl.adjustedParent

as illustrated earlier in Figure |5l Note that every node from
the original tree is included in the adjusted tree, so they
contain the same number of nodes, all that has happened
is that some nodes have been moved so they are inserted as
the child of a node that was previously an ancestor higher in
the tree, potentially reducing the overall height of the tree.

Once we have built our adjusted tree we use it to calculate
the height of each node. This is a simple traversal (Listing
where we recursively calculate the height of each child and
set our height to be one more than the maximum child’s
height. We also update the maximum height of the method
associated with each node.

Next we calculate the minimum DMD for each method
using the algorithm in Listing [4]

This is the most complex algorithm in our approach. The
basic idea is to calculate the DMD for each method m to
each of its dominating methods and find the smallest of these
values to be the minimum DMD for m. However finding all
the dominating methods for a method may be costly, so we

Algorithm 3 Calculate Height

function CALCULATEHEIGHT(Node v)

v.height < 0

for all Node c in v.adjustedChildren do
CALCULATEHEIGHT(c)
if c.height + 1 > v.height then

v.height < c.height + 1

if v.height > v.method.maxHeight then

v.method.max Height < v.height

function MINDMD (Method m)

m.minDMD <+ oo

Node n < m.nodes.get First()

n < n.adjustedParent

while n # null do
integer dist <— DMD(n.method, m)
if dist < m.minDM D then

m.minDMD <« dist

n < n.adjustedParent

function DMD(Method p, Method m)
integer dmd < 0
for all Node n in m.nodes do
integer dist <— DISTANCE(p, n)
if dist > dmd then
dmd < dist
return dmd

function DISTANCE(Method m, Node n)
integer dist < 0
while true do
dist < dist + 1
n < n.adjusted Parent
if n = null then
return oo
if n.method = m then
return dist

take advantage of the fact that each dominating method
must exist on the call path for every node n that is labeled
with m. This means we can choose any node labeled with m
and we only need check the methods that are the labels of
its ancestors in the CCT. In our implementation the method
minDMD takes the first node labeled with m and walks back up
the ancestor nodes to the root of the tree using the associated
methods as candidate dominating methods. The method
DMD calculates the dominating method distance from m to p
and returns oo if p does not in fact dominate m.

Once we have the height and minimum DMD calculated
for each method we can traverse the original tree and calcu-
late the induced costs (Listing[5). For each node we calculate
the induced cost of each child node and add it to the current
node’s induced cost if the child is labeled with a subsumed
method. We also add the cost to the aggregated induced
cost for the associated method.

Algorithm 5 Calculate Induced Cost

function CALCULATEINDUCEDCOST(Node n)
n.induced < n.cost
for all Node ¢ in n.children do
CALCULATEINDUCEDCOST(c)
if 1ISSUBSUMEDMETHOD(c.method) then
n.induced < n.induced + c.induced
n.method.induced < n.method.induced + n.induced

function 1SSUBSUMEDMETHOD(Method m)
return (m = java.lang.Method.invoke())||
((m.mazxHeight < Hyound)&(m.minDM D < Dpound))
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As mentioned earlier the basis of our isSubsumedMethod
check is a simple test of the already calculated maximum
height and minimum DMD values against user defined con-
stant values. The only extension to this that we have added
is special handling for java.lang.Method.invoke() so that
it is always marked as a subsumed method. Many Java li-
braries and frameworks make extensive use of reflection for
various functionality. This means that invoke typically oc-
curs in a large number of different contexts within a CCT,
resulting in a large minimum DMD, and usually has a non-
trivial height, as the methods being called via reflection are
often non-trivial. Therefore without adding it as a special
case it will often be listed as a subsuming method when in
fact it is rarely interesting from a performance standpoint.

4.4 Implementation Efficiency

An important aspect of our approach is its efficiency. We
are able to practically apply our approach to captured calling
context tree profiles generated from large scale applications.

In terms of required space all the algorithms from the
previous section operate on precisely the data structures we
outlined without requiring anything more than the small
constant number of variables they declare. For our data
structures the space used is a constant amount of space for
each node and method record plus the space required for
the lists of child references. As each of these (the number
of nodes, methods and total number of children) is bounded
by the number of nodes in the CCT the space required for
our representation is proportional to the size of the CCT.

Of course a number of the algorithms are recursive in na-
ture and may generate a number of call stack frames but
the recursion depth is bounded by the height of the CCT.
Therefore the overall space requirements for processing a
CCT with n nodes and a height of h is O(n + h), which is
equivalent to O(n) given that h < n.

The recursive adjustment algorithm traverses every node
in the tree but the calculation done at each node in find-
AdjustedParent uses only two loops each of which iterates
over, at most, the ancestors of the current node. Hence
findAdjustedParent has a worst case time proportional to
the height of the original CCT and, since it is called once
for each node in the CCT, the cost of building the adjusted
tree is O(n x h). Given that for all but the most extremely
unbalanced trees (which are very unlikely for CCTs of non-
trivial applications) h is proportional to logn the average
cost is O(nlogn).

The height calculation is a simple constant time calcula-
tion for each node in the tree, so O(n).

The minimum DMD calculation is the most expensive al-
gorithm we undertake. For a CCT with n nodes, a height
of h and m methods:

minDMD is called m times.

The loop in minDMD iterates at most A times.

— DMD is called at most h times for each method
m.

Now DMD calls distance once for each node la-
beled with m

— in total distance is called at most h times
for each node in the CCT

— distance is called at most h X n times.

The method distance is also O(h) as the number
of iterations for the loop it uses is bounded by
the height of the CCT
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= entire algorithm is O(h x h x n).

As before h is proportional to log n for all but the
most unbalanced trees so the minimum DMD
calculation is O(nlog®n)

Finally, assuming the isSubsumedMethod check is a con-
stant time operation, the induced cost calculation, is a sim-
ple constant time calculation for each node in the CCT and
is therefore O(n). In our case the isSubsumedMethod check
simply compares the already calculated height and minimum
DMD to constant values.

S. EVALUATION

In order to evaluate our subsuming methods approach we
have captured CCT profiles of the 14 benchmark applica-
tions in the DaCapo-9.12-bach suite [8] and applied our sub-
suming methods analysis to those captured profiles. Using
the results of those experiments we have undertaken:

e A study of the characteristics of subsuming methods

e An empirical evaluation of the analysis time required

e Three detailed case studies that describe real problems
found by our tool in the benchmark applications

All benchmarks were run with their default input size.
All experiments were run on a quad-core 2.4 GHz Intel Core
i7 with 8 GB 1600 MHz DDR3 memory running Mac OS
X 10.9.3. We used Java SE Runtime Environment (build
1.7.0-40-b43) with the HotSpot 64-Bit Server VM (build
24.0-b56, mixed mode).

To capture the CCT profiles for each benchmark we used
the open-source JP2 profiler developed at the University of
Lugano |20} 21]. Our subsuming methods analysis can be
applied to any CCT structured profile data but the JP2 pro-
filer appealed to us for our experiments because it measures
execution cost in terms of a platform independent metric,
namely the number of bytecode instructions executed, which
makes the captured profiles accurate, portable, comparable
and largely reproducible. The only reason for variation in
the profiles across multiple runs is non-determinism in the
application or in the JVM (often related to thread schedul-
ing in multi-threaded applications).

For the majority of the benchmarks we ran JP2 with the
DaCapo-9.12-bach suite in the fashion outlined in the most
recent JP2 paper [20], only adding our own custom ‘dumper’
which is used at program exit to serialise the captured JP2
profile to the binary CCT format our tool takes as an in-
put. The framework activates the JP2 profiling using a
callback mechanism that the DaCapo benchmark harness
provides, so that the captured JP2 profiles include only the
benchmark application code and not the benchmark har-
ness. However we found that this approach only activated
profiling for the thread that actually called the benchmark
harness callback and any threads it subsequently created.
For the client/server benchmarks (tomcat, tradebeans and
tradesoap) and the benchmarks with background worker
threads that were initialised before the main benchmark
starts (eclipse and xalan) using the benchmark harness
callback meant the captured profile included only a small
fraction of the actual benchmark activity. Therefore for
these 5 benchmarks we used our own wrapper which ac-
tivated profiling for the entire run of the benchmark.

The results of our experiments on the DaCapo suite are
summarised in Table [d We ran and analysed each bench-
mark 5 times. Because of the very low variation between



Table 4: Results for DaCapo benchmarks when Subsuming Methods have height and DM D,,,;,, > 4
Instr Count CCT Node Count Method Count ) Analysis

Benchmark (millions) All Subsuming Ratio All Sub. Ratio S(e) | 5@ S() Timcy(ms)
avrora 8393.98 176646.6 7158.0 4.05% 2189.0 74.0 3.38% 2 4 16 839.2
batik 2413.90 573887.0 48218.4 8.40% 6616.0 416.8 6.30% 0 2 18 3870.4
fop 863.41 628750.8 71429.8 11.36% 6709.4 345.0 5.14% 5 1 14 4512.4
luindex 2767.65 207279.0 7186.6 3.47% 2667.0 162.0 6.07% 3 1 16 980.0
lusearch 8121.91 59987.2 3850.2 6.42% 1726.0 73.0 4.23% 3 3 15 482.6
pmd 2272.56 4845777.8 1226270.6 25.31% 4573.2 266.2 5.82% 7 2 12 38424.4
sunflow 49626.02 299438.2 7666.4 2.56% 2341.6 106.0 4.53% 0 4 16 1087.2
xalan 8556.75 439529.6 38988.8 8.87% 4506.4 278.0 6.17% 1 5 15 2742.6
tradebeans 22799.24 8024512.8 1117675.8 13.93% 29111.6 2465.2 8.47% 6 4 10 52801.4
tradesoap 24768.51 8693078.0 1229925.6 14.15% 29913.8 2553.2 8.54% 4 1 15 62061.4
h2 12745.53 138520.2 17010.6 12.28% 1969.8 102.2 5.19% 4 3 13 1171.4
jython 12289.34 18982647.8 2667036.6 14.05% 5794.4 441.0 7.61% 7 1 12 215782.6
eclipse 67468.64 | 20670484.0 2942069.0 14.23% 16793.2 1841.0 10.96% 2 2 16 195120.6
tomcat 4067.95 2623250.6 357123.6 13.61% 13494.8 1025.2 7.60% 2 3 15 13823.2
Minimum 2.56% 3.38% 0 1 10
Lower Quartile 6.91% 5.15% 2 | 1.25 | 13.25
Median 11.82% 6.12% 3 2.5 15
Upper Quartile 14.02% 7.61% | 4.75 | 3.75 16
Maximum 25.31% 10.96% 7 5 18

S(e) — The number of the top 20 subsuming methods that were also in the top 20 exclusive cost methods
S(i) — The number of the top 20 subsuming methods that were also in the top 20 inclusive cost methods
S(*) — The number of the top 20 subsuming methods that did not appear in either the top 20 exclusive or inclusive cost methods

each run our table only lists the average measurements across
the 5 runs for each benchmark [l We characterised all meth-
ods with a height and minimum DMD greater than four as
subsuming methods. We chose to use four as our thresh-
old as it represents a relatively small distance in the CCT
that can be readily visualised but still allows us to subsume
a significant proportion of methods. We have also experi-
mented with other small values and they generally return
very similar results. The proportion of methods subsumed
slowly increases as the threshold increases in an unsurprising
manner.
The results show that:

e Across the benchmarks a median of 6.12% of all meth-
ods were subsuming methods

e The median size of the subsuming CCT was 11.82% of
the size of the full CCT

e The median value for S(x) was 15.

S(*) measures the number of the top 20 subsuming meth-
ods (by induced cost) that did not appear in either the
top 20 inclusive cost or the top 20 exclusive cost methods
i.e. they represent code locations not directly highlighted
by traditional measures. A median value of 15 implies 75%
of the top 20 subsuming methods represented new potential
optimisation opportunities. The compression results (only
6.12% of all methods and 11.82% of all CCT nodes were
subsuming) demonstrate that subsuming methods analysis
produces a CCT that is greatly reduced in size and has far
fewer unique methods to inspect. We feel this substantially
eases the task of interpreting the performance data.

We recorded the time taken to complete the analysis for
each of our benchmarks. Note that this was the offline anal-
ysis time, it did not include the time taken to execute and
profile each benchmark, only the time taken to parse and

"https://www.cs.auckland.ac.nz/ dmap001/subsuming
has more details and complete results.
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load the previously recorded profile data and apply our sub-
suming methods analysis. In section 4] we analysed the
efficiency of our analysis and showed that it was practical to
apply our analysis to large sets of performance data. Here
we have the empirical data to support that claim, even the
largest of our data sets was able to be analysed in under
4 minutes. The graph in Figure [f] shows the relationship
between the number of nodes in the CCT and the required
analysis time. The fit line we have plotted is of the form
y = a + bxlog?(z) where a and b are constants and x and y
are the CCT node count and analysis time respectively. The

200k
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50k
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Figure 6: Analysis Time vs CCT Size


https://www.cs.auckland.ac.nz/~dmap001/subsuming

fit line indicates that the measured analysis time is very close
to our theoretical complexity of O(nlog?n).

5.1 Case Studies

We have undertaken a number of case studies to demon-
strate the utility of using subsuming methods in performance
analysis. Each of these case studies is based on one of the in-
dividual benchmarks from the DaCapo suite. Due to space
limitations we have only been able to present a limited num-
ber of the case studies here. All of the analysis and imple-
mentation of improvements for all of the case studies was
completed within a single week on code bases with which
we were unfamiliar, highlighting the fact that the subsuming
methods approach rapidly facilitated useful improvements in
the benchmark code.

5.1.1 Case Study: fop

Our first case study, introduced earlier in section [2] is on
the fop benchmark. As we described earlier the method
org.apache.xmlgraphics.ps.PSGenerator.formatDouble
accounts for over 26% of the total cost of the benchmark.
This method uses a java.text.NumberFormat to convert a
double into a Java string with a 3 decimal place format.
Having identified this costly method we have been able to
implement a highly customised version that performs the
same transformation much more efficiently, leading to an
overall improvement in the benchmark of 22%.

The difficult part of this optimisation was identifying the
opportunity i.e. that PSGenerator.formatDouble was in-
efficiently using Java’s general purpose number formatting
library. We found this opportunity almost immediately us-
ing subsuming methods. The top subsuming method in our
analysis, with an induced cost of 13.6% (and inclusive cost of
over 26%), is java.text.DecimalFormat.format. Inspect-
ing the callers of this method we find that it is being called
over 99% of the time by java.text.NumberFormat.format
which in turn is being called over 98% of the time by PS-
Generator.formatDouble. In short it takes only a brief time
inspecting the top subsuming method in the benchmark to
highlight the PSGenerator.formatDouble method. All that
remains is to inspect the source code for the PSGenerator
class to identify the opportunity that exists to fix the ineffi-
cient formatting code.

5.1.2  Case Study: h2

The second case study is the h2 benchmark that runs a
series of SQL load tests via JDBC against the H2 pure Java
relational database implementation.

The second highest subsuming method by induced time in
the benchmark is org.h2. jdbc.JdbcResultSet.getString,
with an induced cost of nearly 16% and inclusive cost of over
25%. This method is called repeatedly whilst processing the
results of SQL queries to retrieve the individual values for
each row and column. It performs the relatively simple task
of retrieving the Java object value at a particular index in
the result set and converting it to a Java string. There
are two major inefficiencies in the implementation that we
were able to fix. Firstly it performs a very expensive valid-
ity check (including testing whether the associated database
connection is still valid) on every call, even though the re-
sults for the current row have already been retrieved into
memory and accessing them does not require any use of the
underlying database connection. Secondly the string conver-
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sion for date and timestamp columns relies on an inefficient
java.sql.Timestamp.toString implementation. More than
40% of the method time is spent in Timestamp.toString
even though less than 10% of the columns in the database
are dates or timestamps. We were able to fix both of these
issues by patching the H2 code to avoid the expensive va-
lidity check and the call to Timestamp.toString, which we
replaced with our own string conversion routine. These fixes
combined to reduce the cost of JdbcResultSet.getString
by 66% and the overall cost of the benchmark by 17%.

5.1.3 Case Study: tomcat

Our final case study is on the tomcat benchmark. Tomcat
is a popular Java HTTP web server and servlet engine im-
plementation. Using subsuming methods analysis highlights
two significant optimisation opportunities in the benchmark,
though neither is an inefficiency in the Tomcat server code-
base. These are real optimisation opportunities in terms of
the benchmark itself, but are probably atypical in terms of
how Tomcat is used in other scenarios. Nevertheless they
are real problems in this benchmark that we were able to
find and fix and the fact that they may be atypical implies
that the tomcat benchmark itself may not be a great repre-
sentation of a typical Tomcat server deployment.

The first opportunity is org.dacapo.tomcat.Page.fetch,
which is the implementation of a HTTP client that drives
the benchmark by sending a series of HT'TP requests to the
Tomcat server. Three of the top four subsuming methods
by induced cost are being called by this method. In to-
tal the Page.fetch method has an inclusive cost of 49% of
the entire benchmark. Checking the implementation reveals
some major inefficiencies in processing the received HTTP
responses. The responses (received initially as a stream of
bytes) are converted to a Java string, this string is then con-
verted back into a byte array to calculate an MD5 check-
sum for the response and compare it to an expected result.
The string version of the response is then also formatted
with platform specific line endings (using a regular expres-
sion search and replace) in preparation to be written to a
local log file, but the response is only actually written to
the log file in exceptional circumstances (such as when the
checksum doesn’t match the expected result). We changed
the implementation to calculate the MD5 checksum directly
from the received bytes and only create the string encoded
response with platform specific line endings when actually
necessary. This reduces the cost of Page.fetch by over 65%.

The second optimisation opportunity we identified from
inspecting the list of top subsuming methods when sorted
by inclusive time. As we briefly discussed in section [2] when
working with the full list of methods (i.e. not filtered to
just the subsuming methods) the list of top inclusive time
methods is rarely helpful. It is naturally dominated by
the methods near the root of the CCT and in large-scale
object-oriented applications with large CCTs and deep call-
ing hierarchies there are a large number of framework meth-
ods that come to dominate the list. When filtered to just
the subsuming methods however, because one of our crite-
ria for subsuming methods (namely requiring a non-trivial
minimum DMD) naturally excludes methods used in a pre-
dictable fashion, the list better provides a succinct overview
of the most costly interesting sub-trees in the CCT.

In the case of the tomcat benchmark the list allows to
quickly find that JspCompilationContext.compile, which



is the seventh method on the list, accounts for over 28% of
the cost of the benchmark (Page.fetch, at 49%, was sec-
ond on the list behind only java.lang.Thread.run). We
were able to quickly confirm that this represented the time
the benchmark was spending compiling requested JSP re-
sources first into Java servlets and then into Java bytecode.
However JSP resources can be precompiled. Doing this re-
duces the time being spent in the jasper compiler during
the benchmark by 89%. The time was not completely elim-
inated because there was one JSP property group defined
by Tomcat’s example web application which relied on run-
time properties and therefore triggered a recompilation of
the associated JSP.

Neither of these optimisations were problems in the Tom-
cat server implementation, which is a mature and exten-
sively tuned application, but they were both inefficiencies
in the profiled benchmark that our subsuming methods ap-
proach allowed us to rapidly find and address. The combi-
nation of the two improvements produced a cost reduction
in the benchmark of over 57%.

5.1.4  Summary of Case Studies

In our case studies we have been able to demonstrate the
ability of subsuming methods analysis to aid in the identifi-
cation of patterns of expensive methods calls that can then
be optimised. Each case study highlighted a unique set of
opportunities that were able to be addressed in different
ways. For fop we were able to replace a powerful but ineffi-
cient generic library with a highly specialised approach. In
the h2 benchmark we removed unnecessary work (the valid-
ity checks) and optimised a poor toString implementation.
In the tomcat benchmark we again removed unnecessary
work in the client harness and avoided the cost of compiling
JSP pages at runtime by precompiling them. All of these
opportunities were readily found by investigating the results
of the subsuming methods analysis.

6. DISCUSSION

Subsuming methods is a novel idea that provides addi-
tional insight into the runtime behaviour and performance
of object-oriented applications. It enables us to discover new
optimisation opportunities that are not apparent by inspect-
ing the hot methods of an application. We regard it as a
complementary approach, it provides the most benefit when
used in conjunction with existing approaches to interpret-
ing performance data (such as hot methods, calling context
ring charts |18, |1] and using multiple context sensitive views
[2]). It has the advantage of being efficient to apply as an
offline analysis over data that can be obtained using a range
of profiling tools. This means the approach is applicable in
a range of performance investigations, from execution time
and memory allocation profiling to more detailed analyses
such as memory access patterns and CPU pipeline stalling
instructions. It is also applicable in a range of runtime con-
texts, from detailed experimental performance analysis in
dedicated test environments to the analysis of low overhead
sampling profiles from production systems.

In section [4.1] we presented a particular approach for iden-
tifying subsuming methods, but there are other techniques
that would complement or enhance our current approach.
For example we are interested in using more sophisticated
static analysis techniques, such as cyclomatic complexity
measures, rather than height, as a measure of the range
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of behaviour a method induces. We also plan to investi-
gate using static analysis to identify subsuming methods in
other ways, such as identifying classes that implement key
interfaces or hold key controlling roles in an application.

One of the weaknesses of our current approach is that
methods such as java.lang.Method.invoke, whose child
method calls are determined by their parameter values and
that are used in a large number of different calling contexts,
may get highlighted as subsuming methods. In actual fact
it is some ancestor method higher up the call chain that is
‘responsible’ for the cost of the child method calls as it con-
structed the parameter values to pass to the method. It is
a straightforward problem to work around for specific cases
but we are interested in developing a general heuristic or
approach for identifying these methods.

The evaluation we have presented in this paper is based
upon empirical results and case studies from the DaCapo
benchmark suite. We chose to use the benchmark suite as it
provides a good range of different runtime behaviours from
an independent source. The benchmarks in the suite are
not ideal as examples of large-scale applications but our re-
sults have been encouraging and indicate that our approach
should scale up well to handle the software found in indus-
try that motivated our work. We have recently completed
an industrial case study in which we applied our approach to
a real-world large-scale application with promising results.

7. CONCLUSION

Experienced software engineers know that there are re-
peated patterns of method calls within a profiled applica-
tion, induced by the design patterns and coding idioms used
by the software, which represent significant optimisation op-
portunities. In this paper we have presented an approach
to assist in automatically detecting these repeated patterns.
By identifying the key subsuming methods within the calling
context tree profile we are able to discover new optimisation
opportunities not readily apparent from the original profile
data. Our approach is implemented as an efficient offline
analysis that can be applied to previously collected data
from existing tools and environments. This makes it prac-
tical to apply, even for large-scale live production systems,
and a useful additional tool for a wide range of performance
investigations.
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