
DynamicSpotter: Automatic, Experiment-based
Diagnostics of Performance Problems

— Invited Demonstration Paper —

Alexander Wert
Karlsruhe Institute of Technology, Am Fasanengarten 5, Karlsruhe, Germany

alexander.wert@kit.edu

ABSTRACT
Performance problems in enterprise software applications can
have a significant effect on the customer’s satisfaction. De-
tecting software performance problems and diagnosing their
root causes in the testing phase as part of software develop-
ment is of great importance in order to prevent unexpected
performance behaviour of the software during operation. Dy-
namicSpotter is a framework for experiment-based diagnosis
of performance problems allowing to detect performance
problems and their root causes fully automatically. Provid-
ing different kind of extension points, DynamicSpotter allows
for utilizing external measurement tools for the execution of
performance tests. Building upon an extensible knowledge
base, DynamicSpotter provides means to extend the diagnos-
tic capabilities with respect to detection of additional types
of performance problems.

1. INTRODUCTION
The performance of enterprise software systems plays a

crucial role for the success of software vendors and opera-
tors as it directly affects customer satisfaction. In order to
prevent end users from facing performance problems during
operation of software applications, performance problems and
their root causes need to be identified in the testing phase
of a software development process. However in practise, di-
agnostics of performance problems is a highly manual task
which requires significant expertise in performance engineer-
ing, rendering frequent, thorough analysis of performance
problems impractical.

In this demonstration paper, we introduce DynamicSpotter
(DS) [2], a novel framework for automatic, experiment-based
diagnostics of performance problems in enterprise software
systems. DS automates the execution of performance test
series, gathering of measurement data, as well as the anal-
ysis of measured data in order to scan fully automatically
a system under test (SUT) for known types of performance
problems and their root causes. Thereby, DS utilizes existing
performance measurement tools for instrumentation of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, Texas, USA.
ACM 978-1-4503-3248-4/15/01.
http://dx.doi.org/10.1145/2668930.2693844.

SUT, gathering of measurement data and load generation.
Designed for the testing phase of a software development pro-
cess, DS allows for a frequent, regular execution of diagnostic
runs, for instance as part of continuous integration.

DS is an open source tool, which is available on GitHub [2].
DS is designed as an extensible and flexible framework fos-
tering enhancements and extensions by creation of adapters
to support the usage of additional measurement tools and
detection of additional types of performance problems. In
2014, DS has been reviewed, accepted by the SPEC Research
Group and is part of SPEC RG’s repository of recommended
performance evaluation tools.

2. THE DIAGNOSTICS APPROACH
DynamicSpotter (DS) is a framework for experiment-based,

automatic diagnostics of performance problems, combining
the concepts of software performance anti-patterns [6] with
systematic experimentation. As many performance anti-
patterns share common characteristics, they can be struc-
tured in a hierarchical way, yielding a taxonomy which covers
performance problem types from their high level symptoms
to their specific root causes [8, 9]. DS utilizes the taxon-
omy as a decision tree in order to systematically search for
performance problems. For each node of the taxonomy, a
detection heuristic is applied which is responsible to decide
on the existence of the corresponding performance problem
in the SUT. Therefore, a detection heuristic specifies a set
of experiments to be executed, the data to be gathered and
a set of analysis rules to be applied on the data.

While traversing the taxonomy and applying correspond-
ing detection heuristics for each performance problem, DS
generates a report. The report states for each node in the
taxonomy whether the corresponding performance problem
exists in the SUT and points to the location of the corre-
sponding root cause in the SUT.

3. ARCHITECTURE
The architecture of DynamicSpotter (DS) is depicted in

Figure 1. DS requires a taxonomy on performance problems
and corresponding detection heuristics as input which are
generic artifacts usually provided by performance experts.
Hence, the taxonomy and detection heuristics are intended
to be reused in different application contexts of DS. DS Core
is the main component which is responsible for coordinating
the instrumentation of the SUT, the measurement process,
gathering and pre-processing measurement data, as well as
analyzing data. Furthermore, DS Core implements the high
level process of iterating a taxonomy on performance prob-

105



Legend:

DynamicSpotter

Measurement Environment

DynamicSpotter 
Runner

System Under Test

DynamicSpotter Core

<<EP>>
Measurement 

Adapter

<<EP>>
Instrumentation 

Adapter

DynamicSpotter
Eclipse-Plugin

DynamicSpotter 
Service

configuration
Data Analysis

Experiment Execution

Process Controller

Measurement 
Tools

Instrumentation 
Tools

<<EP>>
Load Driver 

Adapter

configuration

Load 
Generators

DynamicSpotter
User

Performance 
Expert

Taxonomy on 
Performance Problems

Detection Heuristics

provides

Extension Point

Human Interaction

Dependency

Interaction

Figure 1: Architecture of DynamicSpotter

lems. The Experiment Execution component is responsible
for automating experiment execution, while the Data Anal-
ysis component encapsulates the analysis of measurement
data for individual performance problems according to the
detection rules defined in the detection heuristics. For each
sub-task, DS provides extension points (cf. �EP� in Fig-
ure 1) allowing to provide adapters for specific tools used for
instrumentation, monitoring and workload generation:

Load Generator Adapter: This extension point pro-
vides means to use existing load generation tools like Apache
JMeter [4], Faban [3], etc. for workload generation.

Instrumentation Adapter: This extension point allows
to provide adapters for instrumentation tools like DiSL [5],
Kieker [7], our own instrumentation tool AIM (Adaptable
Instrumentation and Monitoring) [1], etc. Thereby, DS uses a
generic instrumentation description model (IDM) to decouple
the instrumentation description from the tool realizing it.

Measurement Adapter: A measurement adapter is
used to control data collection, as well as to transform and
transfer data from the monitoring tools to DS in a common
data representation format. Though a specific instrumenta-
tion and measurement adapter are often realized within one
external tool, they represent conceptually different tasks.

DS may use several instrumentation, measurement, and
load generation adapters, whereby the selected set of adapters
to be used in a specific application context of DS determines
the Measurement Environment. In order to run DS, a DS
User has to describe the Measurement Environment in a
configuration which is either passed to a headless DS process
(DS Runner), or the user may prefer an interactive way of
creating a configuration for DS using the DS Eclipse-Plugin.

4. CONCLUSION & FUTURE WORK
DynamicSpotter (DS) is a framework for experiment-based,

fully automatic diagnostics of performance problems in enter-
prise software systems. DS has been applied in multiple case

studies [8, 9] showing promising results with respect to the
automation of performance problems diagnostics. As DS is a
framework, the diagnostics capabilities highly depend on the
detection heuristics available for DS. Currently, heuristics
for the detection of software bottlenecks and communication
performance anti-patterns are available. Extending the ex-
isting set of supported detection heuristics is an important
task for future work. Furthermore, we are working on pro-
viding additional adapters for common measurement tools
(e.g. Kieker [7]).

5. REFERENCES
[1] Aim homepage. http://sopeco.github.io/AIM/.

[2] DynamicSpotter homepage.
http://sopeco.github.io/DynamicSpotter/.

[3] Faban homepage. http://faban.org/.

[4] Apache Software Foundation. Apache JMeter homepage.
http://jmeter.apache.org.

[5] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni,
W. Binder, and Z. Qi. Disl: a domain-specific language
for bytecode instrumentation. In AOSD’11. ACM, 2012.

[6] C. Smith and L. Williams. Software performance
antipatterns; common performance problems and their
solutions. In CMG-CONFERENCE-, 2002.

[7] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In ICPE’12. ACM, 2012.

[8] A. Wert, J. Happe, and L. Happe. Supporting swift
reaction: automatically uncovering performance
problems by systematic experiments. In ICSE’13. IEEE
Press, 2013.

[9] A. Wert, M. Oehler, C. Heger, and R. Farahbod.
Automatic Detection of Performance Anti-patterns in
Inter-component Communications. In QoSA’14. ACM,
2014.

106




