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ABSTRACT
Stacked DRAM promises to offer unprecedented capacity, and band-
width to multi-core processors at moderately lower latency than
off-chip DRAMs. A typical use of this abundant DRAM is as a
large last level cache. Prior research works are divided on how
to organize this cache and the proposed organizations fall into one
of two categories: (i) as a Tags-In-DRAM organization with the
cache organized as small blocks (typically 64B) and metadata (tags,
valid, dirty, recency and coherence bits) stored in DRAM, and (ii)
as a Tags-In-SRAM organization with the cache organized as larger
blocks (typiclly 512B or larger) and metadata stored on SRAM.
Tags-In-DRAM organizations tend to incur higher latency but con-
serve off-chip bandwidth while the Tags-In-SRAM organizations
incur lower latency at some additional bandwidth. In this work,
we develop a unified performance model of the DRAM-Cache that
models these different organizational styles. The model is validated
against detailed architecture simulations and shown to have latency
estimation errors of 10.7% and 8.8% on average in 4-core and 8-
core processors respectively. We also explore two insights from the
model: (i) the need for achieving very high hit rates in the meta-
data cache/predictor (commonly employed in the Tags-In-DRAM
designs) in reducing latency, and (ii) opportunities for reducing la-
tency by load-balancing the DRAM Cache and main memory.

1. INTRODUCTION
Stacked DRAMs offer unprecedented capacity and bandwidth by

allowing many layers of DRAM storage to be vertically stacked up
and enabling access to these cells via high bandwidth channels [25].
The on-chip integration also reduces latency compared to off-chip
DRAM storage. While the capacity of stacked DRAM (100s of
MB) is far higher than SRAM (a few MB), the DRAM storage
is still not sufficient to hold the entire working set of multi-core
workloads. Thus the stacked DRAM is typically employed as a
large last-level cache, backed by main memory. The main memory
could be made up of DRAM or non-volatile technologies such as
PCM [24] or STT-MRAM [14]. In this scenario, the DRAM Cache
organization plays a pivotal role in processor performance since it
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services the bulk of the memory requests coming from the last-level
SRAM cache (abbreviated LLSC in the rest of this paper).

Due to their large capacity, DRAM Caches require a large amount
of metadata (tags, valid, dirty, recency, coherence bits). The size
of this metadata can run into megabytes (for example, a 256MB
Cache with 64B blocks and 4B metadata per block needs 16MB
for metadata). Two different organizational styles have been pro-
posed to manage metadata: Tags-In-SRAM and Tags-In-DRAM.
Tags-In-SRAM organizations [12,13] reduce the metadata overhead
by using larger cache blocks (typically 512B or larger). The (small-
sized) metadata is maintained on SRAM. However, the larger block
size may waste off-chip bandwidth by fetching un-used data. In
Tags-In-DRAM organizations [11, 16, 19], the metadata is stored
alongside data in DRAM Cache rows (pages). This organization
incurs a higher access latency since both tags and data have to be
accessed from DRAM. Thus a small metadata cache/predictor is
typically employed to reduce or avoid DRAM Cache accesses for
tags.

In this work, we develop a unified analytical performance model
of the DRAM Cache that spans both these styles of organizations
taking into account key parameters such as cache block size, tag
cache/predictor hit rate, DRAM Cache timing values, off-chip mem-
ory timing values and salient workload characteristics. The model
estimates average miss penalty and bandwidth seen by the LLSC.
Through detailed simulation studies, we validate this model for ac-
curacy, with resulting latency estimation errors of 10.7% and 8.8%
on average in 4-core and 8-core workloads respectively. Using the
model we draw two interesting and useful insights:

Role of Tag Cache/Predictor: We show that the hit rate of the aux-
iliary tag cache/predictor (abbreviated Tag-Pred) is crucial to
overall latency reduction. We also show that this tag cache
(Tag-Pred) needs to achieve very high hit rate in order for the
Tags-In-DRAM designs to out-perform Tags-In-SRAM de-
signs.

Tapping Main Memory Bandwidth: Counter to intuition, we show
that performance can be improved by sacrificing DRAM Cache
hits to a certain extent. Sacrificing the hits allow balancing
the utilization of on-chip (DRAM Cache) and off-chip mem-
ory bandwidth which can lead to overall latency reduction.

2. BACKGROUND

2.1 DRAM Cache Overview
By virtue of stacking and the inherent density of DRAM, a DRAM

cache provides a large capacity (typically 64MB to even gigabytes)
offering an unprecedented opportunity to hold critical workload
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Figure 1: Overview of a Multi-core Processor with DRAM Cache

data on chip. The DRAM cache is typically organized as a last
level shared cache behind a hierarchy of SRAM caches. A DRAM
cache offers such large capacity caches at lower power unlike L1,
L2 caches that are implemented using SRAM. However DRAM
cache design requires careful attention to access latency since a
typical DRAM access requires activating a row of cells, sensing
the stored charge on these capacitors and finally transmitting the
sensed data over a bus. Since row activation has drained the cor-
responding capacitors, a precharge operation is required to restore
the charge back on these capacitors.

Figure 1 provides an organizational overview of a multi-core
processor comprising 2 levels of SRAM caches, followed by a
DRAM Cache and off-chip main memory. The DRAM Cache ser-
vices misses and write-backs from the last level SRAM Cache (LLSC).
A Tag-Pred is typically employed to make a quick decision of
whether to access the DRAM Cache (if the data is predicted to be
present in it) or go directly to main memory.

The logical organization and functionality of DRAM caches is
similar to traditional SRAM caches. For the purposes of this work,
we assume that it is organized as a N way set-associative cache
with block size that is Bs times the size of the CPU LLC block
size. Note that Bs = 1 models Tags-In-DRAM organizations while
larger values (typically Bs = 8 or 16) model Tags-In-SRAM orga-
nizations. DRAM Cache misses fetch the cache block from main
memory. We assume a writeback cache and that only dirty sub-
blocks are written back upon eviction. This assumption reflects the
real-world implementation that DRAM Caches use - namely, when
a dirty block is evicted, only the portions that are actually dirty
(modified) are written to main memory. For example, a cache orga-
nized at 512B block size (Bs = 8) will write back only those 64B
sub-blocks that are modified. This is done to conserve bandwidth
and energy in the main memory system.

Since the data is on DRAM the access incurs high latency (com-
prising row activation, column access, and finally precharge) and
thus several data layout organizations have been evaluated [11–13,
16, 19]. We summarize the key design considerations below that
we need to take into account in the model.

Metadata Storage: The large capacities offered by DRAM caches
incur high metadata (tags, valid, dirty bits, recency, coherence bits
etc) storage requirements which can run into multiple megabytes.
Obviously committing this much storage in SRAM is costly and en-
ergy expensive1. Tags-In-DRAM organizations [11,16,19] propose

1The tag storage overhead may even exceed the total size of the
last-level SRAM cache.
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Figure 2: Impact of Set Associativity on DRAM Cache Hit Rate

to store the set metadata in the same DRAM rows as data thereby
ensuring that one DRAM row activation is sufficient to retrieve both
tags and data. In case of a DRAM cache miss, the latency of ac-
cess is a sum of the DRAM cache tag look up time followed by the
main memory access time. Since this degrades the access latency
of cache misses, nearly all of these organizations propose the use
of a tag cache/predictor structure (Tag-Pred) in SRAM to quickly
evaluate if the access is a hit in the cache.

In the Tags-In-SRAM organizations [12,13] the metadata is held
in SRAM and provides faster tag lookup. Typically, these organiza-
tions employ large block sizes (typically 1KB or larger) to reduce
storage overhead.

Cache Block Size: Typically upper-level caches (L1, L2) employ
a small block size (≈ 64B or 128B) to capture spatial locality as
well as to ensure low cost of a line fill. With large DRAM caches
however larger block sizes may be gainfully employed to reduce
metadata storage overhead (especially when it is on SRAM) as well
as to leverage inherent spatial locality in workloads.

Set Associativity: A k-way mapped cache organizes each set to
hold k blocks of data. Larger values of k reduce potential con-
flicts caused by addresses mapping to the same sets. However, in
the context of DRAM caches, we find that associativity does not
have a significant bearing on hit rate – an observation that other
researchers have also made [10, 19]. Figure 2 plots the cache miss
rates achieved at six different associativites (1-way, 2-way, 4-way,
8-way, 16-way, and 32-way) for several quad-core workloads in a
128MB cache. Except for workloads Q2 and Q22 that show notice-
able miss rate reduction from 1-way to 2-way, all the others show
no significant reduction with higher associativity (average reduc-
tion in miss rate in the 32-way organization over the direct-mapped
organization is 4.3%). Thus, in our model we assume that the hit
rate is independent of set associativity.

Row-Buffer Hit Rate: If accesses map to currently open pages
in DRAM cache banks, then they can be serviced quickly (termed
row-buffer hits). Row-buffer hit rate is governed by spatial locality
in the access stream as well as by how adjacent cache blocks are
mapped to DRAM cache sets and pages. Exploiting locality plays
an important role in overall latency reduction.

The above design aspects interact to influence arrival rate, cache
hit rate, DRAM row-buffer hit rate and thus the resulting latencies
at the cache and main memory. Next we present an overview of the
underlying DRAM performance model that we use in this work.
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Figure 3: Queuing Model of Memory Controller as a 3-Stage Net-
work of Queues

2.2 ANATOMY Overview
Our proposed performance model of the DRAM Cache is based

on ANATOMY - an analytical model of memory performance in
[7]. ANATOMY is the substrate for the DRAM Cache model that
we develop in this work. ANATOMY has two key components that
work together:

• A queuing model of memory that models in detail the key
technological characteristics and design choices. The service
times in this queuing model are parameterized by workload
characteristics.

• A trace based analytical model that estimates key workload
characteristics, namely arrival rate, row-buffer hit rate (RBH),
bank-level parallelism (BLP ) and request spread (S), that
are used as inputs to the queuing model to estimate memory
performance.

The queuing model of ANATOMY considers a memory system
M with M memory controllers. Each controller has a single chan-
nel and manages a memory system consisting of D DIMMs, each
consisting of R ranks, and each rank having B banks. In this work,
we do not model the rank parameters in detail 2 and treat that there
is a total of N = D×R×B banks. Each channel has a command
bus and data bus.

We summarize the actions from the time a request reaches the
memory controller to the time the required data is sent back. The
controller selects one of several queued requests based on a schedul-
ing policy. For simplicity, we assume the FCFS scheduling policy
here but as demonstrated in [7], other schedulers can be incor-
porated into the model. The controller has to issue a series of
commands to the memory to perform access (read/write). Thus
the command bus is a “server” that each request uses for one or
more cycles. Once a command is issued, the memory bank to
which that command was addressed performs the requested oper-
ation (precharge, row activation or column access). During this
time the memory bank is busy and can not service other commands.
Each bank is thus modeled as a server. Since there are N banks in
the memory system, we model them as N servers. Finally, once the
memory bank has put the data on the memory bus, the burst of data
reaches the memory controller taking a few bus clock cycles. This
final step of data transfer is modeled as the third stage server. An
overview of this 3-stage network-of-queues model is presented in
Figure 3. A system with multiple memory controllers is modeled
using a 3-stage network for each controller.

2.2.1 3-stage Network of Queues Model

2We observe that the rank parameters, such as the rank-to-rank
switching delay do not significantly affect the memory perfor-
mance.

Each server is modeled as an M/D/1 server, where the inter-
arrival times are assumed to be exponentially distributed and the
service time is deterministic3.

2.2.2 Stage 1: Command Bus
The command bus server captures issuing of necessary com-

mands to the memory banks. We assume that the inter-arrival times
of memory requests are exponentially distributed with a mean 1

λ
.

As we consider multi-programmed workloads (details in Section 4),
considering the interleaved nature of memory requests from the
various programs, the assumption that the arrival process is Marko-
vian is a reasonable approximation. The arrival rate λ is a charac-
teristic of the application/workload and is estimated from a trace of
memory requests issued by the LLSC. As explained earlier, based
on whether an access turns into a row-buffer hit or a miss, the com-
mand bus issues either one (column access) or three (precharge,
row-activate and column access) commands respectively to the cor-
responding DRAM bank. The time required to send any one com-
mand is fixed, and equal to one cycle of memory clock (tCK ).
Hence the average service time at the command bus can be approx-
imated as a function of Row-buffer Hit rate (RBH), the fraction
of requests that experience a row-buffer hit. RBH is primarily a
workload characteristic with some design parameters like page size
affecting it. For a given RBH value of R, the average service time
required by the command bus is (R× 1 + (1−R)× 3) × tCK .
Since RBH is a workload specific constant, the average service
time required can be treated as fixed.

Using the queuing theory result for the M/D/1 queue [17], the
queue delay at the command bus is given by:

QDCmd_Bus =
1

2µcmd

ρcmd

(1− ρcmd)
(1)

where µcmd = 1
(R×1+(1−R)×3)×tCK

and ρcmd = λ
µcmd

.

2.2.3 Stage 2: Memory Banks
The bank servers take into account the key memory technology-

specific timing parameters as well as the inherent parallelism present
in a multi-bank memory.

In real memory systems, the number of banks that operate in par-
allel depends to a great extent on the amount of parallelism found
in the memory accesses made by the workload. This workload
characteristic is commonly referred to as Bank Level Parallelism
(BLP) 4. Note that in real memory, the requests are queued at the
memory controller in bank-specific queues [20] until the bank be-
comes available. The functioning of each bank is assumed to be
independent of other banks5. Thus we treat this stage as a collec-
tion of M/D/1 queues operating in parallel (rather than as a single
M/D/N queue). Multiple M/D/1 servers enable modeling the
concurrency of many banks simultaneously servicing requests.

As the service time of stage 1, the command bus server, is really
small, we make the simplifying assumption that the input process
at the second stage is also Markovian [17], with the same mean
λ. Since the memory system typically has more banks (N ) than
currently active (B), a fraction of the incoming requests may go to
idle banks. Such requests do not have to queue up as their banks
are idle. This fraction of requests that go to idle banks is called
the Request Spread (denoted S). Thus only the rest of the requests

3While the output of an M/D/1 process is not Markovian, in prac-
tice this approximation works well (see [17])
4Some of the memory design choices also have an impact on BLP.
5Except for peak-power limiting timing constraints such as TFAW ,
the banks operate pretty much independently.
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(fraction (1 − S)) incur queueing delays. Thus the average arrival
rate to each busy bank is modeled as: λbusy_bank = ((1−S)∗λ)

B
.

Next, we consider the average service time of a request in one of
the banks. The service time depends on whether the actual request
turns into a row-buffer hit or miss. In the case of a row-buffer hit,
the time required is the column access latency (tCL). If the access
turns into a row-buffer miss, then the time required is a sum of the
time required to complete precharge (tPRE), activate (tACT ) and
column access (tCL). Hence with the application locality being
characterized by a RBH of R, the average service time for a request
is (tCL ×R+ (tPRE + tACT + tCL)× (1−R)).

The important thing to note regarding the service time computa-
tions is that the values for tCL, tPRE and tACT are technology spe-
cific. Hence choice with respect to technology (like DDR3, DDR4,
PCM or STT-MRAM) can be captured here by choosing appropri-
ate latencies for the various actions. Thus our DRAM Cache model
supports different types of main memory models - not just DRAM.

The queue delay at each bank is given by:

QDBank =
1

2µbank

ρbank

(1− ρbank)
(2)

where µbank = 1
(R×tCL+(1−R)×(tPRE+tACT+tCL))

and ρbank =
λbusy_bank

µbank
.

2.2.4 Stage 3: Data Bus
Data is transferred to/from the memory in a burst. A data burst

leverages the open row-buffer and a large burst amortizes the cost
of the row activation. The size of the burst (measured in number of
clock cycles) is denoted BL. This data transfer takes a fixed time
of BL× tCK .

The queue delay at this stage is given by:

QDData =
1

2µdata

ρdata
(1− ρdata)

(3)

where µdata = 1
BL×tCK

and ρdata = λ
µdata

.

2.2.5 Estimation of Workload Characteristics
The four workload characteristics (λ,R,B, S) are estimated from

a time-annotated trace of memory requests issued by the last-level
cache (LLSC in our case). Details of these estimations and their
accuracy are presented in [7].

2.2.6 ANATOMY Summary
The ANATOMY performance model provides an estimate of av-

erage latency and peak bandwidth as a function of the memory
technology, memory organization and workload characteristics. The
average latency is given by:

LatAvg =
1

µCmd_Bus
+QDCmd_Bus

+
1

µbank
+QDBank

+
1

µdata
+QDData (4)

The peak bandwidth achievable by the memory system (per con-
troller) is limited by the smallest of the three service stages and is
given by:

Peak_BW = min (µCmd_Bus, N ∗ µbank, µdata) (5)

The model was validated against detailed simulations of 4-, 8-
and 16-core workloads with average errors of 8.1%, 4.1%, 9.7%
respectively.

Figure 4: ANATOMY augmented with the Tag Cache/Predictor
(Tag-Pred) Server

3. MODEL
Our model is based on the ANATOMY performance model. We

first present the construction of the DRAM Cache model that pro-
vides an analytical estimation of latency seen at the LLSC. This
model covers both the Tags-In-SRAM and the Tags-In-DRAM or-
ganizations. Next, we extend the model to achieve optimal latency
by bypassing a fraction of DRAM Cache accesses.

3.1 DRAM Cache Model
The DRAM Cache is modeled as an instance of the ANATOMY

model since the cache is a DRAM comprised of channels, ranks,
banks and rows/columns of cells. Thus all the ingredients of the
3-stage network-of-queues formulation are applicable to the cache
model. We further specialize the ANATOMY model by taking into
account the following design considerations:

3.1.1 Metadata Storage and Hit/Miss Determination:
We model the Tag-Pred in front of the DRAM Cache as an M/D/1

server with service rate µpred = 1
tpred

. We extend ANATOMY by
modeling this server in front of the 3-stage DRAM queuing model
as shown in Figure 4. Since tpred is typically very small, the out-
put of this server can be approximated as Markovian [17]. The total
latency of this server is given by: LPred = tpred +QDpred

With probability hpred this server makes a prediction (cache
hit/miss). We assume that the predictor does not make false-positive
or false-negative predictions. Thus a fraction (1−hpred) of the re-
quests do not get predicted. For such requests, the DRAM Cache is
first looked up, and if it is a cache miss, only then the main memory
is accessed. This assumption reflects real-world implementations
since the cost of a wrong prediction is expensive6.

Observe that this model includes both the Tags-In-SRAM as well
as the Tags-In-DRAM organizations. For the Tags-In-SRAM orga-
nizations, since tags are stored on SRAM the tag look up is like
a perfect predictor with hpred = 100% and tpred depends on the
tag store size. For the Tags-In-DRAM organizations, the predic-
tor’s hpred and tpred parameters can be set to the values proposed
in literature [11, 16, 19].

As we show in Section 5.3, the performance of the Tag-Pred
plays a critical role in overall hit latency and is an important pa-
rameter governing the decision on metadata storage location.

3.1.2 Modeling the Effects of DRAM Cache Block
Size:

The DRAM Cache performance is influenced by a block size fac-
tor Bs which denotes the number of LLSC blocks that corresponds
to one DRAM Cache block. Recall that DRAM Cache blocks may
be larger than CPU L1, L2 cache blocks and thus we let Bs denote
the ratio of DRAM Cache block size to CPU L2 Cache block size.
6In case of accesses to dirty cache blocks, an incorrect prediction
can lead to incorrect program execution.
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Figure 6: Set Data Layout in DRAM Pages

For instance, with a 64B line size in the L2 cache and a 512B line
size in the DRAM Cache, we have Bs = 8. Note that Bs is always
a power of 2.

Block Size and Cache Hit Rate: Larger block sizes improve
cache hit rate if the workload exhibits sufficient spatial locality to
utilize larger contiguous chunks of data. In a bandwidth-neutral
model, every doubling of block size halves the DRAM Cache miss
rate. If this condition holds, then block size does not influence
bandwidth. In such a model knowing the DRAM Cache hit rate
at the CPU cache block size organization is sufficient to estimate
the hit rates at other block sizes. Specifically, if h1 is the cache
hit rate when the cache is organized at the LLSC block size (i.e.,
Bs = 1) then the cache hit rate h2 at twice the block size (i.e.,
Bs = 2) is given by: h2 = h1 +

(1−h1)
2

. Generalizing, at a block
size factor Bs times the LLSC block size, the cache hit rate under
the bandwidth-neutral model is given by:

hbs = 1− (1− h1)

Bs
(6)

This model provides a useful way to understand the role of DRAM
Cache block size. If miss rates do indeed halve with doubling of
block size, then the cache should be organized at larger block sizes
to leverage efficient line fills and lower metadata overhead. On the
other hand, if miss rates did not halve with doubling of block size,
then larger block sizes are wasteful of bandwidth and cache space.

Figures 5a through 5d plot the observed miss rates (bars) as well
as the “ideal” (labeled “theoretical” in the figure) miss rates under
the bandwidth-neutral model (lines) for 4 quad-core workloads. It
shows that workloads Q5 and Q10 follow the empirical miss-rate-
halving rule quite closely while workloads Q7 and Q22 tend to
deviate from this model (their miss rates fall by less than half with
doubling block size).

On average, this rule resulted in average cache hit rate estimation
errors of 16.2% and and 14.5% in 4, and 8-core workloads respec-
tively. Thus the rule provides a reasonable approximation for cache
hit rate estimation at different block sizes. It also helps to determine
whether a workload is bandwidth efficient at larger block sizes or
not by comparing the workloads’s actual miss rate at a large block
size with the estimated miss rate.

Block Size and RBH: Larger block sizes improve RBH in
general by capturing spatio-temporal locality in the workloads’ ac-
cesses. In order to understand this interaction, we first present the
data layout of cache blocks in DRAM Cache pages.

The data blocks corresponding to the ways of a set are mapped to
contiguous locations in the same DRAM page. This is done in order
to ensure that the cache controller can access the correct DRAM
row as soon as the set index has been identified. This reduces access
latency as well as keeps the set index to DRAM page mapping quite
simple. Depending on the associativity of the cache, one or more
sets could be mapped to the same page. For example, Figure 6
shows a 2KB DRAM page holding data for 2 sets, in a 4-way set-
associative cache organized at 256B block size. The 4 ways of set
K occupy the first 1KB of the DRAM page while the 4 ways of the
set (K + 1) occupy the next 1KB of the page.

Figure 7: Row-Buffer Hit Scenarios in DRAM Caches

In this mapping, a cache hit is also a row-buffer hit (denoted
RBHhit) under the following scenarios:

R.1 A subsequent access to the DRAM bank maps to the same
DRAM cache way that initially opened that page.

R.2 A subsequent access to the DRAM bank maps to the same
cache set (but a different cache way) that initially opened
that page.

R.3 A subsequent access to the DRAM bank maps to a different
cache set that is mapped to the same page.

These scenarios are illustrated in Figure 7. Condition [R.1] oc-
curs whenever the DRAM cache block size is larger than the LLSC
block size and the CPU accesses possess spatial locality. For exam-
ple, with an LLSC block size of 64B, a single DRAM cache block
of 512B may get multiple accesses successively.

Since the physical addresses of the different ways in a set are
not contiguous (contiguous addresses at cache block size granular-
ity map to contiguous sets), the probability of getting a row-buffer
hit due to condition [R.2] is quite low. This follows because each
DRAM bank holds data for several millions of cache blocks and
the probability of getting a subsequent access to a different block
of the same is set is very small.

Condition [R.3] can again arise from spatial locality since con-
secutive cache block addresses map to consecutive sets and thus a
neighboring cache block may be resident in the same page at the
time the page was opened.

Thus the row-buffer hits in a DRAM cache page are limited by
the spatial locality that a page can capture. Hence we estimate
RBHhit using a smaller “effective” page size EP that is com-
puted as EP = B × S where B is the cache block size and S
is the number of sets per DRAM Cache page. In the above exam-
ple, EP = 256 × 2 = 512B. This effective page size is used
to estimate RBHhit using the reuse distance methodology from
ANATOMY. Figure 8 shows the actual and estimated RBHhit in
several quad-core workloads for a 128MB 2-way associative 256B
block-size cache with an underlying DRAM page size of 2KB. The
average error in RBHhit estimation is < 3% across 4- and 8-core
workloads indicating that the modeling of an “effective page size”
is a reliable method for DRAM Cache RBHhit estimation.

3.1.3 Row Buffer Hits during Cache Line Fills:
In Section 3.1.2 we provided an estimate of the RBHhit ob-

served in the DRAM Cache due to cache hits. Here, we account
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(a) Q5 is bandwidth-neutral (b) Q10 is bandwidth-neutral (c) Q7 is NOT bandwidth-neutral (d) Q22 is NOT bandwidth-neutral

Figure 5: Miss Rate versus Block Size in a 128MB DRAM Cache
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Figure 8: Row-Buffer Estimation Accuracy

for the row buffer hits seen during line fills. Note that we mod-
eled a line fill of a DRAM cache block in terms of Bs LLSC block
sized accesses. These accesses have high spatial locality and thus
have a very high row-buffer hit rate since they are typically serviced
back to back. At each cache miss, we assume that the first access
is a row-buffer miss (mildly pessimistic) followed by (Bs − 1)

row-buffer hits. This results in an RBHmiss of (Bs−1)
Bs

for cache
misses.

Combining with the RBH estimate obtained in Section 3.1.2 for
cache hits, we can obtain the overall RBH as:

RBHcache = RBHhit ∗hcache+RBHmiss ∗ (1−hcache) (7)

3.1.4 DRAM Cache Access Rate:
The access rate seen at the DRAM Cache is a sum of several

streams of accesses (see Figure 4). In the below discussion, we
assume that the arrival rate from the LLSC is λ (comprising both
misses and writebacks).

Predicted DRAM Cache Hits: With a predictor hit rate of hpred

and a DRAM cache hit rate of hcache, the cache sees an av-
erage arrival rate λ ∗ hcache ∗ hpred of incoming requests.

No Predictions (Tag Look-Up) A fraction (1− hpred) of requests
are not predicted and go to the DRAM Cache. This con-
tributes an arrival rate of λ ∗ (1−hpred) to the cache. These
requests cause tag accesses on the DRAM cache for hit/miss
evaluation and thus need to be counted in the overall traffic
to the cache.

DRAM Cache Line Fills: At a rate λ ∗ (1− hcache), cache misses
cause line fills into the DRAM Cache. Each line fill brings
Bs times the LLSC cache block size worth of data. We model
this by scaling the cache access rate by Bs. This leads to an
additional arrival rate λ ∗ (1− hcache) ∗Bs to the cache7.

DRAM Cache Writebacks: A fraction w of the DRAM Cache misses
result in dirty writebacks from the DRAM Cache. These
writebacks also contend for the same DRAM Cache resources
- namely the command bus, banks and data bus. Thus this
adds another arrival rate term λ∗ (1−hcache)∗w. Note that
w is measured in LLSC cache block granularity to model real
world implementations wherein only the dirty sub-blocks of
large blocks are written back to main memory.

These interactions effectively cause the total arrival rate at the
DRAM Cache to be:

λcache = λ ∗ [hcache ∗ hpred + (1− hpred)

+ (1− hcache) ∗Bs + (1− hcache) ∗ w] (8)

It is worth highlighting that it is important to model all the above
components of the arrivals seen at the DRAM Cache for a correct
modeling of its latency. In particular, cache line fills constitute
a significant additional traffic to the cache (particularly when the
cache miss rate is high and Bs is large). We discuss this further in
the Results section (Section 5).

3.1.5 Summing Up the Model
In summary, the model simply adds a predictor server at the head

of the ANATOMY model to account for the tag hit/miss prediction
time. It also adjusts the arrival rate seen at the DRAM Cache to
take into account the additional traffic caused by tag lookups, line
fills and writebacks as shown in Equation 8. The model requires
tpred, hpred, hcache, Bs and w as inputs. Table 2 summarizes how
these parameters are obtained.

Among the workload characteristics that ANATOMY requires,
λcache and RBHcache are computed as presented earlier. The es-
timation of the other inputs (BLP B, and Request Spread S) is not
affected by use of the DRAM as a cache.

The model estimates the average cache access latency using λcache

(from Equation 8) and RBHcache (from Equation 7) along with the
rest of the ANATOMY workload inputs B,S.

7Alternately, we could model this fill-stream as a different class of
requests requiring a larger service time.
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LDram_Cache =
1

µCmd_Bus
+QDCmd_Bus

+
1

µbank
+QDBank

+
1

µdata
+QDData (9)

3.1.6 Extension to Main Memory
A similar analysis holds for the main memory model. The main

memory sees traffic contributed by:

Cache Misses: A fraction λ ∗ (1 − hcache) of incoming requests
cause cache line fills. These are read requests on the main
memory. Each line fill brings Bs times the LLSC block size
worth of data. We model this by scaling the memory access
rate by Bs. This leads to an additional arrival rate λ ∗ (1 −
hcache) ∗Bs to the memory.

Cache Writebacks: A fraction w of the DRAM Cache misses re-
sult in dirty writebacks from the DRAM Cache. These write-
backs create an additional arrival rate term λ∗(1−hcache)∗w
to the memory.

It may be observed that the main memory arrival rate is not af-
fected by the tag/predictor hit rate since the predictor’s role is only
to avoid DRAM Cache lookups for tags and not to eliminate any
accesses to the main memory. The total arrival rate at memory is
given by:

λmem = λ ∗ (1− hcache) ∗Bs

+ λ ∗ (1− hcache) ∗ w (10)

We can derive the latency estimate LMem of main memory sim-
ilar to Equation 9. RBH , BLP , and Request Spread S of the
memory are estimated from a trace of accesses issued to it by the
Tag-Pred and the DRAM-Cache. In Section 5.2 we validate the
accuracy of these estimates.

3.1.7 Average LLSC Miss Penalty
The average latency seen by LLSC misses can now be estimated

as a sum of the following weighted contributions made by LDram_Cache

and LMem:

• Predicted Hits: A fraction (hpred ∗hcache) of all the arrivals
from the LLSC are sent to the DRAM Cache for cache hit
processing. The weighted average latency of such requests
is:

LPred_Hits
Dram_Cache = (hpred ∗ hcache) ∗ LDram_Cache (11)

• Predicted Misses: A fraction (hpred∗(1−hcache)) of all the
arrivals from the LLSC are sent to memory for fetching full
DRAM Cache blocks for filling them into the DRAM Cache
as line fills. The weighted average latency of such requests
is:

LPred_Misses
Mem = (hpred ∗ (1− hcache)) ∗ LMem (12)

• Un-Predicted Hits: A fraction ((1 − hpred) ∗ hcache) of all
the arrivals from the LLSC are unpredicted and turn out to be
hits in the DRAM Cache. The weighted average latency of
such requests is:

LUnpred_Hits
Dram_Cache = ((1− hpred) ∗ hcache) ∗ LDram_Cache

(13)

• Un-Predicted Misses: A fraction ((1−hpred)∗(1−hcache))
of all the arrivals from the LLSC are unpredicted and turn
out to be misses in the DRAM Cache. This requires two
rounds of accesses. The first access to the DRAM Cache to
resolve the request as a miss, followed by access to the main
memory. The weighted average latency of such requests is:

LUnpred_Misses
Dram_Cache_Then_Mem = ((1− hpred) ∗ (1− hcache))

∗ [LDram_Cache + LMem]
(14)

The overall average latency LLLSC is given by:

LLLSC =LPred_Hits
Dram_Cache + LPred_Misses

Mem

+LUnpred_Hits
Dram_Cache + LUnpred_Misses

Dram_Cache_Then_Mem

+Lpred

(15)

Note that the last term accounts for the Tag-Pred lookup latency.

3.2 Load-Balancing the Cache with Main Mem-
ory

The above model reveals the opportunity for an architecture opti-
mization - balancing the load at the DRAM Cache and main mem-
ory. At high DRAM Cache hit rates, the cache gets almost all
the traffic from the LLSC. This causes significant contention at
the DRAM Cache incurring queuing delays and increased waiting
times. In such a scenario, a better use of the idle main memory
could be made by diverting some of the cache traffic to it8. Thus
we present a load balancing model that minimizes the average la-
tency by identifying the optimal fraction of requests to divert to
main memory.

For purposes of the model, we assume that the Tag-Pred is en-
hanced to divert a fraction fmem of the predicted hits and misses
to the main memory. In case of cache misses, the diverted accesses
are like cache bypasses - they directly return the fetched data to the
LLSC without performing cache line fills into the DRAM Cache.
We further assume that all the diverted requests are only for clean
cache blocks.

We can now estimate the new arrival rates and average latencies
of the cache and memory as with the standalone model.

3.2.1 Traffic to the DRAM Cache
The arrival rate at the cache is now a sum of predicted hits sent

to the cache (fraction: hpred ∗ hcache ∗ (1− fmem)), un-predicted
accesses (fraction: (1 − hpred)), cache line fills (fraction: hpred ∗
(1−hcache)∗ (1−fmem)∗Bs+(1−hpred)∗ (1−hcache)∗Bs),
and write-backs (fraction: (hpred ∗ (1− hcache) ∗ (1− fmem) +
(1− hpred) ∗ (1− hcache)) ∗w). The resulting arrival rate λcache

is:

λcache =λ ∗ [hpred ∗ hcache ∗ (1− fmem)

+(1− hpred)

+hpred ∗ (1− hcache) ∗ (1− fmem) ∗Bs

+(1− hpred) ∗ (1− hcache) ∗Bs

+hpred ∗ (1− hcache) ∗ (1− fmem) ∗ w
+(1− hpred) ∗ (1− hcache) ∗ w] (16)

The average DRAM Cache access latency LDram_Cache can be
obtained from Equation 9.
8This is valid only if the cache did not hold a more recent copy of
the data.
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3.2.2 Traffic to the Main Memory
The arrival rate at the main memory is now a sum of predicted

hits sent to the memory (fraction: hpred ∗hcache ∗fmem), memory
reads for cache line fills (fraction: hpred ∗ (1 − hcache) ∗ (1 −
fmem)∗Bs+(1−hpred)∗ (1−hcache)∗Bs), misses that bypass
the cache (fraction: hpred ∗ (1−hcache) ∗ fmem), and write-backs
(fraction: (hpred ∗ (1−hcache)∗ (1−fmem)+(1−hpred)∗ (1−
hcache)) ∗w). The resulting arrival rate λmem is estimated similar
to Equation 10.

The average main memory access latency LMem can be obtained
similar to Equation 9.

3.2.3 Optimal fmem

In order to estimate the average latency, we first estimate the
latency of each type of request processing:

• Predicted Hits sent to the DRAM Cache: A fraction (hpred ∗
hcache∗(1−fmem)) of all the arrivals from the LLSC are sent
to the DRAM Cache for cache hit processing. The weighted
average latency of such requests is:

LPred_Hits
Dram_Cache = (hpred∗hcache∗(1−fmem))∗LDram_Cache

(17)

• Predicted Hits diverted to the main memory: A fraction (hpred∗
hcache ∗fmem) of all the arrivals from the LLSC are diverted
to memory for hit processing. The weighted average latency
of such requests is:

LPred_Hits
Mem = (hpred ∗ hcache ∗ fmem) ∗ LMem (18)

• Predicted Misses that bypass the cache: A fraction (hpred ∗
(1−hcache)∗fmem) of all the arrivals from the LLSC are sent
to memory for fetching the LLSC requested block. These
requests do not initiate DRAM Cache fills. The weighted
average latency of such requests is:

LPred_Misses_Bypassed
Mem = (hpred∗(1−hcache)∗fmem)∗LMem

(19)

• Predicted Misses that are cached: A fraction (hpred ∗ (1 −
hcache) ∗ (1− fmem)) of all the arrivals from the LLSC are
sent to memory for fetching full DRAM Cache blocks for
filling them into the DRAM Cache as line fills. The weighted
average latency of such requests is:

LPred_Misses_Cached
Mem = (hpred∗(1−hcache)∗(1−fmem))∗LMem

(20)

• Un-Predicted Hits: This is the same as in Equation 13 above.

• Un-Predicted Misses: This is the same as in Equation 14.

The overall average miss penalty LLLSC(fmem) seen by the
LLSC is a sum of the above weighted latencies similar to Equa-
tion 15. Treating this as a function of the single variable fmem,
we can numerically minimize LLLSC(fmem) at some f∗

mem. The
value f∗

mem defines the optimal distribution of cache requests to
the main memory in order to minimize overall average latency. It
should be noted that this optimal f∗

mem depends on the configura-
tions of the DRAM Cache and main memory. Changes to the cache
organization and/or the main memory will require re-computing
f∗
mem.

To emphasize, this set up has taken into account both the cache
and memory performance models into a single hybrid model that
allows estimation of a global minimum latency. In Section 5.4 we
explore this load-balancing opportunity in real systems and demon-
strate that this can lead to as much as 74% reduction in average
latency.

Processor 3.2 GHz OOO Alpha ISA
L1I Cache 32kB private, 64B blocks, Direct-mapped, 2 cycle hit latency
L1D Cache 32kB private, 64B blocks, 2-way set-associative, 2 cycle hit latency
L2 Cache For 4/8 cores: 4MB/8MB, 8-way/16-way,
(LLSC) 128/256 MSHRs, 64-byte blocks, 7/9 cycles hit latency
Tags-In-DRAM For 4/8 cores: 128MB/256MB, Direct-Mapped,
(AlloyCache) 64-byte blocks, 80-byte tag+data burst,

Cache Memory in 2/4 Channels,
Total of 16/32 DRAM banks, 2KB page,
128-bit bus width, 1.6GHz, CL-nRCD-nRP=9-9-9

Tag-Pred A 2-way Set Associative Tag Cache
For 4/8 cores: 48KB/96KB, (Design similar to that in [11])

Tags-In-SRAM For 4/8 cores: 128MB/256MB,
2-Way Set Associative, 1024-byte blocks,
Cache Memory in 2/4 Channels,
Total of 16/32 DRAM banks, 2KB page,
128-bit bus width, 1.6GHz, CL-nRCD-nRP=9-9-9

Memory For 4/8 cores: 1/2 off-chip data channels
Controller Each MC: 64-bit interface to channel, 256-entry command queue

FR_FCFS scheduling [20], open-page policy
Address-interleaving: row-rank-bank-mc-column

Off-Chip For 4/8 cores: 4GB/8GB main memory using:
DRAM DDR3-1600H, BL (cycles)=4, CL-nRCD-nRP=9-9-9

in 2/4 ranks, 16/32 banks
Refresh related: TREFI of 7.8us and TRFC of 280nCK

Table 1: CMP configuration

4. EXPERIMENTAL SETUP
We evaluate the accuracy of the proposed model by comparing

the model-predicted latency with results from detailed simulations.
Using multiprogrammed workloads running on the GEM5 [3] sim-
ulation infrastructure, we obtained the observed latency for the con-
figurations listed in Table 1. For quad-core workloads, timing sim-
ulations were run for 1 billion instructions on each core after fast-
forwarding the first 10 billion instructions to allow for sufficient
warm-up. As is the norm, when a core finishes its timing simu-
lation, it continues to execute until all the rest of the cores have
completed9. In case of 8 and 16-core workloads, due to the amount
of simulation time required, we collected statistics on timing runs
of 500M and 250M instructions per core respectively. In all cases,
the total instructions simulated across all the cores amount to more
than 4B.

We obtained the DRAM Cache model inputs (hpred, hcache, w)
using a trace-based DRAM cache simulator. This (un-timed) sim-
ulator simulates the various Tags-In-SRAM and Tags-In-DRAM or-
ganizations. Traces collected from GEM5 simulations of 4, and 8-
core architectures running for 75 billion instructions on each core
were supplied as input to this cache simulator. This has resulted
in 120M – 450M accesses to the DRAM cache, with an average of
310M DRAM cache accesses per workload. tpred is obtained from
the CACTII tool [23] with 22nm technology. All the other work-
load parameters are estimated as in ANATOMY. For completeness,
Table 2 lists the relevant parameters used in the model, their sources
and when they are obtained/updated.

Our workloads are comprised of programs from SPEC 2000 and
SPEC 2006 benchmark [9] suites. The 4, and 8-core multipro-
grammed workloads are listed in Table 3. These benchmarks were
carefully combined to create high, moderate and low levels of mem-
ory intensity10 in the chosen workloads to ensure a representative
mix. Workloads marked with a “*” in Table 3 have high memory
intensity (LLSC miss rate ≥ 10%). We also measured the foot-
prints of these workloads in terms of the number of distinct 64B

9The statistics are collected only during the first 1 Billion instruc-
tions.

10Intensity was measured in terms of the last-level SRAM cache
miss rate.
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Parameter Source Update Frequency
Bs Input to the model For each DRAM Cache block size explored
hpred (Un-timed) Cache Simulator For each predictor organization and size
tpred CACTII tool [23] For each predictor table size
λ From LLSC trace, as in ANATOMY Once per workload
λcache Estimated using Equation 8 For each DRAM Cache size and Bs

hcache (Un-timed) Cache Simulator For each DRAM Cache size and Bs

w (Un-timed) Cache Simulator For each DRAM Cache size and Bs

RBHcache Estimated using Equation 7 For each DRAM Cache size, Bs and cache page size
BLPcache, Scache From LLSC trace, as in ANATOMY For each DRAM Cache size, Bs and number of DRAM Cache banks
λmem Estimated using Equation 10 For each DRAM Cache size and Bs

RBHmem Trace of misses from DRAM cache, as in ANATOMY For each main memory configuration (Banks and Page Size)
BLPmem, Smem Trace of misses from DRAM cache, as in ANATOMY For each main memory configuration (Banks and Page Size)
DRAM Cache and Memory Input to the model. Obtained from JEDEC specification For each memory technology/device type
Timing Values

Table 2: Sources of model parameters

Quad-Core Workloads
*Q1:(462,459,470,433), *Q2:(429,183,462,459), *Q3:(181,435,197,473),
Q4:(429,462,471,464), *Q5:(470,437,187,300), *Q6:(462,470,473,300),
*Q7:(459,464,183,433), Q8:(410,464,445,433), Q9:(462,459,445,410),

*Q10:(429,456,450,459), Q11:(181,186,300,177), Q12:(168,401,435,464),
Q13:(434,435,437,171), *Q14:(444,445,459,462),Q15:(401,410,178,177),
Q16:(300,254,255,470), *Q17:(171,181,464,465), Q18:(464,450,465,473),
*Q19:(453,433,458,410), Q20:(462,471,254,186),Q21:(462,191,433,437),
Q22:(197,168,179,187), Q23:(401,473,435,177),Q24:(416,429,454,175)

Q25:(254,172,178,188)
Eight Core Workloads

E1:(462,459,433,456,464,473,450,445), *E2:(300,456,470,179,464,473,450,445),
*E3:(168,183,437,401,450,435,445,458), *E4:(187,172,173,410,470,433,444,177),

E5:(434,435,450,453,462,471,164,186), E6:(416,473,401,172,177,178,179,435),
*E7:(437,459,445,454,456,465,171,197), E8:(183,179,433,454,464,435,444,458),

*E9:(183,462,450,471,473,433,254,168), *E10:(300,173,178,187,188,191,410,171),
*E11:(470,177,168,434,410,172,464,171), E12:(459,473,444,453,450,197,175,164),
E13:(471,462,186,254,465,445,410,179), *E14:(187,470,401,416,433,437,456,454),
*E15:(300,458,462,470,433,172,191,471),E16:(183,473,401,435,188,434,164,427)

Table 3: Workloads

blocks accessed. The average memory footprints in 4-core and 8-
core workloads are 990MB and 2.1GB respectively. We also found
that on average 87% of all the DRAM cache misses are due to ca-
pacity/conflict. Thus our workloads are sufficiently exercising the
DRAM cache.

The details of our architecture configurations are summarized in
Table 1. We simulate two typical configurations: a Tags-In-DRAM
configuration based on the AlloyCache [19] organization, and a
Tags-In-SRAM configuration based on the FootprintCache [12] or-
ganization.

5. RESULTS
We first validate the accuracy of estimating key model input pa-

rameters. Next we perform end-to-end validation of the Tags-In-
DRAM and Tags-In-SRAM designs in Section 5.2 and show that
the average LLSC miss penalty is estimated with good accuracy.
Finally, we use this validated model to explore two important cache
organizational topics in Sections 5.3 and 5.4.

5.1 Validation of the model input parameters
In this section, we validate the accuracy of the estimated model

input parameters. We only focus on two parameters - λcache and
RBHcache - as the other parameters are either trivially computed
from the cache access trace (λ, hpred, hcache, write-back rate w)
or their estimates have already been validated for accuracy in the
baseline study presented in ANATOMY [7] (Bank-Level Parallelism
BLP , and Request Spread S). The validations used both the Tags-
In-DRAM and Tags-In-SRAM organizations.

5.1.1 Exponential Inter-Arrival Times
We validated the assumption of exponential inter-arrival times

seen by the cache (with a mean of 1
λcache

where λcache is com-
puted using Equation 8) by comparing the actual inter-arrival times
observed in the detailed simulations against the theoretical distri-
bution. Using the Chi-square goodness-of-fit test [18] with 30
degrees of freedom, the average p-values11 for 4, and 8-core work-
loads are 0.03, and 0.01 respectively, denoting reasonably high
confidence of match between the actual and theoretical distribu-
tions.

5.1.2 Estimating RBHcache

We compared RBHcache estimated using Equation 7 with the
actual RBH in simulations and obtained very low average errors
of 4.3% and 3.7% in 4-core and 8-core workloads.

5.2 End-to-End Model Validation
Having validated the accuracy of the parameters, we demonstrate

that the overall model provides accurate estimates of the LLSC miss
penalty.

5.2.1 Validation of the Tags-in-DRAM Model:
We use the AlloyCache [19] organization to validate the accuracy

of Tags-In-DRAM model. The AlloyCache organizes the cache as
direct-mapped 64B blocks with metadata and data co-located in
the same DRAM pages. We implemented the SAM (Serial Ac-
cess Model) in our simulator, wherein the cache is first probed for
hit/miss detection and subsequently a miss is sent to the main mem-
ory. Thus every LLSC access is sent to the cache for hit/miss eval-
uation. Since no predictor is used, we set hpred and tpred both to
0. In order to incur lower DRAM latency, the AlloyCache uses a
larger data burst of 80 bytes to read both the tag and data associ-
ated in a single access. ANATOMY framework incorporates this by
setting the data bus server’s bus length (BL) value to 5 clock cy-
cles (see Section 2.2.4). Further, since the DRAM cache uses 64B
block size, the block size factor Bs = 1. Estimates for hcache, and
w were obtained by simulating traces on the DRAM Cache simula-
tor. We estimate RBHcache, λ, λcache, and λmem as discussed in
Section 3.1. Additional ANATOMY inputs namely BLP and Re-
quest Spread S are estimated from the memory access trace. These
estimates are used to compute the estimated latency LLLSC as in
Equation 15.

Figures 9a and 9b report the errors in the estimation of LLLSC

when compared to results from detailed simulation of the Alloy-

11p-value is a statistical measure of deviation of the actual distribu-
tion from the hypothesis.
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Cache Size Block Size Tag Store Size Access Latency
(MB) (B) (MB) (cycles)

64 64 4 10
64 256 1 6
64 512 0.5 4

128 64 8 12
128 256 2 8
128 512 1 6
512 64 32 16
512 256 8 12
512 512 4 10

Table 4: SRAM Tag Storage Size and Latency

Cache in quad and 8-core configurations12. The averages of (ab-
solute) errors are 10.8% and 9.3% respectively showing that the
model captures key architectural elements reasonably well.

5.2.2 Validation of the Tags-in-SRAM Model:
We use a configuration similar to the proposal in [12] wherein

1024B blocks are employed with the metadata stored on SRAM.
For simplicity, we omitted the feature of bypassing singleton blocks13

in both the simulation and in the model. We set tpred to the latency
estimate provided by CACTII [23] (see Section 5.3) and hpred to
1.0. We also set Bs = 16 since each DRAM Cache block is 16×
the size of the LLSC block. The rest of the model parameters are
estimated as indicated above in Section 5.2.1.

Figures 10a and 10b report the errors in latency estimation of
the Tags-In-SRAM model when compared to results from detailed
simulation in quad and 8-core configurations. The averages of (ab-
solute) errors are 10.5% and 8.2% respectively.

Averaged over both the Tags-In-DRAM and Tags-In-SRAM con-
figurations, the model has average errors of 10.7% and 8.8% in
quad and 8-core configurations respectively. These results indicate
that the proposed model accurately captures the salient properties
of a wide range of DRAM Cache organizations. Thus the model
can be used as an analytical tool for rapid exploration of different
cache organizations. In Sections 5.3 and 5.4 we use the model to
explore two important design considerations.

5.3 Insight 1 - Can Tags-In-DRAM designs out-
perform Tags-In-SRAM?

We quantitatively argue that Tags-In-SRAM designs generally
outperform Tags-In-DRAM designs except when the Tag-Pred can
achieve very high hit rates. Table 4 lists the tag storage size and as-
sociated access latency for various DRAM Cache sizes and block
sizes (assuming a 4B tag overhead per block) when tags are held
on SRAM. The latency estimates are obtained from CACTII [23]
at 22nm using high performance cells. Cycles are in units of a
3.2GHz clock. This corresponds to the tag access latency (tpred) in
Tags-In-SRAM designs.

In case of Tags-In-DRAM, the average tag access time may be
expressed as:

ttags−in−dram
tag = hpred ∗ tpred+(1−hpred)∗ tdram_cache (21)

Note that this equation does not take any contention at the Tag-Pred
or at the DRAM cache into account and thus provides an aggressive
estimate for the tag access time. Figure 11 plots ttags−in−dram

tag as
a function of hpred at 3 different DRAM access latencies (tdram_cache

set to 10ns, 15ns, 20ns) and tpred = 2 (i.e., prediction in 2 cycles).
12A negative error indicates that the model estimated a higher la-
tency than observed from simulation.

13Singleton blocks are defined to be those 1024B blocks that receive
only one access to a 64B sub-block when they are cache-resident.

Figure 11: Comparing tag latencies of SRAM and DRAM tags

Figure 12: Tag Access Times in Eight-Core Workloads

For comparison the fixed tag access latency of the Tags-In-SRAM
designs are also plotted for 3 different tag store sizes (1MB, 4MB,
8MB) (using latency estimates from Table 4). The intersections of
the Tags-In-DRAM lines (solid) with the Tags-In-SRAM lines (dot-
ted) denote the cut-off predictor hit rates - lower hit rates suffer
higher latencies in the Tags-In-DRAM organization. This reveals
the importance of achieving high prediction rates - for example,
even with a fast DRAM Cache access time of 10ns, the predictor
needs to achieve a hit rate in excess of 75% to outperform a 4MB
Tags-In-SRAM organization.

We verified this claim by measuring the tag access latencies in
detailed simulations of the Tags-In-DRAM configuration with pre-
dictor (refer Table 1) and comparing them to estimated tag access
latencies (from Equation 21). Figure 12 plots these latencies nor-
malized to the tag access time of the Tags-In-SRAM organization.
The values on top of the bars are the hpred values. 10 out of 15
workloads (grouped to the left of the vertical dashed line) have
higher tag access latency in the Tags-In-DRAM design than in the
Tags-In-SRAM design. The model predicts this correctly except for
workload E4. In workloads E2, E6, E10 and E13, the hpred val-
ues are low (all below 75%) while in the other workloads, the hpred

values are high, confirming the analysis presented above.
Thus we conclude that the use of this auxiliary tag hit/miss pre-

diction structure in SRAM is beneficial only when the predictor
achieves a high enough prediction rate to outperform the SRAM
tag look up time.

5.4 Insight 2 - Bypassing the Cache Results in
Overall Latency Reduction

In this section, we show that contrary to the expectation that
higher cache hit rates are always better, it is often helpful to di-
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Figure 9: Tags-In-DRAM Model Validation: Errors in LLSC Miss Penalty (LLLSC ) Estimation
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Figure 10: Tags-In-SRAM Model Validation: Errors in LLSC Miss Penalty (LLLSC ) Estimation

vert a fraction of cache accesses to the main memory. Even though
the latency of an individual access to the DRAM Cache is lower
than that of main memory, a high arrival rate to the cache builds
up congestion at the cache banks causing longer waiting times.
Under such conditions, we show that our experimental evaluation
corroborates the model’s prediction of the existence of a fraction
f∗
mem, 0 < f∗

mem < 1, that results in lower LLLSC than with
fmem = 0 (sending all the requests to the cache).

We explore the results on two Tags-In-SRAM 128MB direct-
mapped cache organizations, one with a block size of 64B and the
other with a block size of 512B. Figures 13a and 13b show the
observed and model-predicted LLSC latencies in quad-core work-
load Q1 as fmem is varied from 0 to 1 in steps of 0.1 for two cache
block sizes. It is evident that there is an optimal distribution of re-
quests across the cache and main memory that results in the least
LLSC miss penalty. From Figure 13a, we observe that the queuing
contention has a lesser impact at the 64B block size (since Bs = 1
and the cost of a line fill is not high) and the cache bypass reduces
the latency by a maximum of 16% at fmem = 0.2.

In Figure 13b, we observe that at both the extremes (fmem = 0
and fmem = 1) the average latency steeply increases. In fact,
the latency experienced with no bypass (fmem = 0) is worse than
when the DRAM Cache is not even used (fmem = 1). This is due
to the high cost of cache line fills (filling 512B). Recall that when
the cache is bypassed, only the requested 64B is fetched and re-

turned to the LLSC. Employing an optimal distribution (fmem =
0.3) reduces latency by as much as 74% compared to the baseline
(fmem = 0). In all cases, very high bypass rates should be avoided
since they lead to increased congestion at the slower main mem-
ory. Similar results are observed in the other quad and eight-core
workloads.

These results reveal the opportunity for architecture enhance-
ment wherein the Tag-Pred structure could observe the queuing
delays and latencies at the cache and main memory and adaptively
estimate the optimal f∗

mem to improve system performance.

6. RELATED WORK AND CONCLUSIONS
While both cache [1, 4, 5, 8, 21] and DRAM [2, 6, 15, 22, 26,

27] models exist, no prior analytical model has taken into account
the interactions that result from using DRAM as a substrate for
cache functionality. In particular, our work encompasses the entire
DRAM Cache design space spanning Tags-In-SRAM and Tags-In-
DRAM organizations taking into account the key underlying archi-
tectural issues of how metadata is accessed, the role of cache block
size, and RBH and the significance of the Tag-Pred.

By comparing the model with detailed multi-core simulations,
we showed that the model predicts latency accurately, achieving av-
erage errors of 10.7% and 8.8% in 4 and 8-core workloads respec-
tively. The model offers two insights: one, the tag cache/predictor
has to achieve very high hit rate in Tags-In-DRAM designs to out-
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Figure 13: Latency variation with fmem in Quad-core Workload Q1 at two block sizes

perform Tags-In-SRAM designs, and two, bypassing a fraction of
DRAM cache accesses results in overall LLSC miss penalty reduc-
tion. The model thus serves as a practical analytical tool for rapid
design space exploration of DRAM Cache designs.
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