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ABSTRACT
Distributed SQL Query Engines (DSQEs) are increasingly
used in a variety of domains, but especially users in small
companies with little expertise may face the challenge of se-
lecting an appropriate engine for their specific applications.
Although both industry and academia are attempting to
come up with high level benchmarks, the performance of
DSQEs has never been explored or compared in-depth. We
propose an empirical method for evaluating the performance
of DSQEs with representative metrics, datasets, and system
configurations. We implement a micro-benchmarking suite
of three classes of SQL queries for both a synthetic and a real
world dataset and we report response time, resource utiliza-
tion, and scalability. We use our micro-benchmarking suite
to analyze and compare three state-of-the-art engines, viz.
Shark, Impala, and Hive. We gain valuable insights for each
engine and we present a comprehensive comparison of these
DSQEs. We find that different query engines have widely
varying performance: Hive is always being outperformed by
the other engines, but whether Impala or Shark is the best
performer highly depends on the query type.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—distributed systems, performance eval-
uation; H.4 [Information Systems Applications]: Mis-
cellaneous

General Terms
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1. INTRODUCTION
With the decrease in cost of storage and computation of

public clouds, even small and medium enterprises (SMEs)
are able to process large amounts of data. This causes busi-
nesses to increase the amounts of data they collect, to sizes
that are difficult for traditional database management sys-
tems to handle. This has led to Hadoop-oriented distributed
query engines such as Hive [18], Impala [5], Shark [21], and
more recently, Presto [7], Drill [10], and Hive-on-Tez [3]. Se-
lecting the most suitable of these systems for a particular
SME is a big challenge, because SMEs are not likely to have
the expertise and the resources available to perform an in-
depth study. We remove this burden from SMEs by address-
ing the following research question: How well do Distributed
SQL Query Engines (DSQEs) perform on SME workloads?

Although performance studies do exist for Distributed
SQL Query Engines [1, 6, 8, 9, 15, 21], many of them only
use synthetic workloads or very high-level comparisons that
are only based on query response time. Our work evaluates
performance much more in-depth by reporting more met-
rics and evaluating more performance aspects. In addition
to reporting query response times, we also show scalability
and detailed resource utilization. The latter performance
aspects are particularly important for an SME in order to
choose a query engine.

In order to answer the research question we define a com-
prehensive performance evaluation method to assess differ-
ent aspects of query engines. We compare Hive, a some-
what older but still widely used query engine, with Impala
and Shark, both state-of-the-art distributed query engines.
This method can be used to compare current and future
query engines, despite not covering all the methodological
and practical aspects of a true benchmark. The method
focuses on three performance aspects: processing power,
resource utilization and scalability. With the results from
this study, system developers and data analysts can make
informed choices related to both cluster infrastructure and
query tuning.

Using both a real world and a synthetic dataset with
queries representative of SME workloads, we evaluate the
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Table 1: Overview of Related Work. Legend: Real
World (R), Synthetic (S), Modified Workload (+)

Query Engines Workload
Dataset

Type
Largest
Dataset

Cluster
Size

Hive, Shark [21] Pavlo+, other R, S 1.55 TiB 100
Redshift, Hive, Shark,

Impala, Tez [1] Pavlo+ S 127.5 GiB 5
Impala, Tez, Shark,

Presto [6] TPC-DS+ S 13.64 TiB 20
Teradata DBMS [9] TPC-DS+ S 186.24 GiB 8
Hive, Impala, Tez [8] TPC-DS/H+ S 220.72 GiB 20
DBMS-X, Vertica [15] Pavlo S 931.32 GiB 100

Our Work
Pavlo+,

other R, S 523.66 GiB 5

query engines’ performance. We find that different query
engines have widely varying performance, with Hive always
being outperformed by the other engines. Whether Impala
or Shark is the best performer highly depends on the query
type and input size.

Our main contributions are:

• We propose a method for performance evaluation of
DSQEs (Section 4), which includes defining a work-
load representative for SMEs as well as defining the
performance aspects of the query engines: processing
power, resource utilization and scalability.

• We define a micro-benchmark setup for three major
query engines, namely Shark, Impala and Hive (Sec-
tion 5).

• We provide an in-depth performance comparison be-
tween Shark, Impala and Hive using our micro-bench-
mark suite (Section 6).

2. RELATED WORK
We wanted to evaluate the major Distributed SQL Query

Engines currently on the market using a cluster size and
dataset size that is representative for SMEs, but still com-
parable to similar studies. Table 1 summarizes the related
previous works. Some of them run a subset or enhanced
version of the TPC-DS benchmark [16] which has only re-
cently been adopted for Big Data analytics in the form of
BigBench [9]. Other studies run a variant of the Pavlo et al.
micro-benchmark [15] which is widely accepted in the field.

Overall, most studies use synthetic workloads, of which
some are very large. Synthetic workloads do not necessarily
characterise real world datasets very well. For our work we
have also taken a real world dataset in use by an SME. Be-
sides our work, only one other study uses real world datasets
[21]. However, like most of the other studies, it only reports
on query response times. Our work evaluates performance
much more in-depth by reporting more metrics and eval-
uating more performance aspects including scalability and
detailed resource utilization. We argue that scalability and
resource utilization are also very important when deciding
which query engine will be used by an SME.

3. QUERY ENGINE SELECTION
In this study we initially attempted to evaluate 5 state-

of-the-art Distributed SQL Query engines: Drill, Presto,
Shark, Impala and Hive. We chose to evaluate these query
engines because they are widely used and contributed to by
many individuals and companies. All of the engines have

more than 400 forks and more than 1,000 stars on GitHub,
except for Drill, which has 188 forks and 298 stars.

We ended up discarding Drill and Presto because these
systems lacked required functionality at the time of test-
ing. Drill only had a proof of concept one node version, and
Presto did not have the functionality needed to write out-
put to disk (which is required for the kind of workloads we
wanted to evaluate).

Shark [21] is a DSQE built on top of the Spark [23] ex-
ecution engine, which in turn heavily relies on the concept
of Resilient Distributed Datasets (RDDs) [22]. In short this
means that whenever Shark receives an SQL query, it will
convert it to a Spark job, execute it in Spark, and then return
the results. Spark keeps all intermediate results in memory
using RDDs, and only spills them to disk if no sufficient
memory is available. Mid-query fault tolerance is provided
by Spark. It is also possible to have the input and output
dataset cached entirely in memory.

Impala [5] is a DSQE being developed by Cloudera and
is heavily inspired by Google’s Dremel [14]. It employs its
own massively parallel processing (MPP) architecture on top
of HDFS instead of using Hadoop MapReduce as execution
engine (like Hive below). One large downside to this engine
is that it does not provide fault tolerance. Whenever a node
dies in the middle of query execution, the whole query is
aborted.

Hive [18] was one of the first DSQEs, introduced by Face-
book and built on top of the Hadoop platform [2]. It provides
a Hive Meta Store service to put a relational database-like
structure on top of the raw data stored in HDFS. Whenever
a HiveQL (SQL dialect) query is submitted to Hive, Hive
will convert it to a job to be run on Hadoop MapReduce.
Although Hive provides mid-query fault tolerance, it relies
on Hadoop MapReduce and is slowed down whenever this
system stores intermediate results on disk.

4. EXPERIMENTAL METHOD
In this section we present the method of evaluating the

performance of Distributed SQL Query Engines. First we
define the workload as well as the aspects of the engines
used for assessing this performance. Then we describe the
evaluation procedure.

4.1 Workload
During the performance evaluation we use both synthetic

and real world datasets with three SQL queries per dataset.
We carefully selected the different types of queries and datasets
to match the scale and diversity of the workloads SMEs deal
with.

1) Synthetic Dataset : Based on the benchmark from Pavlo
et al. [15], the UC Berkeley AMPLab introduced a general
benchmark for DSQEs [1]. We have used an adapted version
of AMPLab’s Big Data benchmark where we leave out the
query testing User Defined Functions (UDFs), since not all
query engines support UDF in similar form. The synthethic
dataset used by these 3 queries consists of 118.29 GiB of
structured server logs per URL (the uservisits table), and
5.19 GiB of page ranks (the rankings table) per website, as
seen in Table 2. The uservisits and rankings tables can
be joined by matching on the URL field of the web page
visited. No other foreign key relationships are present.

Is this dataset representative for SME data? The struc-
ture of the data closely resembles the structure of click data
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Table 2: Summary of Datasets.
Table # Columns Description
uservisits 9 Structured server logs per page.
rankings 3 Page rank score per page.
hotel_prices 8 Daily hotel prices.

Table 3: Summary of SQL Queries.

Query
Input Size Output Size

Tables
GiB Records GiB Records

1 5.19 90M 5.19 90M rankings

2 118.29 752M 40 254M uservisits

3 123.48 842M < 10−7 1
uservisits,
rankings

4 523.66 7900M < 10−2 113K hotel_prices

5 20 228M 4.3 49M
hotel_prices

subsets

6 8 94.7M 4 48M
hotel_prices

subsets

being collected in all kinds of SMEs. The dataset size might
even be slightly large for SMEs, because as pointed out by
Rowstron et al. [17] analytics production clusters at large
companies such as Microsoft and Yahoo have median job
input sizes under 13.03 GiB and 90% of jobs on Facebook
clusters have input sizes under 93.13 GiB.

On this dataset, we run queries 1 to 3 to test raw data pro-
cessing power, aggregation and JOIN performance respec-
tively. We describe each of these queries below in addition
to providing query statistics in Table 3.

Query 1 performs a data scan on a relatively small dataset.
It simply scans the whole rankings table and filters
out certain records.

Query 2 computes the sum of ad revenues generated per
visitor from the uservisits table in order to test ag-
gregation performance.

Query 3 joins the rankings table with the uservisits ta-
ble in order to test JOIN performance.

2) Real World Dataset : We collected price data of hotel
rooms on a daily basis during a period of twelve months
between November 2012 and November 2013. More than 21
million hotel room prices for more than 4 million hotels were
collected on average every day. This uncompressed dataset
(the hotel_prices table) is 523.66 GiB on disk as seen in
Table 3. Since the price data was collected every day, we
decided to partition the dataset in daily chunks as to be
able to only use data of certain collection days, rather than
having to load the entire dataset all the time.
Is this dataset representative for SME data? The queries

we selected for the dataset are in use by Azavista, an SME
specialized in meeting and event planning software. The real
world scenarios for these queries relate to reporting price
statistics per city and country.

On this dataset, we run queries 4 to 6 to also (like queries 1
to 3) test raw data processing power, aggregation and JOIN
performance respectively. However, these queries are not
interchangeable with queries 1 to 3 because they are tailored
to the exact structure of the hotel price dataset, and by using
different input and output sizes we test different aspects of
the query engines. We describe each of the queries 4 to 6
below in addition to providing query statistics in Table 3.

Query 4 computes average prices of hotel rooms grouped
by certain months.

Query 5 computes linear regression pricing curves over a
timespan of data collection dates.

Query 6 computes changes in hotel room prices between
two collection dates.

3) Total Workload : Combining the results from the exper-
iments with the two datasets gives us insights in performance
of the query engines on both synthetic and real world data.
In particular we look at how the engines deal with data scans
(Query 1 and 4), heavy aggregation (Query 2 and 5), and
the JOINs (Query 3 and 6).

4.2 Performance Aspects and Metrics
In order to be able to reason about the performance differ-

ences between different query engines, the different aspects
contributing to this performance need to be defined. In this
study we focus on three performance aspects:

1. Processing Power : the ability of a query engine to pro-
cess a large number of SQL queries in a set amount of
time. The more SQL queries a query engine can han-
dle in a set amount of time, the better. We measure
the processing power in terms of response time, that
is, the time between submitting an SQL query to the
system and getting a response. In addition, we also
calculate the throughput per SQL query: the number
of input records divided by response time.

2. Resource Utilization: the ability of a query engine to
efficiently use the system resources available. This is
important, because especially SMEs cannot afford to
waste precious system resources. We measure the re-
source utilization in terms of mean, maximum and to-
tal CPU, memory, disk and network usage.

3. Scalability : the ability of a query engine to maintain
predictable performance behaviour when system re-
sources are added or removed from the system, or when
input datasets grow or shrink. Another way of defining
scalability is splitting it in strong, as well as weak scal-
ability. Strong scalability measures the query response
time improvement when adding more processors to the
cluster while, at the same time, keeping the total in-
put size fixed. Weak scalability, on the other hand,
measures the query response time when adding more
processors, while at the same time increasing the input
size such that the amount of data per processor stays
constant.

We perform two types of scalability. The first is hori-
zontal scalability (a form of strong scalability), where
the total input size is fixed while the number of cluster
nodes increases. The second is data input size scala-
bility, where the number of cluster nodes is fixed while
the total input size increases. Ideally, the performance
should improve proportionally to the amount of re-
sources added (taking the time complexity of the query
into account). The performance should only degrade
inversely proportional with every unit of input data
added (again taking the time complexity of the query
into account). In practice this highly depends on the
type of resources added as well as the overhead of par-
allelism introduced.
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4.3 Evaluation Procedure
Our procedure for evaluating the DSQEs is as follows: we

run each query 10 times on its corresponding dataset while
taking snapshots of the resource utilization using the moni-
toring tool collectl [4]. After the query completes, we also
store its response time. Note that we run each query in a
clean system in a single-tenant environment. No side-effects
of queries can affect other queries. When averaging over
all the experiment iterations, we report the standard devia-
tion as indicated with error bars in the experimental result
figures. Like that, we take into account the varying perfor-
mance of our cluster at different times of the day, intrinsic
to the cloud [13].

The queries are submitted on the master node using the
command line tools each query engine provides, and we write
the output to a dedicated table which is cleared after every
experiment iteration. We restart the query engine under test
at the start of every experiment iteration in order to keep it
comparable with other iterations.

5. EXPERIMENTAL SETUP
We define a full micro-benchmarking setup by configur-

ing the query engines as well as tuning their data caching
policies for optimal performance. We evaluate the most re-
cent stable versions of Shark (v0.9.0), Impala (v1.2.3) and
Hive (v.0.12). Many different parameters can influence the
query engine’s performance. In the following we define the
hardware and software configuration parameters used in our
experiments.

Hardware: To make a fair performance comparison be-
tween the query engines, we use the same cluster setup for
each when running the experiments. The cluster consists of
5 m2.4xlarge worker Amazon EC2 VMs and 1 m2.4xlarge

master VM, each having 68.4 GiB of memory, 8 virtual cores
and 1.5 TiB instance storage. This cluster has sufficient
storage for the real-world and synthetic data, and also has
the memory required to allow query engines to benefit from
in-memory caching of query inputs or outputs.

The scale of this cluster is comparable to the cluster sizes
observed in SMEs and related studies (see Table 1 and [12]).
Contrary to other Big Data processing systems, DSQEs (es-
pecially Impala and Shark) are tuned for nodes with large
amounts of memory, which allows us to use fewer nodes than
in comparable studies for batch processing systems to still
get comparable (or better!) performance. An additional
benefit of this specific cluster setup is the fact it is the
same cluster setup used in the AMPLab benchmarks pre-
viously performed on older versions of Shark (v0.8.1), Im-
pala (v1.2.3) and Hive (v0.12) [1]. By using the same setup,
we can also compare current versions of these query engines
with these older versions and see if significant performance
improvements have been made.

Software: Hive uses YARN [19] as resource manager
while we have used Impala’s and Shark’s standalone resource
managers respectively, because at the time of testing the
YARN compatible versions were not mature yet. All query
engines under test run on top of a 64-bit Ubuntu 12.04 op-
erating system. We use commonly known best practice con-
figurations without system tuning. Since the queries we run
compute results over large amounts of data, the configu-
ration parameters of the distributed file system this data is
stored on (HDFS) are crucial. It is therefore imperative that

Table 4: Different ways to configure Shark with
caching.
Abbreviation OS Disk Cache Input Cache Output Cache
Cold No No No
OC No No Yes
OSC Yes No No
IC N/A Yes No
OSC+OC Yes No Yes
IC+OC N/A Yes Yes

we keep these parameters fixed across all query engines un-
der test. One of these parameters includes the HDFS block
size, which we keep to the default of 64 MiB. The num-
ber of HDFS files used per dataset, and how these files are
structured and compressed is also kept fixed. While more
sophisticated file formats are available (such as RCFile [11])
we selected the Sequence file key-value pair format because
unlike the more sophisticated formats this is supported by all
query engines, and this format uses less disk space than the
plain text format. The datasets are compressed on disk us-
ing the Snappy compression type, which aims for reasonable
compression size while being very fast at decompression.

Each worker has 68.4 GiB of memory available of which
we allow a maximum of 60GiB for the query engines under
test. This leaves a minimum of 8 GiB of free memory for
other processes running on the same system. By doing this
we ensure that all query engines under test have an equal
amount of maximum memory reserved for them while still
allowing the OS disk buffer cache to use more than 8 GiB
when the query engine is not using a lot of memory.

Dataset Caching: Another important factor that influ-
ences query engine performance is whether the input data is
cached or not. By default the operating system will cache
files that were loaded from disk in an OS disk buffer cache.
Because both Hive and Impala do not have any configurable
caching policies available, we will simply run the queries on
these two query engines both with and without the input
dataset loaded into the OS disk buffer cache. To accomplish
this, we perform a SELECT query over the relevant tables, so
all the relevant data is loaded into the OS disk buffer cache.
The query engines under test are restarted after every query
as to prevent any other kind of caching to happen that might
be unknown to us (e.g., Impala has a non-configurable in-
ternal caching system).

In contrast, Shark has more options available regarding
caching. In addition to just using the OS disk buffer caching
method, Shark also has the option to use an in-memory
cached table as input and an in-memory cached table as out-
put. This completely removes the (need for) disk I/O once
the system has warmed up. To establish a representative
configuration for Shark, we first evaluate the configurations
as depicted in Table 4. OS Disk Cache means the entire
input tables are first loaded through the OS disk cache by
means of a SELECT. Input Cache means the input is first
cached into in-memory Spark RDDs. Lastly, Output Cache
means the result is kept in memory rather than written back
to disk.

Figure 1 shows the resulting average response times for
running a simple SELECT * query using the different possi-
ble Shark configurations. Note that no distinction is made
between OS disk buffer cache being cleared or not when a
cached input table is used, since in this case Shark does not
read from disk at all.
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Figure 1: Response time for different Shark caching
configurations. Vertical axis is in log-scale.

The configuration with both input and output cached ta-
bles enabled (IC+OC) is the fastest setup for both the small
and large data set. But the IC+OC and the IC configuration
can only be used when the entire input data set fits in mem-
ory, which is often not the case with data sets of multiple
TBs in size. The second fastest configuration (OSC+OC)
only keeps the output (which is often much smaller) in mem-
ory and still reads the input from disk. The configuration
which yields the worst results is using no caching at all (as
expected).

In the experiments in Section 6 we use the optimistic
IC+OC configuration when the input data set fits in mem-
ory and the OSC+OC configuration when it does not, rep-
resenting the best-case scenario. In addition the Cold con-
figuration will be used to represent worst-case scenarios.

6. EXPERIMENTAL RESULTS
We evaluate the three query engines selected in Section

3 on the performance aspects described in Section 4.2 us-
ing the workloads described in Section 4.1. We evaluate
processing power in Section 6.1, resource consumption in
Section 6.2, and scalability in Section 6.3.

6.1 Processing Power
We have used the fixed cluster setup with a total of 5

worker nodes and 1 master node as described in Section 5
to evaluate the response time and throughput (defined as
the number of input records divided by the response time)
of Hive, Impala and Shark on the 6 queries in the work-
loads. The results of the experiments are depicted in Figure
2. All experiments have been performed 10 times except for
Query 4 with Impala since it took simply too long to com-
plete. Only 2 iterations have been performed for this par-
ticular query. We used the dataset caching configurations
explained in Section 5. For Impala and Hive we used disk
buffer caching and no disk buffer caching for the warm and
cold situations, respectively. For Shark we used the Cold
configuration for the cold situation. In addition we used
input and output dataset caching (IC+OC ) for the warm
situation of queries 1 to 3, and disk buffer caching and out-
put caching (OSC+OC ) for the warm situation of queries
4 to 6, since the price input dataset does not entirely fit in
memory.
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Figure 2: Query Response Time (top) and Through-
put (bottom). Vertical axis is in log-scale.

Key Findings:

• Input data caching generally does not cause a signifi-
cant difference in response times.

• Performance is relatively stable over different itera-
tions.

• Impala and Shark have similar performance and Hive is
the worst performer in most cases. There is no overall
winner.

• Impala does not handle large input sizes very well
(Query 4).

The main reason why Hive is much slower than Impala
and Shark is because of the high intermediate disk I/O.
Because most queries are not disk I/O bound, data input
caching makes little difference in performance. We elabo-
rate on these two findings in more detail in our technical
report [20].

In the following we discuss the response times from the 6
queries in a pair-wise manner. We evaluate the data scan
queries 1 and 4, the aggregation queries 2 and 5, and the
JOIN performance queries 4 and 6 depicted in Figure 2.

1) Scan performance: Shark’s response time for query 1
with data input and output caching enabled is significantly
better than that of the other query engines (10 seconds vs.
100 seconds for Hive). This is explained by the fact that
query 1 is CPU-bound for the Shark-Warm configuration,
but disk I/O bound for all other configurations as depicted
in Figure 3. Since Shark-Warm caches both the input and
output, and the intermediate data is so small that no spilling
is required, no disk I/O is performed at all for Shark-Warm.

Results for query 4 for Impala are particularly interest-
ing. The response time of Impala is 12 hours, while the
response time of Hive (2 hours) and Shark (30 minutes) are
much lower. At the same time, resource utilization of Im-
pala is much lower, as explained in our technical report [20].
No bottleneck can be detected in the resource utilization
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Figure 3: CPU utilization (top) and Disk Write
(bottom) for query 1 over normalized response time.

logs and no errors are reported by Impala. After re-running
the experiments for Impala on query 4 on a different set of
Amazon EC2 instances, similar results are obtained, which
makes it highly unlikely an error occured during experiment
execution. A more in-depth inspection is needed to get to
the cause of this problem, which is out of the scope of our
work.

2) Aggregation performance: Both the aggregation query
2 and 5 are handled quite well by all the engines. The re-
sponse time ranges from 5 to 10 minutes. The main reason
why even though query 5 has a much smaller input dataset,
the response times are close to the ones of query 2 is that
this query is relatively much more compute intensive (see
Figure 4).

3) JOIN performance: The query engines perform quite
similar on the JOIN queries 3 and 6. A remarkable result is
that the fully input and output cached configuration Shark-
Warm starts to perform worse than its cold equivalent when
dataset sizes grow. This is explained in more detail in Sec-
tion 6.3.

6.2 Resource Consumption
Although the cluster consists of both a master and 5 worker

nodes, we only evaluate the resource consumption on the
workers, since the master is only used for coordination and
remains idle the most of the time. For any of the queries
the master never used more than 6 GiB of memory (<10%
of total available), never exceeded more than 82 CPU Core
Seconds (<0.0005% of the workers’ maximum), has negligi-
ble disk I/O, and never exceeded total network I/O of 4 GiB
(<0.08% of the workers’ maximum).
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Key Findings:

• Impala is a winner in total CPU consumption. Even
when Shark outperforms Impala in terms of response
time, Impala is still more CPU efficient (Figure 4).

• All query engines tend to use the full memory assigned
to them (See our technical report [20]).

• Disk I/O is as expected significantly higher for the
queries without data caching vs. the queries with data
caching. Impala has slightly less disk I/O than Shark.
Hive ends last (Figure 5).

• Network I/O is comparable in all query engines, with
the exception of Hive, which again ends last (Figure
6).

In the following we discuss the resource consumption per
query averaged over 5 workers and 10 iterations (50 data-
points per average). We show the CPU Core Seconds per
query in Figure 4. This shows how much total CPU a query
uses during the query execution. The CPU Core Seconds
metric is calculated by taking the area under the CPU uti-
lization graphs of all workers, and then multiplying this
number by the number of cores per worker (8 in our setup).
For example, a hypothetical query running 2 seconds using
50% of CPU uses 1 CPU Second which is equal to 8 CPU
Core Seconds in our case. The results in Figure 4 show that
the total amount of time required to complete a query on
a single core machine can range between 10 minutes (query
1) to more than 2 days (query 4). A query running on Im-
pala is the most efficient in terms of total CPU utilization,
followed by Shark. This is as expected since although Shark
and Impala are quite close in terms of response time, Impala
is written in C/C++ instead of Scala, which is slightly more
efficient.

The total disk I/O per query is depicted in Figure 5. It
shows that data caching does make a significant difference
in the number of disk reads performed. For example, query
1 on Shark requires less than 100 MiB of disk read when
caching is enabled, while it requires more than 1 GiB when
the cache is cleared. However, as shown in [20], disk I/O is
hardly ever the bottleneck. Although the input datasets are
entirely cached in the Shark-Warm configuration for queries
1 to 3, disk reading still occurs. This can be explained by the
fact that Shark writes shuffle output of intermediate stages
to the disk buffer cache (which eventually spills to disk). For
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Figure 5: Total Disk Read (top) and Disk Write
(bottom). Vertical axis is in log-scale.

queries 4 to 6 less significant differences occur since Shark-
Warm only uses the OS disk buffer cache mechanism, like
Impala and Hive. Note that because the input and output
are compressed (compression ratio around 10), generally no
more than 10% of the datasets is read or written to disk.
Query 1 and 3 have very small output datasets, which makes
Shark-Warm’s output not visible in the figure for query 1.
Similarly for query 3 Impala does not show up at all because
Impala does not write intermediate shuffle data to disk.

Figure 6 shows the network I/O per query. Since most
network I/O occurs between the workers, the network in and
out look similar. Hive has a very variable network output
total.

6.3 Scalability
In this section we analyze both the horizontal and the data

size scalability of the query engines. We decided to scale
horizontally down instead of up because a cluster of 5 nodes
of this caliber is already quite expensive for SMEs (more
than $7000 a month), and from our experimental results it
shows that some queries already do no longer scale well from
4 to 5 worker nodes. We used queries 1 to 3 for data size
scaling (since this dataset was already synthetic in the first
place) and queries 4 to 6 for horizontal scaling.

Key Findings:

• Both Impala and Shark have good data size scalabil-
ity on the scan and aggregation queries, whereas the
response time has super-linear growth on the JOIN
queries as the input size increases. This is as expected,
since a JOIN is an operation that requires super-linear
time.

• Hive has very good data scalability on all queries, but
this is likely due to its large overhead, which dominates
the response time at these data input sizes.
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Figure 6: Total Network In (top) and Network Out
(bottom). Vertical axis is in log-scale.

• If Shark-Warm’s input dataset is too large for its data
storage memory, the response time will increase be-
yond Shark-Cold due to swapping.

• Shark and Impala horizontally scale reasonably well on
all types of queries up to 3 nodes, whereas Hive only
scales well on queries with large input sizes.

• The query engines do not benefit from having more
than 3 or 4 nodes in the cluster. Impala even performs
worse for query 6 at bigger cluster sizes.

1) Data Size Scalability : The data size scalability of the
query engines is depicted in Figure 7. We have sampled sub-
sets from the original dataset of the following sizes: 5%, 10%,
25%, 50%, 75%, 90%, and 100%. We display these along the
horizontal axis of the figure in terms of how many times the
samples are bigger compared to the 5% sample (1 equals the
5% sample, 20 equals the 100% sample). The vertical axis
displays how many times the response time is worse com-
pared to the 5% sample. The colored lines correspond to
each of the query engine configurations, whereas the dashed
black line depicts the situation where the response time de-
grades just as fast as the data input size grows. Any query
engine performing above this dashed line does not scale very
well with the data input size. Query engines performing
close to or below the dashed line do scale very well with the
input size. Engines that have a much more gentle slope in
their performance compared to the dashed line, have their
system overhead dominate the response time.

For query 1, all query engines have good data size scala-
bility, but both Shark and Hive have their system overhead
dominating the response time. This is because query 1 has
a very small input dataset of only 5 GiB. So scalability is
not easily shown. For query 2, which has much larger data
input size, it shows that both Impala and Shark scale very
well. Hive’s response time on the other hand, is still being
dominated by its system overhead. The query engines have
super-linear scalability on query 3, except for Hive, which
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Figure 7: Response time Query 2 (Aggregation; top)
and 3 (JOIN; bottom) for different data sizes. Re-
sults for Query 1 are in the technical report [20].
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is in log-scale). Results for Query 5 are in the tech-
nical report [20].

shows close to linear scalability. However, since a JOIN
operation takes super-linear time, the response time is ex-
pected to grow faster than linearly.

An interesting phenomenom occurs with Shark for query
2 and 3. When the data input size grows and passes 50% of
the size of the original dataset (10 on the horizontal axis in
the figure), Shark-Warm actually starts scaling worse than
Shark-Cold. This is caused by the fact that Shark allocates
only around 34 GiB of the 60 GiB it was assigned for data
storage and uses the remaining amount as JVM overhead.
This means that the total cluster can only store about 170
GiB of data instead of the 300 GiB it was assigned. The
input dataset for query 2 and 3 are close to 120 GiB, which
fills some of the worker nodes’ fully at the start of query
execution. When data exchange occurs between the workers,
even more memory is needed for the shuffled data received
from the other worker nodes, causing the node to spill some
of its input data back to disk.

2) Horizontal Scalability : The horizontal scalability of the
query engines is depicted in Figure 8 (note that we are scal-
ing down instead of up). For Impala we only ran 4 and 5
nodes since it already took 12 hours to complete. Both Shark
and Hive scale near linearly on the number of nodes. Hive
only scales well on query 4 since Hive’s Hadoop MapReduce
overhead likely outweighs the computation time for query 5
and 6. This is because they have a relatively small input
size. Impala actually starts to perform worse on query 6 if
more than 3 nodes are added to the cluster. Similarly, both
Shark and Impala no longer improve performance after more
than 4 nodes are added to the cluster for query 4 and 5 [20].

This remarkable result for horizontal scaling shows that
whenever a query is not CPU-bound on a cluster with some
number of nodes, performance will not improve any further
when adding even more nodes. In the case of network I/O
bound queries like query 6, it might even be more beneficial
to bind these to a smaller number of nodes so less network
overhead occurs.

7. CONCLUSIONS AND FUTURE WORK
In recent years an increasing number of Distributed SQL

Query Engines have become available. They all allow for
large scale Big Data processing using SQL as interface lan-
guage. In this work we compare three major query engines
(Hive, Impala and Shark) with the requirements of SMEs in
mind. SMEs have only little resources available to run their
big data analytics on, and cannot afford running a query
engine with large overhead.

In this work we have defined an empirical evaluation method
to assess the performance of different query engines. Despite
not covering all the methodological aspects of a scientific
benchmark, this micro-benchmark gives practical insights
for SMEs to take informed decisions when selecting a spe-
cific tool. Moreover, it can be used to compare current and
future engines. The method focuses on three performance
aspects: processing power, resource utilization, and scala-
bility.

Using both a real world and a synthetic dataset with rep-
resentative queries, we evaluate the query engines’ perfor-
mance. We find that different query engines have widely
varying performance. Although Hive is almost always out-
performed by the other engines, it highly depends on the
query type and input size whether Impala or whether Shark
is the best performer. Shark can also perform well on queries
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with over 500 GiB in input size in our cluster setup, while
Impala starts to perform worse for these queries. Overall Im-
pala is the most CPU efficient, and all query engines have
comparable resource consumption for memory, disk and net-
work. A remarkable result found is that query response time
does not always improve when adding more nodes to the
cluster. Remaining key findings can be found at the top of
every experiment in Section 6.

This work has been an attempt to get insights in DSQE
performance in order to make life easier for SMEs picking
the query engine that best suits their needs. Query engine
performance in a multi-tenant environment has not been
evaluated, and is part of future work.
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