
Systematically Deriving Quality Metrics for Cloud
Computing Systems

Matthias Becker* Sebastian Lehrig† Steffen Becker†

{matthias.becker|sebastian.lehrig|steffen.becker}@{*uni-paderborn|†informatik.tu-chemnitz}.de
*Heinz Nixdorf Institute †Software Engineering Chair

University of Paderborn, Paderborn, Germany Chemnitz University of Technology, Chemnitz, Germany

ABSTRACT
In cloud computing, software architects develop systems for
virtually unlimited resources that cloud providers account
on a pay-per-use basis. Elasticity management systems pro-
vision these resources autonomously to deal with changing
workload. Such changing workloads call for new objective
metrics allowing architects to quantify quality properties
like scalability, elasticity, and efficiency, e.g., for require-
ments/SLO engineering and software design analysis. In
literature, initial metrics for these properties have been pro-
posed. However, current metrics lack a systematic deriva-
tion and assume knowledge of implementation details like
resource handling. Therefore, these metrics are inapplicable
where such knowledge is unavailable.

To cope with these lacks, this short paper derives metrics
for scalability, elasticity, and efficiency properties of cloud
computing systems using the goal question metric (GQM)
method. Our derivation uses a running example that out-
lines characteristics of cloud computing systems. Eventually,
this example allows us to set up a systematic GQM plan and
to derive an initial set of six new metrics. We particularly
show that our GQM plan allows to classify existing metrics.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; D.2.11 [Software Engineering]: Software Architec-
tures—Languages

Keywords
cloud computing; scalability; elasticity; efficiency; metric;
SLO; analysis; GQM

1. INTRODUCTION
In cloud computing, software architects develop appli-

cations on top of compute environments being offered by
cloud providers. For these applications, the amount of of-
fered resources is virtually unlimited while elasticity man-
agement systems provision resources autonomously to deal
with changing workloads. Furthermore, providers bill pro-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
Copyright c© 2015 ACM 978-1-4503-3248-4/15/01 ...$15.00.
http://dx.doi.org/10.1145/2668930.2688043

visioned resources on a per-use basis [1]. As a consequence
of these characteristics, architects want their applications
to use as few resources as possible in order to save money
while still maintaining the quality requirements of the sys-
tem. Quality properties that focus directly on these aspects
are scalability, elasticity, and efficiency [9].

These quality properties need to be quantified for require-
ments engineering and software design analysis by means of
suitable metrics. For instance, cloud consumers and cloud
providers need to negotiate service level objectives (SLOs),
i.e., metrics and associated thresholds [7]. Such SLOs have
to consider characteristics like changing workloads (“how
fast can an application adapt to a higher workload?”) and
pay-per-use pricing (“how expensive is serving an additional
consumer?”). However, no established metrics for require-
ments/SLO engineering and software design analysis exist.
Current metrics assume knowledge of implementation de-
tails as they focus on the application at run-time [9] and lack
a systematic derivation making such limitations explicit.

In literature, classical performance-oriented metrics [4]
like response time and throughput are insufficient for situa-
tions relevant for cloud computing applications. First, they
do not take changing workloads into account, e.g., metrics
to describe reaction times to system adaptations are miss-
ing. Second, the degree to which systems match resource
demands to changing workloads cannot be quantified. More
recent work [9] proposes metrics for such characteristics that
assume knowledge of implementation details like resource
handling. These metrics are inapplicable when such knowl-
edge is unavailable, e.g., in early design phases and for SLOs.

To cope with these lacks, we systematically derive an ini-
tial set of scalability, elasticity, and efficiency metrics using
the goal question metric (GQM) method [15]. First, we il-
lustrate the characteristics of cloud-aware applications using
a running example scenario and, subsequently, derive met-
ric candidates from this scenario. Second, by generalizing
our metric candidates, we develop a first set of six metrics.
Third, we show that our GQM plan allows to systematically
classify existing metrics and makes their limitations explicit.

This paper contributes our systematic GQM plan, includ-
ing classifications of our six and related work metrics.

This short research paper is organized as follows. Sec-
tion 2 gives definitions of the considered quality properties
and Sec. 3 introduced the running example system and its
requirements. The system is implemented as cloud-aware
application. In Sec. 4, we systematically derive a set of new
metrics using the GQM method. In Sec. 5, we put our met-
rics in relation to existing metric proposals in literature and
classify these metrics using our GQM plan in Sec. 6. Finally,
Sec. 7 concludes the paper and highlights future work.

169

2. DEFINITIONS
Because we distinguish scalability, elasticity, and efficiency

throughout our paper, we first give the definitions of these
properties based on the work of Herbst et al. [9]: “Scalabil-
ity is the ability of the system to sustain increasing work-
loads by making use of additional resources” [9]; “Elasticity
is the degree to which a system is able to adapt to workload
changes by provisioning and deprovisioning resources in an
autonomous manner, such that at each point in time the
available resources match the current demand as closely as
possible” [9]; and “Efficiency expresses the amount of re-
sources consumed for processing a given amount of work” [9].
We use these definitions throughout this paper to derive
metrics for each quality property. In the next section, we
exemplify these definitions based on our running example.

3. MOTIVATING EXAMPLE
As an example scenario, we consider a simplified online

bookshop. An enterprise assigns a software architect to de-
sign this shop, given the following requirements:

Rfct: Functionality In the shop, customers shall be able
to browse and order books.

Rscale: Scalability The enterprise expects an initial cus-
tomer arrival rate of 100 customers per minute. It fur-
ther expects that this rate will grow by 12% in the first
year, i.e., increase to 112 customers per minute. In the
long run, the shop shall therefore be able to handle this
increased load without violating other requirements.

Relast: Elasticity The enterprise expects that the context
for the bookshop repeatedly changes over time. For ex-
ample, it expects that books sell better around Christ-
mas while they sell worse around the holiday season
in summer. Therefore, the system shall proactively
adapt to anticipated changes of the context, i.e., main-
tain a response time of 3 seconds or less as well as
possible. For non-anticipated changes of the context,
e.g., peak workloads, the system shall re-establish a
response time of 3 seconds or less within 10 minutes
once a requirement violation is detected.

Reff : Efficiency The costs for operating the bookshop shall
only increase (decrease) by $0.01 per hour when the
number of customers concurrently using the shop in-
creases (decreases) by 1. In other words, the marginal
cost of the enterprise for serving an additional cus-
tomer shall be $0.01.

Requirements Rscale, Relast, and Reff are typical reasons
to operate a system in an elastic cloud computing environ-
ment [9], i.e., an environment that autonomously provisions
the required amount of resources to cope with contextual
changes. Thus, the software architect designs the shop as
a 3-layer Software as a Service (SaaS) application operating
in a rented Infrastructure as a Service (IaaS) cloud comput-
ing environment that provides replicable virtual servers (see
Fig. 1). The three layers involve the typical layers of web
applications: presentation, application, and data layer.

The architect designs each SaaS layer such that it can
consume a higher/lower quantity of IaaS services to sustain
changing workloads. Technically, he ensures that each SaaS
layer can be replicated and load-balanced over additional
IaaS virtual servers (scale-out) or be removed again (scale-
in). Therefore, properties like scalability (Rscale), elasticity

«Replicable»

Data Layer

«Replicable»

Application Layer
«Replicable»

Presentation LayerSaaS
Environ-

ment

IaaS
Environ-

ment

Book
Management

Book Database

Replicable Virtual Servers

Enterprise /
IaaS Consumer

IaaS Provider

SLOs

Book Shop
Frontend

...

Figure 1: Overview of the simplified online bookshop.

(Relast), and efficiency (Reff) of the bookshop are inher-
ently coupled with corresponding properties of the underly-
ing IaaS environment. The enterprise (IaaS consumer) and
the IaaS provider have, thus, to agree on measurements and
thresholds for these properties. Typically, consumer and
provider achieve an agreement based on negotiated SLOs as
exemplified by Rscale, Relast, and Reff . However, currently
there is a lack of agreed-on metrics for scalability, elastic-
ity, and efficiency in the context of cloud computing. This
lack results in too few SLOs or SLOs that cannot be quanti-
fied and checked by cloud consumers. In consequence, there
is the risk that requirements Rscale, Relast, and Reff can-
not be fulfilled due to a non-anticipated (and contractually
uncheckable) behavior of the underlying IaaS environment.

4. DERIVING METRICS WITH GQM
We derive our metrics with the goal question metric (GQM)

method [15] in a systematic top-down fashion by first defin-
ing the goal to analyze cloud computing system designs, e.g.,
for design analysis or SLO specification (conceptual level).
Second, we formulate questions that help achieving the goal
(operational level). Finally, we identify metrics that allow
us to answer the questions (quantitative level).

4.1 Goal
Table 1 shows the goal in form of the GQM goal definition

template. The metrics we want to define in this paper shall
help to analyze (purpose) the scalability, elasticity, and ef-
ficiency (issue) of cloud computing system designs (object)
from the viewpoint of a software architect (viewpoint).

Note that the derived metrics are not necessarily general-
izable or applicable for different objects or viewpoints. For
example, cloud computing vendors may perceive the effi-
ciency of cloud system software different than software ar-
chitects and, thus, need different metrics.

Table 1: Goal definition according to GQM plan

Purpose Analyze
Issue the scalability, elasticity, and efficiency of
Object cloud computing system designs
Viewpoint from a software architect’s viewpoint

4.2 Questions
Next, we define questions that help achieving our defined

goal. We define questions for each quality property sepa-
rately. All questions are indicator questions for the accord-
ing quality property as defined in Sec. 2.

170

Questions for Scalability.
According to the definition, scalability is an ability, i.e.,

a system is either scalable or it is not. Hence, we define
questions whether a system is able to fulfill its requirements
under increasing workload. Moreover, the increase rate of
the workload can be a relevant context factor.

Q1scale Does the system fulfill its requirements when the
workload increases (from workload WLX to WLY)?

Q2scale Does the system fulfill its requirements when the
workload increases with rate R (from workload WLX

to WLY within time t)?

Questions for Elasticity.
Elasticity is, according to the definition, the degree to

which a system is able to autonomously adapt to workload
changes. Thus, we define questions that consider the time
it takes for the system to adapt.

Q3elast How often does the system violate its requirements
under workload WLX in time period ∆t?

Q4elast From a point the system violates its requirements,
how long does it take before the system recovers to a
state in which its requirements are met again?

Questions for Efficiency.
Efficiency relates the amount of demanded resources to

the amount of work requested. Hence, we formulate ques-
tions that ask for this relation.

Q5eff How close to the actual resource demand can the
system align the resource provisioning?

Q6eff What is the amount of resources, autonomously pro-
visioned by the system, for a given workload WLX?

4.3 Metrics
In this section, we summarize general requirements for

metrics and concrete requirements for cloud computing sys-
tem metrics. We then derive our metrics that answer the
questions from Sec. 4.2 in two steps. In the first step, we
derive exemplary metrics (EM) for scalability, elasticity, and
efficiency for the example system in Sec. 3. In the second
step, we generalize these metrics to answer the questions for
arbitrary cloud computing systems.

4.3.1 Requirements for Derived Metrics
The metrics we define have to meet four typical charac-

teristics of metrics [7] in order to be applicable by software
architects: (1) quantifiability, (2) repeatability, (3) compa-
rability, and (4) easy obtainability. Additionally, we require
our metrics to be (5) context dependent to reflect the context
dependency of cloud computing systems. Figure 2 shows
parts of the context that impact the quality of a cloud com-
puting system as a feature diagram. This context covers
the system’s workload, i.e., work and load, and deployment,
i.e., replication of components, processor speed, memory
size, network speed, etc. This entire context is subject to
change at run-time in a typical cloud computing environ-
ment. Hence, metrics need to have a context parameter to
enable the comparison of implementations in different con-
texts. For example, system SA may have less SLO violations

per minute with workload WLX (context) but more SLO vi-
olations per minute with workload WLY (different context)
compared to system SB .

4.3.2 Derived Metrics from Example Scenario
In this section, we define exemplary metrics (EM) that

can be used to answer the questions from Sec. 4.2. In this
section, we restrict these metrics to evaluate whether the
requirements for the example scenario in Sec. 3 are fulfilled.
In Sec. 4.3.3, we generalize these metrics for arbitrary cloud
computing systems.

The first requirement Rfct in our example scenario is a
general requirement that defines the basic functionality of
the bookshop. However, metrics for functional requirements
are out of the scope of this paper.

Exemplary Scalability Metrics.
Rscale specifies the system’s required scalability, i.e., the

system’s ability to make use of additional resources at in-
creasing workloads. Hence, this requirement is dependent
on the context, e.g., the load specified as arrival rates. The
book enterprise has to specify arrival rates, e.g., by estimat-
ing current sales, sale trends, and seasonal sale variability.

The bookshop’s software architect checks whether the de-
signed system fulfills requirement Rscale by evaluating ques-
tions Q1scale and Q2scale for this design. A metric EMscale,
defined as the maximum workload the system can handle
without violating requirement Rscale, answers question Q1scale.
For example, the software architect can measure this metric
by predicting the performance for the bookshop design with
the increased workload of 12% as expected by the book en-
terprise (predictions can, e.g., be conducted using queuing
networks, c.f. [14]).

The enterprise does not specify at which rate the work-
load increases, e.g., linearly or exponentially. Therefore, to
answer question Q2scale, the bookshop’s software architect
needs a metric EMrate, defined as the rate a system can
scale up to a certain maximum workload. For example, the
software architect can measure this metric by predicting the
performance of the bookshop design under increasing work-
load, e.g., a linear increasing workload of one additional cus-
tomer per month. Afterwards, the architect can discuss the
quantified requirement with the enterprise.

Exemplary Elasticity Metrics.
Relast specifies the bookshop’s required elasticity, i.e., the

degree to which the bookshop is able to adapt to workload
changes by autonomously provisioning and deprovisioning
cloud resources. In general, these workload changes (con-
text) can be either anticipated or impossible to anticipate.
As described in Sec. 3, the enterprise can anticipate vari-
ability of the bookshop’s customers demand, i.e., the enter-
prise estimates to sell more books around Christmas than in
mid-summer. Other short-term variations of the workload
cannot be anticipated, e.g., peak workloads.

The bookshop’s software architect can evaluate whether
Relast is fulfilled by answering questions Q3elast and Q4elast

for the bookshop design. The cloud computing system can
potentially cope with both, anticipated and non-anticipated,
workload variability. However, considering the fact that re-
sources can be available with delay, the system will likely
violate requirement Relast until the time additionally provi-
sioned resources are available. A metric EMviol, defined as

171

Context

Workload

Work

OperationwCalls Inputw(Parameter)

Load

RequestwRate

Deployment

Replication Processor Memory Network

ConcurrentwUsers

Figure 2: Feature diagram showing aspects of context.

number of requirement violations for a given workload, is a
mean for the software architect to answer question Q3elast.
A metric EMadapt, defined as the time between detection of
a requirement violation and the time when the requirement
is fulfilled again, e.g., by autonomous resource provisioning,
answers question Q4elast. For example, the bookshop’s ar-
chitect can measure both metrics, EMviol and EMadapt, by
simulating the bookshop’s autonomous behavior using self-
adaptive queuing networks [2].

Exemplary Efficiency Metrics.
Reff specifies the required efficiency of the bookshop re-

garding its resource consumption. The bookshop’s autonomous
provisioning and deprovisioning adapts the resource con-
sumption to the bookshop’s workload, i.e, the workload is
important context here as well. Furthermore, the operation
costs of the bookshop depend on this resource consumption
as the enterprise has to pay for the cloud resources in a
pay-per-use fashion.

The software architect can evaluate whether the Reff is
fulfilled by answering questions Q5eff and Q6eff . A metric
EMclose can be defined as the difference between the book-
shop’s amount of provisioned resources for a workload WLX

and the minimum amount of resources required to cope with
that workload WLX without violating the stated require-
ments. The bookshop’s software architect can use this met-
ric to answers question Q5eff . A metric EMprov, defined as
the amount of resources provisioned for a workload WLX ,
answers question Q6eff . Whereas the marginal costs can be
calculated directly from the metric EMprov, EMclose sup-
ports the software architect to determine whether the re-
quired marginal costs are achievable. Again, both metrics
can be measured by simulating the bookshop’s autonomous
behavior under variable workload, for example.

4.3.3 Generalized Metrics
We define initial new metrics that we derived from the

six exemplary metrics (EM) from the previous subsection.
For each metric, we define the corresponding quality prop-
erty it quantifies, what is being measured, on which con-
textual properties the measurement depends, and the scope
and unit of the measurement result. To guarantee objectiv-
ity, our metrics rely only on externally observable properties
of a system, e.g., costs per time. Reproducibility is guaran-
teed by specifying the contextual properties on which the
metric depends. Thus, context dependency is also guaran-
teed. By defining the measurement result’s scope as ordinal
numbers, we guarantee that the metric reflects a testable
quantification of the quality property. Additionally, we pro-

vide a small example for each metric. Table 2 summarizes
the following generalized metrics.

Scalability Metrics.
Scalability Range (ScR) Based on EMscale, we define

scaling range as a scalability metric that reflects a cloud
computing system’s ability to achieve its SLOs in a certain
workload range, e.g., a range of request rates. For each single
workload within this range, the system achieves its SLOs.
The workload range is defined as a maximum workload. For
example, a perfectly scalable system SA can scale up to a
infinite request rate, i.e., ScRSA = ∞ req/min. A less
scalable system, for example, scales up to a request rate of
112 requests per minute, i.e., ScRSB = 112 req/min.

Scalability Speed (ScS) Based on EMrate, we define
scalability speed ScS as a workload range with a maximal
change rate in which a system can scale. This metric is a
scalability metric which additionally considers the rate at
which a system can scale. That is, the metric defines that
a system is able to achieve its SLOs at each time when the
workload changes at a maximal changing rate. The rate is
defined by a maximum workload and an increase rate. For
example, a scalable system can scale up to a request rate of
112 req/min with a linear increase rate of 1 additional re-
quests per month, i.e., ScSSA = (112 req/min, 1 req/month).

Elasticity Metrics.
Mean Time To Quality Repair (MTTQR) We de-

rive the mean time to quality repair metric from EMadapt,
the measure how quickly a system can adapt to workload
changes. It is a measure for elasticity and depends on a
workload delta, i.e., the increase/decrease between two work-
loads. MTTQR defines the mean time a system needs to re-
establish its SLOs when the workload increases/decreases for
a defined workload delta specified as factor (real number).
Hence, MTTQR is measured in time units. Since it defines
a mean time, MTTQR is specific for a specified time frame
in which the mean is calculated. For example, with the same
workload increase factor of 1.2, a perfectly elastic system will
adapt itself to the increasing workload within zero time, i.e.,
MTTQRSA,1d(1.2 req/s) = 0 min. A less elastic system,
e.g., will need a mean time of 10 min (calculated over one
day) to adapt itself to increasing workload after it detects the
workload increase, i.e., MTTQRSB ,1d(1.2 req/s) = 10 min.

Number of SLO violations (NSLOV) The number
of SLO violations in a defined time interval is derived from
EMviol. This metric measures elasticity of a system. The
workload delta is specified as a factor (real number) as well.

172

Table 2: Derived quality property metrics for cloud computing systems

Metric Unit Example

Scalability Metrics
Scalability Range (ScR) max The system scales up to 112 req./min
Scalability Speed (ScS) (max, rate) The system scales up to 112 req./min with linear increase rate 1

req./month

Elasticity Metrics
Number of SLO Violations (NSLOV) 1/[time unit] 42 SLO (response time) violations in 1 hour
Mean Time To Quality Repair (MTTQR) [time unit] 30 seconds for an additional 10 requests/hour

Efficiency Metrics
Resource Provisioning Efficiency (RPE) [0, ∞] 10% more resources than actual resource demand
Marginal Cost (MC) [monetary unit] $1.00 for an additional 100 requests/hour

NSLOV reflects how often a system violates its SLOs when
workload changes at a given rate, measured as a real num-
ber. For example, with a workload increase factor of 1.2, a
perfectly elastic system would have 0 SLO violations per
request, i.e., NSLOVSA(1.2 req/s) = 0. In contrast, a
non-elastic system will violate its SLO for each request, i.e.,
NSLOVSA(1.2 req/s) = 1.

Efficiency Metrics.
Resource Provisioning Efficiency (RPE) We define

resource provisioning efficiency (RPE) as a metric to mea-
sure a system’s efficiency in a specified workload delta based
on EMclose. That is, the metric measures the mismatch be-
tween actual resource utilization and resource demand while
the workload is changing. We measure this mismatch in per-
centage, i.e., as a real number. A perfectly efficient system
will adapt its resource demand exactly to the resource de-
mand at all times. For example, if the workload increases
with factor 1.2 the system will provision exactly that amount
of additional resources required to cope with this additional
workload, i.e., RPESA(1.2 req/s) = 0.

Marginal costs (MC) We derive the marginal costs for
a specified workload delta from EMprov. Marginal costs are
the operation costs to serve one additional workload unit,
thus, measuring the efficiency of a cloud computing system.
For example, the operation costs to serve 20% additional
requests per second (factor 1.2) can be $1.00 for system SA,
i.e., MCSA(1.2) = $1.00.

5. RELATED WORK
In this section, we present related work that also targets

metrics for scalability, elasticity, and efficiency in the context
of cloud computing and SLO specification. Where applica-
ble, we classify found metrics using our GQM plan in Sec. 6.

In the area of scalability metrics, Bondi [5] further di-
vides scalability into structural scalability (“ability to ex-
pand in a chosen dimension without major modification”)
and load scalability (“ability of a system to perform grace-
fully as the offered traffic increases”). In terms of this clas-
sification, we focus on load scalability in our work. How-
ever, in contrast to Bondi, we also provide concrete metrics
for load scalability and apply these to the cloud computing
context. Duboc et al. [6] formally define scalability require-
ments and provide a method to analyze a software model
for scalability obstacles. A scalability obstacle could also be
defined and detected using our metrics. In contrast to the
approach from Duboc et al., our metrics are closer to SLOs

in their current form. Jogalekar and Woodside [11] present
a scalability metric for general distributed systems. Their
scalability metric also includes an efficiency measure. In our
work, we distinguish between scalability and efficiency as
two different metrics. Furthermore, in contrast to Jogalekar
and Woodside, our metrics are focused on cloud computing
environments with their particular characteristics.

Herbst et al. [9] provide a set of elasticity metrics based
on speed and precision (w.r.t. avoiding under- and overprovi-
sioning) of scale-in and -out. Because their goal is a bench-
marking methodology for elasticity, they can assume full
knowledge about the resource usage of the benchmarked ap-
plication. However, in our case, we assume that this knowl-
edge is unavailable because details on resources are imple-
mentation decisions. In contrast, we consider requirements
specified between cloud consumer and provider. This lack of
knowledge necessarily leads to different metrics as by Herbst
et al., e.g., considering SLO violations instead of resource us-
age transparent to consumers. Folkers et al. [8] and Islam et
al. [10] both provide elasticity metrics that meet this require-
ment regarding knowledge. However, they lack the distinc-
tion between elasticity and efficiency because they both use
cost metrics for elasticity, thus, eliminating the possibility
to investigate both properties in separation.

Roloff et al. [12] define basic efficiency metrics for high
performance computing in cloud computing environments.
They define cost efficiency as the product of costs per hour
and average performance. In contrast to our work, they ne-
glect the context, e.g., actual workload, and only take the
average performance. Berl et al. [3] address energy efficiency
in all technical components of cloud computing, e.g., servers,
networks as well as network protocols. We do not address
energy efficiency directly but only resource provisioning ef-
ficiency in this paper. Investigating whether efficient pro-
visioning of resources positively correlates with energy effi-
ciency is left as future work.

These related works focus on single quality properties. In
contrast, the Cloud Services Measurement Initiative Consor-
tium (CSMIC) provides a standard measurement frame-
work, called the Service Measurement Index (SMI), that
covers all quality properties considered important for cloud
computing [13]. CSMIC particularly provides metrics for
these quality properties, intended to be used by cloud con-
sumers and cloud providers. Their framework allows for a
structured classification of quality properties, similar to our
GQM plan. However, CSMIC does not address the deviation
of their suggested metrics, thus, leaving open what limita-
tions come with their metrics and whether other metrics are
feasible as well.

173

6. CLASSIFICATION OF METRICS IN RE-
LATED WORK

In this section, we classify metrics identified in related
work (Sec. 5) by relating these metrics to the questions of
our GQM plan. In doing so, we show that we can systemat-
ically make assumptions and limitations of existing metrics
explicit. Note that we classify only a few related metrics,
for illustration.

Scalability metric by Jogalekar and Woodside [11]
Jogalekar and Woodside provide a scalability metric
that can directly be used to answer Q1scale (“Does
the system fulfill its requirements when the workload
increases (from workload WLX to WLY)?”). They
use workload as the main input context factor to their
metric, thus, complying to our scalability question.
As an output, they determine a productivity factor
that states whether system requirements can be ful-
filled (using a threshold for this factor). Also this idea
complies to our question. However, to calculate the
productivity factor, they require knowledge about the
operation costs for a given workload. In contrast, we
do not limit our scalability metrics to this knowledge
about costs and require it for elasticity metrics only.

Elasticity and efficiency metrics by Herbst et al. [9]
Herbst et al. provide metrics that consider speed and
precision (w.r.t. avoiding under- and overprovisioning)
of scale-in and -out. Their ideas on speed can be
used to answer our elasticity question Q4elast (“From
a point the system violates its requirements, how long
does it take before the system recovers to a state in
which its requirements are met again?”). However,
to detect requirement violations, they assume to have
already an implemented system at hand; design-time
(e.g., simulation-based) approaches do not work with
their metric. Their ideas on precision fit to our elastic-
ity question Q5eff (“How close to the actual resource
demand can the system align the resource provision-
ing?”). Again, their metric requires an implemented
system to determine the actual resource usage.

7. CONCLUSION
In this short research paper, we argue for the need of novel

metrics for quality properties of cloud computing systems.
Using the GQM method, we systematically derive an initial
set of six metrics for scalability, elasticity, and efficiency.
Moreover, by using our GQM plan, we classify existing met-
rics to make their limitations explicit.

Our systematically derived metrics help software archi-
tects, requirements engineers, testers, etc. to design and an-
alyze cloud computing systems. Our GQM plan helps them
to consider limitations of such metrics during these tasks.

Future work is directed towards the development of anal-
ysis methods and tools that enable software architects to
verify the fulfillment of scalability, elasticity, and efficiency
requirements of their cloud computing applications already
at design time. Understanding limitations of metrics is es-
sential for this purpose.

8. ACKNOWLEDGMENTS
This work is supported by the German Research Founda-

tion (DFG) within the Collaborative Research Centre “On-

The-Fly Computing” (SFB 901). The research leading to
these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant
no 317704 (CloudScale).

9. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,

R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, Apr. 2010.

[2] M. Becker, S. Becker, and J. Meyer. SimuLizar:
Design-time modelling and performance analysis of
self-adaptive systems. In Proceedings of Software
Engineering 2013 (SE2013), Aachen, 2013.

[3] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani,
H. De Meer, M. Q. Dang, and K. Pentikousis.
Energy-efficient cloud computing. The Computer
Journal, 53(7):1045–1051, 2010.

[4] G. Bolch, S. Greiner, K. S. Trivedi, and H. de Meer.
Queueing Networks and Markov Chains: Modeling and
Performance Evaluation With Computer Science
Applications. 1998.

[5] A. B. Bondi. Characteristics of scalability and their
impact on performance. In WOSP ’00, pages 195–203,
New York, NY, USA, 2000. ACM.

[6] L. Duboc, E. Letier, and D. S. Rosenblum. Systematic
elaboration of scalability requirements through
goal-obstacle analysis. IEEE Transactions on Software
Engineering, 39(1):119–140, Jan. 2013.

[7] T. Erl, Z. Mahmood, and R. Puttini. Cloud
Computing: Concepts, Technology & Architecture.
Prentice Hall, 2013.

[8] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup,
V. Markl, and C. Tosun. Benchmarking in the cloud:
What it should, can, and cannot be. In TPCTC, pages
173–188, 2012.

[9] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity:
What it is, and What it is Not. In ICAC ’13, 2013.

[10] S. Islam, K. Lee, A. Fekete, and A. Liu. How a
consumer can measure elasticity for cloud platforms.
In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, ICPE ’12,
pages 85–96, New York, NY, USA, 2012. ACM.

[11] P. Jogalekar and M. Woodside. Evaluating the
scalability of distributed systems. IEEE Trans.
Parallel Distrib. Syst., 11(6):589–603, June 2000.

[12] E. Roloff, M. Diener, A. Carissimi, and P. Navaux.
High performance computing in the cloud:
Deployment, performance and cost efficiency. In
CloudCom ’12, pages 371–378, 2012.

[13] J. Siegel and J. Perdue. Cloud services measures for
global use: The service measurement index (smi). In
SRII Global Conference (SRII), 2012 Annual, pages
411–415, July 2012.

[14] C. U. Smith. Performance engineering of software
systems. Software Engineering Institute series in
software engineering. Addison-Wesley, 1990.

[15] R. van Solingen, V. Basili, G. Caldiera, and H. D.
Rombach. Goal Question Metric (GQM) Approach.
John Wiley & Sons, Inc., 2002.

174

