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ABSTRACT

The commoditization of sensors and communication net-
works is enabling vast quantities of data to be generated by
and collected from cyber-physical systems. This “Internet-
of-Things” (IoT) makes possible new business opportunities,
from usage-based insurance to proactive equipment main-
tenance. While many technology vendors now offer “Big
Data” solutions, a challenge for potential customers is un-
derstanding quantitatively how these solutions will work for
IoT use cases. This paper describes a benchmark toolkit
called IoTAbench for IoT Big Data scenarios. This toolset
facilitates repeatable testing that can be easily extended to
multiple IoT use cases, including a user’s specific needs,
interests or dataset. We demonstrate the benchmark via
a smart metering use case involving an eight-node cluster
running the HP Vertica analytics platform. The use case in-
volves generating, loading, repairing and analyzing synthetic
meter readings. The intent of IoTAbench is to provide the
means to perform “apples-to-apples” comparisons between
different sensor data and analytics platforms. We illustrate
the capabilities of [oTAbench via a large experimental study,
where we store 22.8 trillion smart meter readings totaling
727 TB of data in our eight-node cluster.

1. INTRODUCTION

The commoditization of sensors and communication net-
works is enabling vast quantities of data to be generated by
and collected from cyber-physical systems. This “Internet-
of-Things” (IoT) makes possible new business opportuni-
ties, such as usage-based insurance and proactive equipment
maintenance. IDC, a market intelligence firm, estimates
that by 2020 there will be over 200 billion Internet-connected
“things” installed [20]. For organizations wanting to pursue
an IoT business, a question they are immediately faced with
is how to store and analyze the vast amount of data that
their sensors (i.e., “things”) will collect.
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A related challenge for these organizations is understand-
ing which Big Data analytics platform will work best for
their specific needs. Currently, there are no industry stan-
dard benchmarks to aid such organizations in selecting an
analytics platform. In this paper we introduce a bench-
mark toolkit called IoTAbench (Internet of Things Analytics
benchmark). IoTAbench is envisioned as a suite of bench-
marks, each of which represents a distinct [oT use case. To
date we have implemented a benchmark for a smart me-
tering use case. We envision adding other benchmarks (e.g.,
for building energy management, fleet management, network
security, etc.) under the IoTAbench umbrella in the near fu-
ture.

A key component of our smart metering benchmark is a
tool for generating large volumes of synthetic sensor data
with realistic properties. To demonstrate the ability of this
benchmark to test a Big Data analytics platform, we use
ToTAbench to evaluate the performance of the HP Vertica
Analytics Platform [17] when used to manage a large IoT
dataset.

Our main contributions are: (1) the description of an IoT
benchmark (IoTAbench). We intend to contribute our im-
plementation of IoTAbench to facilitate and speed the de-
velopment of an industry standard IoT benchmark. (2) a
realistic synthetic smart meter data generator based on an
augmented Markov chain model. (3) the demonstration of
ToTAbench to evaluate the performance and scalability of a
commercial “Big Data” platform. (4) one of the largest Big
Data research studies we are aware of (22.8 trillion readings,
727 TB of data), to help to bridge the divide between Big
Data research and practice.! (5) a detailed IoT case study
of an electric utility with 40 million smart meters (for which
we store and analyze the equivalent of more than a decade
of data).

The remainder of this paper is organized as follows. Sec-
tion 2 describes the IoT benchmark we created. Section 3
explains our experimental methodology. Section 4 discusses
the results of our experiments. Section 5 examines related
work. Section 6 concludes the paper with a summary of our
work and possible next steps.

'We use TB=terabyte= 10'? bytes throughout the paper.



2. ToTAbench: AN IoT BENCHMARK

The Internet of Things will encompass a broad range of

workloads; we anticipate that an industry standard IoT bench-

mark will encompass a suite of IoT workloads covering dif-
ferent use cases. This “benchmark suite” approach has been

adopted in other industry standard benchmarks such as SPEC-

web2009, which contained three different workloads (bank-
ing, e-commerce and support).?

We refer to our benchmark as IoTAbench, the Internet of
Things Analytics benchmark. IoTAbench consists of three
components: a scalable synthetic data generator; a set of
SQL queries; and a test harness. To help guide the initial
implementation of ToTAbench, we focused on a single use
case - smart metering. The development of additional use
cases is left for future work.

2.1 10T Use Case

In this paper, we focus on one specific use case, smart me-
tering. An important step in facilitating more effective use
of resources (e.g., electricity, gas, water) is the deployment
of more capable meters. Smart metering will enable con-
sumers and producers alike to better understand resource
usage, so that actions can be taken to eliminate inefficient
use of resources or to alter consumer behavior regarding
when resources are consumed. While many resource/utility
providers are either considering rollouts of smart meters,
in the process of deploying them, or have already installed
them, there is still a lot of uncertainty surrounding smart
metering. One thing that is clear is that smart metering has
the potential to produce enormous volumes of data.

We focus on smart metering as a use case because it
is a timely problem. For example, China is rolling out
hundreds of millions of smart meters, to enable programs
such as Time-of-Use (ToU) billing to raise energy aware-
ness amongst consumers.® Similarly, utilities in Europe are
rolling out smart meter deployments as part of initiatives
to achieve climate change targets such as a 20% increase in
energy efficiency across Europe by 2020.

In parallel to the deployment of meters, the utilities must
determine how they will store and analyze all of the collected
meter data in a sustainable manner. The development of
an industry standard benchmark would help utilities make
more informed decisions about which analytics platform to
use. This is the motivation for our study.

2.2 Synthetic Data Generator

Experimentally evaluating the performance of an analytics
platform in a smart metering use case requires access to large
volumes of meter data. However, the availability of empiri-
cal smart meter data at tera-scale is limited or non-existent.
To facilitate testing for an electric utility case study with 40
million smart meters, a compelling option is to generate a
large synthetic dataset; however, this can lead to mislead-
ing or erroneous results if the synthetic data does not have
properties of the empirical data. For example, if synthetic
data is generated by duplication, a much higher degree of
data compression may be attained. On the other hand, if

2http://www.spec.org/web2009

Shttp://www.greentechmedia.com/articles/read/

china-wants-time-of-use-pricing-by-2015-one-meter\

-per-home-by-2017

*http:// / 2020/targets/
p://ec.europa.eu/europe argets

eu-targets/index_en.htm

134

the synthetic data is completely random, data compression
is likely to be poorer than for an empirical dataset. Fur-
thermore, the time to perform analytics on the data can be
affected, which would further bias the benchmark results.
Thus, it is important to make the synthetic data as realistic
as possible. This was our objective.

2.2.1 Generator design

We developed a Markov chain-based realistic synthetic
data generator for smart meter data. The objective is to gen-
erate time series data of power consumption for any number
of users, given the time series for a limited number of users,
such that important statistical properties of the generated
time series is similar to those of the real time series. We
achieve this by simulating the power consumption process
as a variant of a Markov chain.

Markov chains are widely used for modeling sequential,
stochastic processes. For example, they have been used in
the past for generating synthetic data for wind speed [14,
25]. A discrete-time Markov chain consists of a finite num-
ber of states, S = 1,2, ...,n, where state changes occur at
discrete time steps; n is the number of states. The transi-
tions between states exhibit the Markov property, that is,
given the current state, the next (future) state is condition-
ally independent of the past states:

P(St+1 = ]|St = i,St_l = it_17 ...,So = io) = P(St+1 ZJ‘St (:1)2)

A state transition matrix, P of size n X n, contains all
the transition probabilities, where entry P;; corresponds to
P(St+1 = j|S: = i). Furthermore, transition probabilities
from a particular state must add to 1, 37, P;; = 1.

We initially used a Markov chain to generate smart me-
ter data, but the results were poor. This was not surpris-
ing, since in addition to the previous state the consumption
process depends on several contextual features such as time
of day, weather, etc. In order to capture the dependence
on these contextual features and incorporate them into the
model, we augment the Markov chain model by adding ad-
ditional inputs. Figure 1 shows an Markov chain augmented
with the current hour, H¢, added as an input to each state.
The states of the chain are obtained by using fixed-width
binning to quantize the consumption in the empirical data.
With this modification, the transition to a state now de-
pends on both the previous state and the current hour.

0, O, &,

Figure 1: Augmented Markov chain of consumption states.

Using the generator involves two main steps: 1) training
the model, which entails learning model parameters from a
small empirical data set; and 2) performing a random walk
on the augmented chain to generate the synthetic data. We
describe each of these in turn.

2.2.2 Model training

Training of the model involves learning two main sets
of parameters from the empirical data: 1) the transitional



probability matrix (TPM), P; and 2) the probability density
functions corresponding to each state. Given the additional
time of day dependence, P is now n X n X m, where n is
the number of states, m is the number of hours, and en-
try P;jr corresponds to the transition probability from state
i to state j at hour k; that is, the conditional probability
P(Si+1 = j|St =i, Hi41 = k). We use maximum likelihood
estimation to estimate the TPM from the empirical data.
In many cases, there may not be any empirical data points
corresponding to a transition, and the TPM could be sparse.
To address this, we use Laplace smoothing, which increases
the count for each transition by one so that there are no
transitions with zero probability. How sparsity is handled
can be used to tune how “different” the generated data is
from the empirical.

Even for a moderate n and m, the size of the TPM can
be very large. For example, for n = 50, m = 24, its size is
n?m(60,000), which is a large number of probabilities and
would require a large dataset to estimate robustly. To re-
duce the number of probabilities, we use Bayes rule and con-
ditional independence assumptions to factor the conditional
probability.

P(St41 = j|St =i, Hipr = k)
«P(St =i, Hipr = k[Seq1 = j) X P(Se41 =)
ocP(St = i[St41 = j) X P(Hev1 = k[Se41 = j) X P(Se41 = j)
)

which can be normalized to determine the probabilities.
This results in a large drop in the number of probabilities to
be estimated. For the above example, the number decreases
to n® +nm +n (3,750 for the above example), which is a
reduction of more than an order of magnitude. For each
of the n states, we use a kernel density estimate on the
empirical data to compute the probability density function
(pdf) corresponding to that state. The estimated pdf, f, at
any point x, can be expressed as

1 T —T;
= — 3" K ‘
=1 ( h

(@) = — ) (3)
where h is the selected bandwidth; m is the total number
of points; K is the selected kernel; x; are the points that
fall within that state. We used a Gaussian kernel, although
other kernels could also be used. If the number of points, m,
is large, a binned kernel density estimate can be used. The
bandwidth parameter, h, provides another knob to control
the difference between the empirical and generated data. We
also estimate the marginal probabilities of each state.

2.2.3 Data generation

Once the Markov chain model parameters are known, the
process to generate a synthetic consumption time series in-
volves performing a random walk on the chain. We ran-
domly pick an initial state based on the marginal proba-
bility distribution for the starting hour. Then each subse-
quent state is picked based on the TPM. When a particular
state is picked, we generate a consumption value by sam-
pling the pdf of that state. To make this process a bit sim-
pler and faster, we pre-sample a large number of points (over
100,000) from the pdf of each state and save these points.
At the time of generation, we uniformly sample from these
pre-saved points.
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2.2.4  Implementation

Our generator is implemented as two modules. The first
is the parameter learning module. We implemented it in
R to estimate the model parameters from empirical data in
the manner described above. R was chosen for this module
since it provides a rich set of analytics packages, such as
those for kernel density estimation. The speed of training
is not critically important as it only needs to be done once
for a particular dataset. The second module is the data
generation module; efficiency is important in this step, to
enable large datasets (e.g., 100’s of TB) to be generated in a
timely manner. For this reason, the data generation module
is implemented in C. The data generation process is em-
barrassingly parallel. Thus, our data generation module is
multi-threaded, and can be distributed across multiple ma-
chines to reduce the time needed to generate large synthetic
datasets. We carefully select the random number seeds, such
that each thread generates unique results compared to all
other threads in the distributed generator. There is no com-
munication between the threads, to improve the scalability
of the generator.

Each row in the generator output is a meter reading. The
format is:

timestamp meter_identifier consumption_value

This is the format used in the empirical dataset that we
trained our model on. An example reading from the gener-
ator is:

2015-01-01 13:10:00/12345(|103

This reading is for January 1, 2015 at 1:10pm from meter
12345. Over the previous 10 minutes the customer used 103
Watts of electricity.

2.2.5 Model validation

To demonstrate the effectiveness of our generator, we trained
it on real smart meter data from Ireland.® This dataset
has about 6,400 timeseries of 1.5 years each. We randomly
picked 10% of the timeseries for training. The validation
results are based on the entire dataset.

To capture seasonal behavior, we train a separate model
for each month. Further, each day of the month is modeled
as a mixture model of the current month, previous and next
months. We use Gaussian weights with a tunable variance.
In these experiments, we picked a variance value such that
a month has a non-zero component from the middle of the
previous month to the middle of the next month, as shown
in Figure 2. While the variance can be varied, this choice
worked well.

—Previous
—Current,

Next

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

Figure 2: Mixture model weights of the three components over
a 60 day period.

"http://www.ucd.ie/issda/data/
commissionforenergyregulationcer/



To evaluate the quality of the generated data, we com-
pared the empirical and generated data by looking at their
marginal and conditional (by hour, month) probability dis-
tributions and the auto-correlation within each time series.
All of these matched closely. Figure 3 shows the empirical
and synthetic average daily consumption profile for a day in
the month of January. These graphs demonstrate visually
how the synthetic data captures the aggregate time-of-day
patterns in the empirical data. Figure 4 shows the time-
series of an entire month of synthetic data. It reveals how
the mixture model varies the day-to-day aggregate consump-
tion, and smooths the transition from one month to another.
Figure 5 shows that the conditional probability distribution
of consumption for two months (January and February) for
the empirical (real) and synthetic data are similar. Figure
6 provides a quantitative comparison of the empirical and
synthetic datasets. This graph shows summary statistics
(mean, median, standard deviation, minimum, maximum)
of the empirical and synthetic data for four different months
(September - December). This graphs shows that statisti-
cally these datasets are quite similar. The biggest difference
is in the maximum value, which is always slightly higher in
the synthetic data than in the real data; this is because in
the TPM, Laplace smoothing introduces a non-zero prob-
ability of transition between any two states. This can be
tuned depending on how closely a user needs the synthetic
data to adhere to the empirical data. Figure 7 shows that
the average auto-correlation for empirical and synthetic con-
sumption time series for lags up to 24 hours is comparable.
Figure 7(c) shows the auto-correlation of naively generated
synthetic data, where the data is sampled independently
from the consumption distribution of each hour. Although
the summary statistics of this data matched well with the
empirical data, as expected, the auto-correlation is not well
captured.

Based on these results, we believe that our synthetic data
generator provides reasonably realistic sensor data, and there-
fore enables us to elicit realistic behavior in experimental
evaluations of any Big Data analytics platforms that we wish
to examine for Internet of Things use cases.

Total Power
Total Power

) Jan011200  Jan0118:00  Jan 02 00:
Hour

(a)

Figure 3: Consumption data for one day in January: (a)
empirical; (b) synthetic.

2.3 Benchmark Queries

When embarking on this study, we were not aware of any
common set of analyses (i.e., queries) that utility providers
plan to run on a large resource consumption dataset. Kar-
nouskos et al. state that billing is the current “killer app” [15];
this is also the analysis performed in previous smart meter-
ing benchmark studies [2, 13, 21]. Thus, this is one analysis
that we consider. However, we wanted to consider additional
analyses that might be of interest to utilities that would also
stress the system under study in different ways.
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Figure 4: Synthetic consumption data for one month
(March).
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Figure 5: Comparison between power consumption distribution
of synthetic and empirical data for January and February.

As shown in Table 1 we designed six distinct analyses: (1)
Total readings: counts the total number of readings (i.e.,
rows) for the given time period. (2) Total consumption:
sums the resource consumption for the given time period.
(3) Peak consumption: create a sorted list of the aggregate
consumption in each ten minute interval® in the given time
period. (4) Top consumers: create a list of the distinct con-
sumers, sorted by their total (monthly) consumption. (5)
Consumption time-series: calculate the time-series of aggre-
gate consumption per ten minute interval in the given time
period. (6) Time of Usage Billing: calculate the monthly
bill for each consumer based on the time of usage.

Analysis (1) is used primarily as a sanity check, to verify
whether the proper amount of sensor data is being stored
for the given time period. Analysis (2) determines the ag-
gregate electricity consumption over an extended period of
time (e.g., one month). Analysis (3) determines the aggre-
gate electricity consumption in each ten minute interval over
a longer duration of time (e.g., one month). It then sorts the
results based on the total consumption per interval (highest
to lowest). Analysis (4) looks at the aggregate consump-
tion per meter rather than per time interval. It sorts the
results based on the total consumption per meter (highest
consumption to least consumption). Analysis (5) is similar
to Analysis (3), except the results are kept in chronological
order. This type of analysis could be used to visualize the
aggregate consumption of electricity over time. Lastly, Anal-
ysis (6) calculates four “bill determinants” per consumer: the
cost for electricity used during off-peak times, the cost for
electricity used during peak times, the cost for electricity
used during “shoulder” times,” and the total cost for the
electricity consumed by the consumer (i.e., the sum of the
first three bill determinants).

50ur study assumes the utility’s smart meters will record a
consumption value every ten minutes. Alternative interval
lengths could be used in IoTAbench.

"“Shoulder” times refer to the transition period from off-
peak to peak usage, as well as the transition period from
peak to off-peak usage.
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Figure 6: Comparison between summary statistics of synthetic (sim) and empirical (real) data for September through December.
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Figure 7: Comparison between time-series auto-correlation with lags up to 24 hours; (a) IoTAbench data; (b) empirical data; (c) naively

generated data.

Obviously, there are virtually an unlimited number of

types of information that could be extracted from the dataset;

our objective is not to demonstrate all possible queries that
could be performed on the dataset. Our six queries are valid
examples of information that would be relevant from a busi-
ness perspective within a utility. These analyses also ex-
ercise the system under study in meaningful ways from a
performance evaluation perspective. Table 1 compares the
composition of the SQL queries used to perform each of the
six analyses in the benchmark. In this particular study, three
columns are used to store each smart meter reading: ts_key
stores a timestamp value (the time the reading was taken),
meter_key stores the unique identifier of the meter that pre-
pared the reading, Power Watts stores the consumption value
for the given interval and meter. For example, the Total
Readings query (“SELECT COUNT (*)”) could use any of
the three data columns or other means (e.g., metadata kept
on the stored data) to determine the number of readings
that are stored in the main table. The decision of how the
query is executed is left up to the query optimizer. This
query uses a WHERE clause to restrict the analysis to a
specific time period; i.e., the month being analyzed. Thus,
the WHERE clause makes use of the ts_key column. The To-
tal Readings query does not involve an ORDER BY clause.
Overall, the six queries use different numbers and combina-
tions of columns in computing their output. The complexity
of the queries also varies quite substantially. Table 1 helps
highlight how these queries stress the system under study in
different ways, in addition to providing information that is
relevant to the business.
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2.4 Test Harness

For Big Data studies it is particularly important that all
aspects of an experiment be conducted in a systematic fash-
ion. This aids in ensuring that the results are complete,
repeatable and completed in as timely a manner as possible.
We used a wrapper script around each of the tools we used
(e.g., synthetic data generator, SQL client, etc.). We then
created a single control script to manage the entire experi-
ment. This control script called the wrapper scripts to in-
voke the specific tools as they were needed. Our control and
wrapper scripts were written in Bash; we used Perl scripts
to parse the experimental output. Alternative scripting lan-
guages could have provided the same functionality, we used
Bash and Perl due to our familiarity with them.

To simplify the management of an experiment, as well as
to make it simpler to install and use IoTAbench on a new
testbed, we use a single configuration file to store all of the
variables. The user edits the configuration file to set up an
experiment. IoTAbench then uses the configuration file and
a set of template scripts to create the scripts to be used for
a specific experiment on the selected testbed.

Based on feedback from utility customers, the smart me-
tering use case assumes batch uploads and analysis of the
data. Extending IoTAbench to load and analyze streaming
sensor data is ongoing as part of a separate use case.



Table 1: Comparison of benchmark queries.

SELECT WHERE ORDER BY
Query Column ts_key  meter_key powerWatts | ts_key meter_key powerWatts | ts_key meter_key powerWatts
Total Readings any Vv
Total Consumption VA VA
Peak Consumption Vv v v Vv
Consumption Timeseries v v vV Vv
Top Consumers V4 Vv Va4 Vv Vv
Time of Usage Billing 4 Vv Vv v v

3. EXPERIMENTAL DESIGN

3.1 Overview

The experiments described in this paper represent a single
case study (smart meters) to demonstrate how IoTAbench
can be used to experimentally evaluate a Big Data analytics
platform.

3.2 System Under Study

Our experiments were run on a cluster of eight HP Pro-
Liant DL380p gen8 servers. Each of these 2U servers was
configured as follows: two Intel Xeon E5-2670 CPUs (each
with eight 2.60 GHz cores, 20 MB cache, 8.00 GT/s QPI),
128 GB RAM, two 300 GB SAS 10K RPM drives, twenty-
two 900 GB SAS 10K RPM drives, and two dual-port 10
Gb Ethernet NICs. Red Hat Enterprise Linux Server re-
lease 6.4 (Santiago) was the Operating System used on each
of these servers. The two 300 GB drives were configured
as RAID1, and are used for the Operating System and the
database catalog directory. The twenty-two 900 GB drives
were configured as RAID10 and used for the database data
directory. These servers and the HP 5900AF-48XG 10 Gb
network switch connecting them were used exclusively by the
system under study during the experiments. On this system
we installed the HP Vertica Analytics platform version 7.0.0.
The experiments were controlled by a ninth DL380p server.

3.3 Design and Methodology

Table 2 lists the key characteristics of the synthetic dataset
used in our study. We assume a fictitious electric utility has
40 million customers (each with their own smart meter).
The utility wishes to record the consumption of each cus-
tomer every 10 minutes. This corresponds to 144 readings
per day per customer. The number of customers was se-
lected such that our fictitious utility would be as large as
any of the utilities in Europe. The reading interval was
chosen based on the shortest interval that we heard a util-
ity ask for (other values we heard utilities ask for were 15,
30 or 60 minutes). We store the consumption value as an
integer value, rounded to the nearest Watt (if a utility de-
sired greater precision, that could be handled in a similar
manner). This is a general “best practice” for storing large
volumes of numeric data. Lastly, in practice it is a com-
mon occurrence that some of the meter data is lost before
it reaches the analysis platform. Smart meter vendor Itron
reports 1% as a common value for how much data is typi-
cally missing [13]. Thus, we use that value as a parameter
during the generation of the synthetic data.

There are several existing benchmark studies involving
the collection and analysis of smart meter data [2, 13, 21].
These studies look at a month in the life of a utility sce-
narios, as business processes like billing often occur at this
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Table 2: Synthetic dataset characteristics.

| Characteristic Setting |
Number of customers 40 million
Reading interval 10 minutes
Meter precision nearest Watt
Missing readings 1%

frequency. For this reason, our smart metering benchmark
in IoTAbench uses a monthly scenario for a utility. However,
previous studies look at only a single month in the life of a
utility; this offers no insights into how the platform will be-
have over time, as the scale of data that it stores increases.
Given the investments utilities must make in the metering
infrastructure to collect the fine-grained consumption data,
they will want to retain and use data for more than the
month it was collected in. To the best of our knowledge, we
are the first to explore this issue for Big Data platforms.

Based on the characteristics listed in Table 2, our dataset
consists of 5.76 billion readings per day. For a month with
31 days, this is 178.6 billion readings per month. 1% of these
are “missing”; in our case, the synthetic data generator never
writes them to disk. The platform under study therefore
needs to repair the dataset to return to the expected number
of readings for the month.

Our experimental methodology is as follows.
month of data we:

For each

e generate the synthetic dataset for that month
e load the “raw” data into a staging area

e repair the “raw” data and store the repaired data in
the main table

delete the “raw” data and empty the staging area

analyze the repaired data

This process is continued until the platform runs out of
storage space for new data. Once this process finishes, we
perform a final step, a“re-analysis” of each month of data.
This final step is done to determine if the platform has made
any tradeoffs in how it manages the data over time. For
example, is older data penalized in an attempt to keep newer
data quick to access?

An important feature of the specific platform we tested
(HP Vertica Analytics Platform) is the ability to optimize
the layout of the data on disk. This requires having a sam-
ple of the data for the designer and optionally one or more
sample queries to use to calculate the best design to use. In
our experiments we ran the designer after the first month of
data was loaded, and optimized for the Consumption Time-
series query. With HP Vertica it then automatically stores



all subsequent data that is loaded into the optimized layout;
i.e., the design only needs to be determined once. In our
experiment with one month of data, this optimization step
took 5.25 hours. This is a relatively small overhead given the
benefits it provides. In addition, the same design could have
been obtained using less data, requiring less time. However,
since we were using one month of data in all of our other
steps, we did for the optimization step as well.

A challenge to address in the development of an industry
standard IoT benchmark is how to accommodate “special
features” like HP Vertica’s Data Designer. While the gener-
ation of data and the analysis queries (written in SQL) in
TIoTAbench should be portable across SQL-enabled Big Data
platforms, the queries to load data, repair missing data or
optimize the data layout will not. However, if one only con-
siders industry-standard features, the benchmark may not
adequately capture the capabilities of the platform. A rea-
sonable tradeoff might be to distinguish between “standard”
and “non-standard” performance results, much like publicly-
traded companies may report GAAP (Generally Accepted
Accounting Principles) and non-GAAP financial results.

4. EXPERIMENTAL RESULTS

4.1 Generator Performance

Since our experiments involve the generation of massive
amounts of data, the performance of our synthetic data gen-
erator is important. Our implementation takes advantage of
the fact that the process is embarrassingly parallel and that
our testbed uses a distributed set of multi-core servers.
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Figure 8: Generator performance.

Figure 8 shows the performance of our generator. Our
initial version did not include the mixture model to smooth
transitions between months. In version 1 we were able to
consistently generate 185 million meter readings/second (=
6 GB/s of data). At this rate we could generate a month of
data for 40 million meters in about 16 minutes. The addi-
tion of the mixture model requires the use of considerably
more random numbers, which lowered the average genera-
tion rate to 120 million meter readings/second, and made
the performance much more variable (the random number
generation is a bottleneck). Since this still allowed us to
generate a month of data in about 25 minutes, we did not
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attempt to alleviate the bottleneck, although that could be
a topic of future work.

4.2 Load and Repair Performance

Node 1: raw data

Staging Table |M>| Main Table

Node 8: raw data

Node 1: raw data

Main Table

Node 8: raw data

Figure 9: Load implementations considered in our study:
(a) scale-up; (b) scale-out.

Figure 9 shows two different load options that we consid-
ered. The scale-up implementation loads the files on each
node into a single staging table. The repair step then reads
the raw meter data from the staging table, repairs it, and
inserts it in the main table. The scale-out implementation
involves each cluster node loading the files into a distinct
staging table, i.e., one that no other node is directly loading
raw data into. The repair step then merges the data from
the eight staging tables, repairs it, and inserts the aggre-
gated data into the main table. Once the repaired data is
loaded into the main table, the staging area is emptied.

In practice, data is often imperfect. Thus, a Big Data an-
alytics platform must be capable of identifying and repairing
data quality issues with the raw data. Since a smart meter
use case involves time series data, we perform this step by
interpolating any missing values. Defining a more extensive
repair methodology is left for future work.

Figure 10(a) shows the rate at which data was loaded into
the staging tables. In experiment 1, the scale-out implemen-
tation described in Figure 9(a) was used. In experiment 2,
each cluster node loads data into a distinct staging table,
as explained in Figure 9(b); the scale-out load approach.
Figure 10(a) reveals that the scale-out approach offers a sig-
nificant performance advantage, achieving an average load
rate of 39.4 million readings/second compared to an average
of 11.7 million readings/second for the scale-up approach, a
difference of 3.37x. Figure 10(a) reveals that the load per-
formance of either implementation is quite consistent over
time, even as the cluster has used nearly all of the available
storage space.®There is more variability in the load results
when using the scale-out load approach, although this ap-

8The experiments concluded in the 87th month for the first
experiment and in the 131st month for the second exper-
iment. The different durations were due to different data
designs affecting how quickly storage space was consumed.
We verified that the bottleneck in the scale-up experiment
was from loading to the shared staging area, and not from
using a different data design.
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Figure 10: (a) Load Performance; (b) Repair Performance

proach still has much better overall performance than the
scale-up approach.

The repair rate for the two different load approaches is
shown in Figure 10(b). For both experiments the repair
rate for the first month was higher than for the remain-
ing months; this is due to the data layout being optimized
after the first month of data is stored in the main table.
Excluding the repair time for the first month, the median
repair rate in the first experiment was 8.5 million read-
ings/second, while in the second experiment the median re-
pair rate was 7.4 million readings/second, about 15% slower.
There are two potential causes of the slowdown; a) the more
efficient encoding method used on the meter_key column in
the second experiment requiring more time to compress the
data, and b) the need to merge the raw data from eight
staging tables before repairing it in the second experiment.
We have not attempted to quantify the extent that each
of these contributed to the 15% overhead, as this is a rel-
atively small overhead compared to the increased data re-
tention that was achieved and the increased load rate the
scale-out approach offers. Overall, we were able to load 22.8
trillion readings and 726.9 TB of data in the second exper-
iment, which Vertica compressed and stored in 65.4 TB of
disk space. This is a compression factor of 11.12x (uncom-
pressed size/compressed size). This is substantially more
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Table 3: Properties of datasets used in each experiment.

| Property Experiment 1 Experiment 2 |
Total Readings 15.1 trillion 22.8 trillion
Duration 7 years 2 months 10 years 10 months
Total Size 478 TB 727 TB

data than we were able to load in the first experiment (15.1
trillion readings and 478 TB of data). The primary cause is
the improved compression of the meter_key column.

Table 3 summarizes the characteristics of the datasets we
used in each experiment. It is important to note that the ex-
periments were run with application-level data redundancy
turned on. This means that the system under study retained
two copies of the data so that it could withstand the failure
of one cluster node. Thus, while our system under study in
the second experiment stored 22.8 trillion distinct readings,
it actually stored 45.6 trillion total readings (two copies of
each distinct reading, intelligently placed around the cluster
to provide the ability to keep the cluster operational in the
event of a node failure).?

4.3 Analysis Performance

After loading and repairing each month of data the next
step in the benchmark is to run a set of analyses on it.
ToTAbench cycles through each analysis, then repeats the
cycle twice and records the median value. After completing
the analysis of the final month of data that the system is
able to load, the analyses are re-run on each month of data.
This re-analysis step is included in the benchmark to assess
whether the Big Data Analytics Platform under study has
made any trade-offs that may affect query performance, par-
ticularly on older portions of the dataset. The re-analysis
step also performs the entire set of benchmark queries, then
repeats twice and reports the median query time.

In the remainder of this section we focus on the perfor-
mance results for Experiment 2, which stored 130 months of
data in total.

4.3.1 Total Readings Performance

Figure 11 shows the performance of the Total Readings
analysis when run on our system under study. Note that the
y-axis is in logarithmic scale, to enable a better comparison
of the range of query times. Prior to optimizing the data
design, the Total Readings analysis took 23.996 seconds to
count 178.6 billion readings. After the re-design, the analysis
of the same data (Month 1) took 20.239 seconds. Over the
entire 130 months of data (black squares), the median time
for this analysis was 19.302 seconds, while the average was
19.165 seconds. For this specific query, the new data layout
had only a minimal positive effect on the query times.

There is more than one way to perform most analyses. In
this case, “SELECT COUNT(*)” was our initial implemen-
tation to determine the number of readings. An alterna-
tive method is to use a specific column to use to determine
the same result; e.g., “SELECT COUNT(ts_key)”. One mo-
tivation for considering these different implementations of
this simple analysis is that enables one to quantify the im-
plications on query performance of the different encoding

91In addition to application-level redundancy, our cluster has
storage-level RAID 10 redundancy to retain the data in the
event of a disk failure.
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Figure 11: Performance of Total Readings query.

methods used for the different columns. For example, per-
forming this query on the powerWatts column (dark blue
squares) took a median time of 310 ms to complete each
month. This query took slightly longer on the ts_key column
(dark purple squares), averaging 555 ms (558 ms median).
The query took the longest on the meter_key column (dark
green squares), with a median time of 51.301 seconds. This
illustrates the tradeoff for achieving better compression of
the meter_key column and the dataset overall; it takes a lot
longer to access the meter_key data. As a result, any queries
that use this column will encounter this overhead.

Figure 11 also shows the performance results of the Total-
Readings query and its variants during the re-analysis stage.
Figure 11 shows that the TotalReadings analyses are just as
fast in the re-analysis stage. This demonstrates that the
system under study performs in a consistent manner as the
data sizes grow; i.e., it does not make any tradeoffs to keep
queries fast on the most recently added data that might pe-
nalize queries involving older data.

4.3.2 Total Consumption
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Figure 12: Performance of Total Consumption query.

Figure 12 shows the performance results for the Total Con-
sumption query. Initially, the Total Consumption analysis
for the first month of data took 49.813 seconds. After opti-
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mizing the data layout, the analysis on the same data took
0.176 seconds. Over the 130 months of data, the average
time for this query was 0.249 seconds. In the re-analysis
step, the results are quite similar to the performance when
the analysis was initially run. The average time for this
query was 0.264 seconds. Note that on a linear scale the re-
sults appear to have quite a bit of variability in them. This
is due at least in part to distributing the query across eight
different nodes. Nevertheless, the query times are very low
in all cases.

4.3.3 Peak Consumption
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Figure 13: Performance of Peak Consumption query.

Figure 13 shows the results for the Peak Consumption
query. The peak consumption analysis took 92.862 seconds
prior to the data layout optimization. This was reduced to
0.334 seconds afterward. Across all 130 months, the average
was 0.307 seconds. The query times for the re-analysis step
are quite consistent with the initial results, with an average
time of 0.322 seconds to run the Peak Consumption query.

As shown in Table 1, the Peak Consumption analysis is
similar to the Consumption Timeseries query, the only dif-
ference being how the results are ordered. After running the
experiments we found that there was minimal difference in
the performance. Thus, the results in Figure 13 are quite
similar to those for the Consumption Timeseries analysis
(Figure 14).

4.3.4 Consumption Timeseries Performance

Figure 14 shows the performance of the Consumption Time-
series analysis. The initial query time was 92.639 seconds.
After optimizing the data layout, the query time dropped
substantially. The median value over 130 months was 0.355
seconds. The low response time and variability both suggest
that a user could potentially interact with the data, which
could enable real-time exploration of a large sensor dataset.
This is a significant result. A month of raw data in our util-
ity use case is nearly 6 TB in size; being able to create an
aggregate timeseries from it (e.g., Figure 4) in only a few
hundred milliseconds suggests that business analysts could
interact with the data, such as visually examining regions
of consumption activity that are interesting from a business
perspective (e.g., zooming in and out of time periods with
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Figure 14: Performance of Consumption Timeseries query.

abnormal consumption patterns, drilling down into who is
contributing to spikes in consumption, etc.).

The re-analysis query times are also shown in Figure 14.
Once again, the re-analysis query times are quite similar to
the initial query times. The median query time was 0.361
seconds. The variability in the re-analysis results is quite
low. These results indicate that a business analyst will be
able to interact with historical data about their business in
the same way that they can examine current data. This is
helpful for identifying emerging trends in their business.

4.3.5 Top Consumers Performance
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Figure 15: Performance of Top Consumers query.

Figure 15 shows performance results for the Top Con-
sumers analysis. The median query time during the initial
analysis was 401.997 seconds. The average re-analysis query
time was 408.968 seconds, which is slightly slower (1.7%)
than in the initial case, but still relatively the same as when
the data was first added to the database.

4.3.6  Time-of-Usage Billing Performance

Our final analysis is Time of Usage Billing. The results
are presented in Figure 16. As with Top Consumers, we
expected to sacrifice some performance on this query (since
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Figure 16: Performance of Time-of-Usage billing query.

it involves the meter_key column) in order to be able to store
a longer duration of data.

The median value over the 130 months was 554.395 sec-
onds. The re-analysis results (also shown in Figure 16) re-
veal that the query times on older data complete about as
quickly as when the queried data was initially added to the
database. The median query time for the re-analysis was
555.631 seconds, which is essentially identical to the initial
case. This demonstrates that with the system under study,
an organization could work with their historical data just
like it is new data.

4.3.7 Analyzing the Entire Dataset

Table 4: Benchmark query times over entire dataset.

Query Time (s)
Total Readings 10.859
Total Readings (ts_key) 10.131
Total Readings (meter_key) 6,673.220
Total Readings (powerWatts) 11.549
Total Consumption 10.636
Peak Consumption 149.034
Consumption Timeseries 155.412
Top Consumers 51,135.932
Time of Usage Billing 54,695.257

As a final exercise, we used IoTAbench to analyze the en-
tire dataset. We modified the benchmark queries so that
each would consider the entire dataset (i.e., all 22.8 tril-
lion readings). The query results may not be particularly
useful from a business perspective, but the performance re-
sults are interesting for understanding whether a “Big Data
platform” scales when analyzing a larger dataset. The main
modification required to each of the queries was to remove
the WHERE clause that filters the data to be considered.

Table 4 provides the results of this exercise. The results
can be grouped into three categories. First, two analyses
(Total Readings (meter_key) and Top Consumers) had per-
formance that was reasonably close to 130 times the aver-
age time they required on a single month of data. These
queries involved decompressing the heavily compressed me-
ter_key column, making the query time quite predictable.



The second category includes those where the actual time
is much lower than 130 times their average monthly time.
This includes Total Readings, Total Readings (ts_key), To-
tal Readings(powerWatts), Total Consumption, and Time
of Usage billing. Eliminating the WHERE clause is respon-
sible for at least part of the speedup. For the Time of Us-
age billing query, the results only need to be sorted once,
rather than once per month. The third category are the
analyses that take longer than 130 times their monthly av-
erage.In this category are Peak Consumption and Consump-
tion Timeseries. These two queries need to keep state on an
increasingly larger number of intervals. If a utility wished
to search larger intervals (e.g., hours or days) rather than
the default ten minute interval when analyzing the entire
dataset, then the performance of this sort of analyses may
improve. Alternatively, for these queries one could improve
the time by issuing each of the monthly queries in sequence
and concatenating the results together.

5. RELATED WORK

The most closely related work to ours are white papers
from IBM, Microsoft, and Oracle, examining how their prod-
ucts perform for storing, repairing and analyzing smart me-
ter data [2, 13, 21]. Our study uses a dataset that is 2-3
orders of magnitude larger than these studies, uses a larger
set of queries, and explores performance and scalability of
the system under study in much greater depth.

The “Internet of Things” is a popular topic in research
and business circles alike. However, much of the discussion
is focused on device features and connectivity issues rather
than on managing and analyzing the large datasets that will
be collected. The most related work we have come across
in this space is by Ding et al., who propose a “statistical
database cluster mechanism for Big Data analysis in the
Internet of Things” [7]. They provide a small-scale perfor-
mance evaluation of their framework. Ma et al. consider an
indexing mechanism for “massive” IoT data in a cloud en-
vironment [19]. Their performance evaluation involves four
orders of magnitude fewer records that our study.

“Big Data” is a popular topic that overlaps the Internet of
Things but spans other areas as well. An issue in the “Big
Data” domain is that there are different interpretations of
what constitutes “Big”. Descriptions of “Big Data” systems
in production environments typically mention data sizes in
the hundreds of TB to hundreds of PB [27, 4, 17] or trillions
to hundreds of trillions of rows [12]. “Big Data” research
studies on the other hand tend to work with much smaller
datasets, ranging from hundreds of GB [6, 18, 16, 24] to a few
TBs [29, 28, 23, 1]. The largest dataset we have seen used
in an existing “Big Data” study is 16 TB [9]. We attempt
to bridge the gap between research and production in our
paper, working with a dataset that is three-quarters of a PB
in size on a modest-sized cluster.

Benchmarking is another related domain. There are a
number of groups like SPEC'® and TPC!' that create in-
dustry standard benchmarks. At this time we are not aware
of any industry standard IoT benchmarks. BigBench is a
recent effort to create an industry standard benchmark for
the “Big Data” domain [11]. That work considers a broader
scope than we are; however, there may be an opportunity to

Ohttp://www.spec.org
Uhttp://www.tpc.org
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collaborate with them. Other recent works include a social
graph benchmark [3] and benchmarks for cloud services [5,
26, 22]. While these could potentially be used to benchmark
“Big Data” applications, they are not specifically focused on
IoT applications.

There is a long history of research on predicting electricity
load curves and the factors that affect them. For example,
Gellings and Taylor developed a simulation model of a util-
ity’s load shape in 1981 [10]. 70 years ago, Dryar described a
method to predict the effect of weather on a utility’s load [8].
The key difference between such works and ours is that we
are generating the loads for individual households that once
aggregated provide the desired utility load.

6. CONCLUSIONS

This paper introduced a benchmark called IoTAbench for
evaluating Big Data analytics platforms for the Internet of
Things. To generate a large data set with realistic proper-
ties, we used our Markov chain-based synthetic data genera-
tor. To demonstrate the potential for loTAbench to bench-
mark Big Data IoT applications, we considered a smart me-
tering use case, and evaluated the HP Vertica 7 Analytics
platform for a scenario involving an electric utility with 40
million meters.

To our knowledge, this is one of the largest Big Data re-
search studies to date, involving 22.8 trillion distinct read-
ings and 727 TB of raw data. In our opinion, this work
helps bridge the divide between “Big Data” research and
practice. In other words, we provide practitioners with in-
sights into a platform managing sensor data at production
scale, and simultaneously demonstrate to other researchers
a methodology to follow to conduct their research at pro-
duction scale. It is important to note that this work was
done on an eight-node cluster, not a cluster of hundreds or
thousands of servers as is often mentioned in discussions of
production environments.

We would like to contribute our tools and experience to-
wards the creation of an industry standard IoT benchmark
suite. We plan to identify additional IoT applications and
sensor data types to include as part of that suite.
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