
An Evaluation of ZooKeeper
for High Availability in System S

Cuong M. Pham,
Zbigniew Kalbarczyk,
Ravishankar K. Iyer

University of Illinois at Urbana-Champaign
{pham9, kalbarcz, rkiyer}@illinois.edu

Victor Dogaru
IBM Software Group
Oakland, CA, USA

vdogaru@us.ibm.com

Rohit Wagle,
Chitra Venkatramani

IBM T.J Watson Research Center,
Yorktown Heights, NY, USA

{rwagle, chitrav}@us.ibm.com

ABSTRACT
ZooKeeper provides scalable, highly available coordination
services for distributed applications. In this paper, we evaluate the
use of ZooKeeper in a distributed stream computing system called
System S to provide a resilient name service, dynamic
configuration management, and system state management. The
evaluation shed light on the advantages of using ZooKeeper in
these contexts as well as its limitations. We also describe design
changes we made to handle named objects in System S to
overcome the limitations. We present detailed experimental
results, which we believe will be beneficial to the community.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – performance measures

D.2.4 [Software Engineering]: Software/Program Verification –
reliability

General Terms
Reliability, Performance

Keywords
Distribute systems, high availability, stream processing,
distributed coordination.

1. INTRODUCTION
ZooKeeper (ZK) [1] is a scalable, highly available, and reliable
coordination system for distributed applications. The primitives
exposed by ZK can be leveraged for providing dynamic
configuration management, distributed synchronization, group
and naming services in large-scale distributed systems. This paper
evaluates the use of ZK as the coordination backbone for System
S (commercialized as InfoSphere Streams [4][8]), a distributed
streaming middleware system. We present our findings from a
detailed experimental study to understand the application of ZK in
System S, both to replace some of the existing services and to
provide new capabilities. We also detail the design changes we
made to System S to better utilize ZK capabilities. We expect the
findings will be useful to distributed systems designers looking to
leverage ZooKeeper as the coordination backbone.

System S applications are developed to analyze high-volume,
continuous data from a variety of sources. The programming
model supports application specification in the form of a dataflow
graph, with analytics components or operators interconnected by
streams, which carry tuples of a fixed schema. The System S
runtime hosts applications from multiple users, deploys the
compiled operators (called Processing Elements or PEs) across a
distributed system, manages their streaming interconnections,
monitors and manages their resource usage and lifecycle. Some
requirements of the system that make ZK a good candidate as a
coordination backbone include:

- High Availability: System S applications are long running,
and process data continuously. High availability is a crucial
requirement both from an infrastructure and an application
point of view. If any of the components fail, the system has
to detect it and take appropriate recovery actions [3].

- High Performance: System S is a high-performance system
supporting a dynamic application execution environment. An
application can change its topology during runtime based on
analysis results, and new applications that connect to existing
ones can be launched and removed dynamically. Supporting
these features requires a high-performance control and
coordination backbone.

- Scalability: System S can support a very large set of
applications and is scalable over hundreds of nodes. This
requires a scalable coordination service to manage a large
number of named entities, and a large number of clients.

- Management Simplicity: Currently System S leverages
different services to provide system recovery (DB2), system
coordination and configuration (file-system). Simplifying
this to a single system makes management in terms of
deployment and troubleshooting easier.

The ZK architecture satisfies these requirements for System S and
is a good candidate due to its scalability, resiliency, in-memory
implementation, event-based interface, and a wait-free data-object
interface. In this paper, we evaluate ZK for the set of functions
outlined below:

- Resilient name server – providing a highly available name
service, which stores information about all named entities in
the system, such as PEs, and stream end-points, supporting a
dynamic execution environment.

- Dynamic System Configuration – providing a configuration
service that supports dynamic updates and notifications to
configuration parameters.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright © 2014 ACM 978-1-4503-2733-6/14/03…$15.00.
http://dx.doi.org/10.1145/2568088.2576801

209

- System state management and update notifications for the
runtime state of system entities such as PEs, streams, and
applications.

In this study, we designed and carried out a set of performance
measurements for ZK in conditions which simulate specific
System S application workloads. We report our findings on the
advantages and shortcomings of using ZK in the System S
context. We also report on changes to the System S runtime
design to better leverage ZK capabilities. Specifically, we run
experiments, which align our performance measurements with
existing benchmarks, and compare existing System S performance
to an alternative implementation using ZK for each of the
functions outlined above.

Based on our experiments, we find that:

- ZK is a better alternative to the current name services in
System S, which is either based on a shared file system or a
non-recoverable service. ZK does not impact the system
performance, while providing crash tolerance and
eliminating the dependency on a shared file system across
the System S cluster.

- ZK is a more easily manageable and higher performance
alternative to the current system recovery feature in System S
based on DB2 [3]. Although using DB2 is more reliable,
configuring DB2 HADR is onerous. In the course of
applying ZK to the above two scenarios, we had to make
appropriate design choices to get the required functionality
while maintaining high performance. One of the limitations
in ZK is the size of each zNode. We had to ensure that
System S state objects were appropriately sized and
organized to get the best performance from ZK. We also
discovered that the ZK C++ client significantly outperforms
the Java client. Since most System S infrastructure
components are written in C++, we could clearly leverage
this benefit. In this paper, we quantify this difference for the
awareness of application writers, when they design high-
performance System S applications.

The rest of the paper is organized as follows. Section 2 provides
background information and presents related work. Section 3
presents our experimentation methodology and setup. Sections 4,
5, and 6 present the results from the evaluation of ZK for the three
functions outlined before. Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
2.1 ZooKeeper Overview
ZK is a service, which provides wait-free coordination for large-
scale systems. ZK can be used as the kernel for building more
complex coordination services at clients.
ZK uses client-server architecture. The server side, called
ensemble, consists of one leader and several followers to provide
a replicated service. It requires that a majority of servers has not
crashed, to provide continuous service. Crashed servers are able to
recover and rejoin the ensemble. If the leader server crashes, the
rest will elect a new leader. Only the leader can perform update
operations; it then propagates the incremental state changes to the
followers using the Zab protocol [2]. Each server keeps a copy of
the data in its memory, but saves the transaction logs and
snapshots of the data in persistent storage for recovery.
Application clients implement their logic on top of ZK client
libraries, which handle network connection and provide APIs for
invoking ZK primitive operations. Currently ZK supports C/C++,
Java and Python bindings for clients. A ZK client can establish a
session with a ZK service, and sessions enable clients to move
transparently among the servers. Sessions have timeouts to keep
track of the liveness of the client and server.
The ZK data model provides its clients an abstraction of a
hierarchical name space, like a virtual file system. The data node
is called zNode. ZK consistency model guarantees that write
operations are linearizable, but read operations are not. All write
operations have to go through the leader, which is then
responsible for propagating the updates to other followers. To
boost the performance, read requests are handled locally by the
server that the client is connected to. As a result, a read might
return a stale value.

The ZK consistency model guarantees that write operations are
linearizable, but read operations are not. All write operations have
to go through the leader, which is then responsible for propagating
the updates to other followers. To boost the performance,
ZooKeeper has local reads. That means read requests are handled
locally by the server that the client is connected to. As a result, a
read might return a stale value.

ZK implements a useful feature for coordination, called watches.
The idea is to allow the client to monitor, or watch for
modifications on zNodes. Clients set watches on zNodes they
want to monitor, and then they will be notified asynchronously
when watched zNodes are modified.

2.2 ZooKeeper in Other Systems
Many distributed applications have adopted ZK as an integral part
of their systems, such as Distributed HBase [5]. Distributed
HBase [5], which can consist of thousands of nodes, uses ZK to
manage cluster status. For instance, HBase clients can query ZK
to find the cluster to connect to. In addition, ZK is used to detect
and trigger repairing process for node failures. HBase also intends
to extend the usage of ZK for other purposes, such as monitoring
table state and schema changes.

Several other real-time streaming analytics systems, such as
Stormy [6] and Twitter Storm [7], have also integrated ZK in their
implementations. While Stormy [6] employs ZK to provide
consistent leader election, Twitter Storm uses ZK to implement
Reliable Runtime with auto restart, and Dynamic Configuration
changes.

Figure 1: System S Runtime Architecture

210

This paper describes in details the intended use cases of ZK in
System S, as well as presents our in-depth performance and
availability analysis of these use cases.

2.3 System S Overview
System S [4][8] comprises of a middleware runtime system and an
application development framework, geared towards supporting
the development of large-scale, scalable and fault-tolerant stream
processing applications. An application is essentially a flowgraph
in which operators carry out portions of the data processing
analytics by consuming and producing new streams, leading to the
extraction of relevant results [9]. Once an application is compiled,
a set of runnable processing elements is created. A processing
element (PE) is a runtime container for portions of the flowgraph,
i.e., a collection of operators and their stream interconnections.
PEs belonging to an application can be logically grouped together
to form jobs. A System S user can then start up the application by
submitting it to the middleware runtime system, thereby creating
one or more jobs. The jobs can then be monitored, moved and
canceled using system management tooling.
The System S middleware runtime architecture (Figure 1)
separates the logical system view from the physical system view.
The runtime contains two distinct sets of components – the
centralized components are responsible for accepting job
management and monitoring requests, deploying and tracking
streaming applications on the runtime environment and the
distributed components, which are responsible for managing
application pieces deployed on individual hosts. Specifically, the
Streams Application Manager (SAM) is the centralized
gatekeeper for logical system information related to the
applications running on System S. SAM pro- vides access to this
information to the administration and visualization tooling. SAM
also functions as the system en- try point for job management
tasks. The Streams Resource Manager (SRM) is the centralized
gatekeeper for physical system information related to the software
and hardware components that make up a System S instance.
SRM is the middleware bootstrapper, carrying out the system
initialization upon an administrator request. In the steady-state,
SRM is responsible for collecting and aggregating system-wide
metrics, including the health of hosts that are part of a System S
instance and the health of the System S componentry itself, as
well as relevant performance metrics necessary for scheduling and
system administration.
The runtime system also includes additional components, which
we briefly describe here. The Scheduler (SCH) is the component
responsible for computing placement decisions for applications to
be deployed on the runtime system [10][11]. The Name Service

(NAM) is the centralized component responsible for storing
service references enabling inter-component communication by
associating symbolic names with resource endpoints that can be
registered, unregistered and remotely queried. The Authentication
and Authorization Service (AAS) is the centralized component
that provides user authentication as well as inter-component cross
authentication, vetting interactions between the components.
The runtime system has two distributed management components.
The Host Controller (HC) is the component running on every
application host and is responsible for carrying out all local job
management tasks including starting, stopping and monitoring
processing elements on behalf of requests made by SAM. The HC
is also responsible for acting as the distributed monitoring probe
on behalf of SRM ensuring that the distributed pieces of
applications remain healthy. Finally, a System S runtime instance
typically includes several instances of the Processing Element
Container (PEC), which hosts the application user code embedded
in a processing element. To ensure physical separation, there is
one PEC per processing element running on the system.
Some System S components (SAM, AAS, SRM and NAM)
maintain an internal state in order to carry out their operations.
Each component’s internal state reflects a partial view of the
overall System S instance state to which the component belongs.
This internal state must be durable if the component is to recover
from failure.
Stateful centralized services currently save their state in DB2 to
support recovery from failure. Distributed services recover state
either by querying the centralized servers or the environment.

3. EXPERIMENTAL SETUP
All experiments are conducted on a selected group of RedHat 6
hosts. Each host contains one Intel Xeon 3.00 GHz CPU (4 cores)
and 8GB RAM. All the hosts are interconnected via 1 Gigabit
Ethernet with approximate ping time is steady at 0.095-
millisecond round-trip. ZK server hosts also have local hard-disks
where the ZK snapshots and transaction logs are stored.

3.1 Primitive Operations Throughput
In order to establish the baseline of ZK’s performance on our
experimental cluster, we present the following experiment, which
examines the throughput of ZK primitive operations under
varying workloads and varying the number of servers in a
quorum. The number of clients in each test ranges from 1 to 20.
Each client issues 100,000 asynchronous requests and then waits
for all of them to finish at the server side to report the throughput
independently from other clients. The throughput of a server
ensemble is the aggregated throughput of all the clients running
concurrently. The result is shown in Figure 2.

As expected, the throughputs of Write request, including Create,
Set, and Delete, increase as the number of servers in a quorum
decreases, except in the case of standalone server. This behavior is
expected as ZK is using primary-backup model [2]: only the
leader can make updates, then broadcast atomically to other
following servers; the more following servers, the greater the time
to complete the broadcast.

As Read requests are distributed evenly to all the available
servers, where they are processed locally, the throughput increases
as the number of server increases. However, when the servers are
under-utilized, adding more servers does not improve the
throughput. As shown in Figure 2, the throughputs of ensembles,
containing from 1 to 9 servers are the same with 1 to 4 clients, as

Figure 2: ZK basic operations throughput

211

even the standalone server is underutilization. Read throughput is
one order of magnitude faster than the Write throughput.

In summary, adding more servers into the quorum, on one hand,
increases Read throughput and number of tolerable server crashes.
But on the other hand, it consumes more compute resources and
decreases the Write throughput.

4. ZOOKEEPER AS A NAME SERVICE
SERVER

4.1 Use Case Description
The Name Service (NAM) is responsible for presenting an
interface where System S components and applications can
register and locate remote resource endpoints. The space in NAM
is organized in a directory-based hierarchy, where an object can
be placed anywhere in the directory structure.

Currently System S offers two implementations for NAM:
Distributed NAM and File System NAM. Distributed NAM is a
scalable daemon suitable for large deployments. The service is not
backed by durable storage; therefore it is a single point of failure
in the system. The File System NAM implementation is suitable
for simple deployments as well as development and testing
environments. This implementation relies on an NFS shared file
system to store and propagate entries, which is intrinsically
recoverable.

Although NAM does not significantly impact the performance of
the stream applications, it plays a critical role in the availability of
the streaming system. According to our performance profiling,
even during then job submission time when NAM experiences a
peak of activity, the applications spend only about 1% of their
execution time invoking NAM. However, System S cannot
tolerate NAM unavailability, as this service is in the critical path
of inter-component communication. During job submission, SAM
contacts the HCs in order to start PE instances on a subset of the
instance hosts. During initialization, each PE is responsible for
establishing data connections with the other PEs in order to send
data streams, which results in a large number of NAM requests.
Specifically, a PE (i) registers its data input ports with NAM; (ii)
queries NAM for the host and port of the PE it has to connect to.

To test this use case, we developed a ZK-based NAM
implementation and integrated it with System S. System S’s
components are linked against the ZK client library to make
requests to the ZK NAM. Current NAM operations translate into
zNode Create, Get, and Delete operations.

We compared the startup time of a Streams job using ZK NAM
under normal working conditions, versus during ZK leader
crashes. We also compared ZK NAM and file-based NAM under
normal conditions but not during server failures, since the
underlying NFS implementation was not configured for high
availability.

4.2 Failure Free Execution
This experiment examined the performance of ZK NAM in
normal working conditions. Particularly, we compared the startup
time of stream jobs using ZK and File System NAM. We also
inspected closer at the Read and Write request arrival rates at
NAM during stream job startup.

We used the Long Chains performance benchmark to generate
workload for the experiment. Each Long Chains job consists of
one input operator and one output operator joined using a set of
relay operators linked in chains. The input operator sends tuples to
a given number of operator chains. Each chain has a configurable
length. All the chains are joined at the output operator. The
number of chains is also customizable for each job.

Figure 3 shows the comparable startup times of ZK NAM and File
System NAM under varying number of PEs and varying
computing resources (number of hosts running the job). This
result confirms the expectation mentioned above, as NAM should
not significantly impact the performance of the application.

Figure 4a shows the Write and Read request arrival rate at NAM
during job startup time. At peak, NAM receives >350 Read
requests and >50 Write requests per second. These rates are low
compared to ZK throughput (Section 3.1), which shows that the
load posed by job submission is under the capacity of our ZK

(a)	 Failure	 free	 execution	 (b)	 ZK	 leader	 crashes	 10s	 after	 PEs	 start	

registering	
(c)	 ZK	 leader	 crashes	 20s	 after	 PEs	 start	

registering	

Figure 4: Request arrival rate at NS during job submission (Long Chains benchmark with 900 PEs running on 4 hosts)

Figure 3: Job startup time File System vs. ZK NAM

212

installation. One ZK server ensemble can accommodate multiple
job submissions at the same time, and still has available
bandwidth for other tasks as well.

Figure 4a also shows that Read requests arrive at NAM about
three times faster than Write requests. This is a good ratio for ZK.
The number of Write requests depends on the number of PEs, as
each PE needs to register its input ports once. The number of
Read requests depends on the topology of the PEs: how many
neighbors each PEs needs to query. This ratio is aligned with
Long Chains topology. In general, this ratio tends to be greater,
which makes it a good workload pattern for ZK.

While delivering similar performance, ZK can tolerate server
failures and reduce stress to the file system, which is often the IO
bottleneck to many distributed system. The next section examines
NAM’s behavior under ZK server crashes.

4.3 ZooKeeper Server Failure Execution
Figure 4b and 3c demonstrate that NAM can sustain ZK Server
crashes. A ZK leader crash impacts a streaming job start time by
increasing the total duration of the start operation.

Two possible causes of the additional delay are: (i) increasing
workload for the rest of the servers; and (ii) execution stalled
during session migrations from failed server to other servers. The
first cause does not happen in this case. Because adding additional
requests, that other servers have to handle for the failed server,
does not exceed each server’s capacity. That rules out the
possibility that increasing workload on each active server causes
increasing the running time. The second cause is what really
happens in this case. In order to confirm this argument, we
experimented with different server crash duration, or Mean-Time-
To-Repair (MTTR), and different crash points.

When varying the MTTR of the server failure, we did not observe
any changes in the startup time. For example, if the crashed server
is restarted after 60 seconds, while the job is still starting-up, the
startup time is the similar to the startup time when the crashed
server is not restarted. This experiment also confirms the
observation in section 3.1: once ZK servers are underutilized,
adding one ZK server to the ensemble does not impact the
application performance.

However, the crash point in time of the server does affect the
performance. As showed in Figure 4c, where the crash point was

moved further 10 seconds back in comparison with Figure 4b, we
see a slight increase in the startup time. The further away we are
from the startup time, the more PEs have established connections
with NAM. Therefore, if a server crashes, there are more ZK
clients which have to migrate their sessions to the other servers.
That causes a longer delay for name registering and querying.

These two experiments again confirm the cause of the increasing
running time is the session migration due to server crashes.

5. ZOOKEEPER AS A RECOVERY
DATABASE

5.1 Use Case Description
A System S instance runs one or more streaming applications
logically managed as jobs [3]. An application is essentially a
graph in which the vertices are the data flows and the nodes are
operators running the Streams application code. A PE is a runtime
container, which can host one or more operators. Operators and
PEs have ports, which are connected to create data streams.
These entities are structured in a hierarchical model, which for the
purpose of our experiments is mapped to a hierarchy of zNodes,
as illustrated in Figure 5.

In the System S architecture, SAM has two responsibilities:

• Instance Management: accepting job management requests for
deploying streaming applications and updating the associated
instance state.

• Instance State Access: providing access to logical system
information related to the applications running on System S
(the instance model) to administration and visualization clients.

SAM processes job submission requests in stages, which generate
updates to the System S instance model. The current System S
implementation uses two building blocks, which together provide
system-wide fault tolerance: a reliable communication
infrastructure (CORBA), and a relational database (IBM DB2).
Instance model updates and messages to remote components
within each stage are persisted within a single transaction.

Figure 5: Persisting the model of a System S job to
ZooKeeper zNodes

Figure 6: Multi-op performance

Create (black lines): one Multi-Op per job; Create1 (blue
lines): multiple Multi-Op per job. Experimented with two sets

of three and five ZK servers. zNode size is 512B or 1KB in
each experiment.

213

With ZK, a set of related state updates can be executed using a ZK
multi-operation (multi-op), which allows a batch of create, delete,
update or version-check operations to succeed or fail together.

To help evaluate multi-op performance when using ZK, we want
to measure the maximum zNode multi-op rate achievable for
various node numbers.

5.2 Single Multi-op for One Stream Job
Multi-ops are submitted to ZK as one single request. Even though
the request contains a list of operations, ZK applies the same
message size boundary and operation timeout as for a single
primitive operation request, which sets a limit for the number of
operations packed in each multi-op.

In order to increase the number of operations batched in one
multi-op, we configured ZK server to accept a message size up to
45MB, as well as extend the operation timeout to 30 seconds.

The black lines in Figure 6 show that the multi-op execution time
depends on both the number of batched operations packed into
one message and the data size of each operation. The time taken
for the multi-ops, which creates multiple 1KB zNodes per request,
starts growing quickly after reaching approximately 50,000
zNodes per request due to CPU bound at the server. We start
encountering operation timeouts on reaching 66,000 zNodes per
request. When operating with a 512B sized nodes, the number of
zNodes created by each Multi-Op is limited by the message buffer
size.

5.3 Multiple Multi-ops For One Streams Job
To ensure the scalability, a ZK-based implementation would have
to use a combination of the following techniques:

• Structure instance model changes such that properties, which
do not change during the life of a job, are grouped into a small
number of "constant" zNodes. This technique simplifies the
zNode management (for example, "constant" zNodes can be
created in a separate multi-op).

• Split job submissions into several stages, which are atomically
executed. In this case, the responsibility of restoring the system
to the state prior to the job submission in case of a failure will
partially fall onto the client.

The blue lines in Figure 6 illustrate the execution time where the
execution of a job submission is split into several multi-ops. We
believe that the extra overhead of the multi-op logic causes longer
overall update times for the same number of nodes (about three
times longer than in the extreme case where each multi-op updates
a single node). In a real-life implementation, we expect that
combining multiple operations in the same multi-op can shorten

the overall update time. Further, where possible, by combining
asynchronous execution of stage N with preparation of update
operations for stage N+1, total execution time can be reduced.

6. ZOOKEEPER AS A PUBLISH-
SUBSCRIBE MIDDLEWARE FOR
DYNAMIC SYSTEM CONFIGURATION

6.1 Use Case Description
In this use case, we evaluate ZK as a mechanism for Dynamic
System Configuration. System S contains tools, which help users
inspect the state of an instance and retrieve PE-based and
operator-based data flows for the set of applications running on
that instance. The tools can depict the runtime environment using
a topological visualization perspective with overlaid performance
metrics. In order to provide a fresh view of the system, these
tools run the following query types: (i) Retrieving instance
topology and state; and (ii) Monitoring instance performance.

The tools periodically query SAM to retrieve the system state and
topology and refresh their stream graph view. In an
implementation based on ZK, instead of periodically polling
SAM, clients would set watches on nodes of interest and let ZK
send notifications when nodes are updated.

To simulate this usage pattern, we implemented a simple publish-
subscribe system using ZK watches as illustrated in Figure 7. ZK
servers act as the publish-subscribe middleware, where each topic
is represented by one zNode, while the Subscribers and Publishers
are ZK clients. The subscriber sets watches on the zNodes (the
topics) that they wish to monitor. Meanwhile the publishers
update the topics’ content by writing to the corresponding zNodes.
Upon each update, ZK servers send out notifications to the
subscribers that have set watches on the updated zNode. Upon
receiving a notification, each subscriber sends a Read request to
the ZK servers to query the content of the zNode, and then resets
the watch on that zNode.

The semantics is slightly different from a regular publish-
subscribe system, where the middleware sends the updated
content to the subscribers upon each notification. ZK only sends
notifications telling the subscribers that there is a recent change in
the watched zNode, and then the subscribers are responsible for

Figure 8: Watch & Read latency

C: number of subscriber clients per machine. M: number of
machines running the subscriber. The black (for Java clients) and
red (for C++ clients) arrows show the increasing trend of latencies

when increasing the number of zNode each client monitors

Figure 7: Publisher-subscriber model for Dynamic System

Configuration

214

retrieving the updated content. In addition, the subs have to re-set
the watch if they still want to monitor that zNode.

6.2 Failure Free Execution
It is of importance to know how much time it takes for the watch
notifications and the updated data to reach all the subscribers
under normal execution conditions.

In this experiment, we setup one publisher that updates N zNodes
at the same time. There are M subscribers evenly distributed on P
number of hosts. Each subscriber sets watches on all N zNodes.
We measured:

• The watch latency: the time from a publisher starts updating all
N zNodes until all the watch notifications arrive at all the M
subscribers.

• The read latency: the time from a publisher starting to update
all N zNodes until all the data (after subscribers issue read
requests) arrive at all the M subscribers.

Since each subscriber performs a considerable amount of
processing in this use case, we examined the performance of both
C++ and Java implementations of the subscriber. The results of
these experiments are shown in Figure 8.

C++ subscribers outperform the Java ones, and the gaps become
more significant when increasing either the number of subscribers
running on each machine or the number of zNodes monitored by
each subscriber. When each machine has only one subscriber, and
each subscriber monitors less than 1000 zNodes, the watch and
read latencies of C++ and Java subscribers are comparable.
However, as clearly shown by the trend lines in Figure 8, the
watch and, especially, read latencies of Java subscribers increase
faster than for C++. The same trend can be observed when
keeping the number of zNodes constant, but increasing the
number of subscribers running on each machine. With five
subscribers on each machine and up to 1000 zNodes monitored by
each client, read latency of the Java implementation is from 2 to 3
times slower than that of the C++ implementation.

Figure 9b shows the average CPU utilization of Java and C++
subscribers across 25 machines; each machine has 30 subscribers;
each subscriber monitors 1000 zNodes. The C++ lines are shorter
because the C++ subscribers finished receiving the update faster
than the Java ones. The CPU utilization peaks of ZK servers (the
dashed lines) are similar when serving C++ and Java subscribers.
However, while 30 C++ subscribers utilize at most 22% of the
CPU resource, 30 Java subscribers consume the entire CPU
resource of the machine. Java subscribers are the scalability
bottleneck of the ZK based publisher-subscriber system.

It is also worth to note that each subscriber (in both C++ and Java
implementations) runs as a single-threaded user process. Thus
each Java subscriber requires a Java Virtual Machine (JVM). It
could be more efficient to implement each subscriber as a thread,
so that its footprint would be smaller. But we did not explore that
proposal, because our design requires relatively isolation and
independence between subscribers.

Figure 9a-b further visualize the latency differences between C++
and Java subscribers in the same setup. As we can see the watch
notifications start arriving about 2 seconds after the update for
both C++ and Java subscribers. However, as C++ subscribers are
able to accommodate more requests at the same time, they finish
faster than the Java subscribers. The performance of C++
subscribers is stable, as they all finished after 4-9 seconds. On the

other hand, there is a wide gap (~10 seconds) between watch
arrival time and read completion in Java subscribers. It is also
noticeable that Java clients are relatively unstable due to the fact
that they are exhausting the resources of the machines. Therefore
the performance of Java clients is more sensitive to the noise in
the system (e.g. created by other system background services).

We did not compare Java and C++ clients in the other two use
cases because these use cases mostly exercise the servers,
therefore we anticipated that the performance of the clients would
not significantly impact the performance of the overall service. On
the other hand, since this particular use case involves the
execution of the clients most heavily, we decided to examine the
differences between Java and C++ clients.

6.3 ZooKeeper Failure Execution
In this experiment, we quantified the impact of ZK server crashes
on the availability of our system. We used C++ clients in this
experiment to achieve the highest server utilization.

In order to reduce the performance and network overhead,
watches are managed locally in each server. The caveat of this

(a) Detailed latencies on each client. The black dots and the

red dots show the watch arrival time and read data
completion time, respectively. Each machine hosts 30

clients (therefore each grid column represents the clients of
one machine)

(b) Average CPU utilizations across 25 machines

Figure 9: Java vs. C++ clients (1000 watches/client)

215

design is that the other servers are not aware of the watches that
the crashed server was managing. Therefore, not only do the
clients have to reconnect to the other servers, they have to
resubmit all the active watches to the newly connected server.
From when the server crashes to when the watches are
resubmitted successfully, the clients will lose all the watch
notifications that occur during that period. We call this period
watch unavailable window, as depicted in Figure 11.

6.3.1 Zookeeper follower crashes
Figure 10a illustrates the watch unavailable window of the clients
when a following ZK server crashes. In this experiment, the server
ensemble consists of 5 servers; and each client monitors 1000
watches. Because the clients are evenly distributed to 5 servers,
the number of disconnected clients due to one, follower crashes is
one fifth of the total number of clients.

The min latency and max latency are the read latencies of the first
and the last clients, respectively, that receive all the updated data.
The chart shows that the min latency is constant (3 milliseconds),
and the max latency increases gradually as the number of
disconnected clients increases. This latency is negligible for many
applications. For example interactive Stream Console users would
not be able to notice this latency of update.

6.3.2 Zookeeper leader crashes
Figure 10b-c illustrate the watch unavailable window of the
clients when a ZK leader crashes. This window ranges from 3 to
100 seconds. This is a considerable impact on the availability of
the service. The reason for this long unavailable window is: ZK
leader crashes force the rest of the servers to re-elect a new leader.
During this re-election time, all clients are disconnected, thus no

request is severed. After the new leader is elected, all the servers
start accepting connections. That also means there is a burst of
watch resubmission requests initiated from all the clients.

7. CONCLUSION
This paper describes three intended use cases of ZooKeeper in
System S: Resilient Name Service, Dynamic System
Configuration using publish-subscribe model, and Recovery
Database. Our in-depth analysis has shown that ZooKeeper is a
viable coordination backbone, which will potentially improve the
performance, reliability and availability of the next generation of
System S Infrastructure.

ACKNOWLEDGMENTS
We would like to thank Michael Spicer of the IBM Software
Group for giving considerable direction and comments throughout
our experiments. We would like to thank the IBM Research team
member, Richard King, for his effort in explaining current System
S performance tests. We would like to thank Shu-Ping Chang and
Wesley Most for their efforts in maintaining the research cluster
in IBM Hawthorne, NY and servicing our requests.

REFERENCES
[1] Hunt, Patrick, Mahadev Konar, Flavio P. Junqueira, and

Benjamin Reed. "ZooKeeper: Wait-free coordination for
Internet-scale systems." In USENIX ATC, vol. 10. 2010.

[2] Junqueira, Flavio P., Benjamin C. Reed, and Marco Serafini.
"Zab: High-performance broadcast for primary-backup
systems." In Dependable Systems & Networks (DSN), 2011
IEEE/IFIP 41st International Conference on, pp. 245-256.
IEEE, 2011.

[3] Wagle, Rohit, Henrique Andrade, Kirsten Hildrum, Chitra
Venkatramani, and Michael Spicer. "Distributed middleware
reliability and fault tolerance support in system S."
In Proceedings of the 5th ACM international conference on
Distributed event-based system, pp. 335-346. ACM, 2011.

[4] IBM InfoSphere Streams: http://www-
01.ibm.com/software/data/infosphere/streams/

[5] Apache HBase: http://hbase.apache.org/

[6] Loesing, Simon, Martin Hentschel, Tim Kraska, and Donald
Kossmann. "Stormy: an elastic and highly available

(a)	 Follower	 crashes	 (b)	 Leader	 crashes	 –	 1000	 watches/client	 (c)	 Leader	 crashes	 –	 750	 clients	

Figure 10: Unavailable window after (a) Follower crashes and (b, c) Leader crashes

Figure 11: ZooKeeper watch un-available window

216

streaming service in the cloud." InProceedings of the 2012
Joint EDBT/ICDT Workshops, pp. 55-60. ACM, 2012.

[7] Marz, N., “A Storm is coming”
http://engineering.twitter.com/2011/08/storm-is-coming-
more-details-and-plans.html, August 2011

[8] Amini, Lisa, Henrique Andrade, Ranjita Bhagwan, Frank
Eskesen, Richard King, Philippe Selo, Yoonho Park, and
Chitra Venkatramani. "SPC: A distributed, scalable platform
for data mining." In Proceedings of the 4th international
workshop on Data mining standards, services and platforms,
pp. 27-37. ACM, 2006.

[9] Wu, Kun-Lung, Kirsten W. Hildrum, Wei Fan, Philip S. Yu,
Charu C. Aggarwal, David A. George, Buǧra Gedik et al.

"Challenges and experience in prototyping a multi-modal
stream analytic and monitoring application on System S."
InProceedings of the 33rd international conference on Very
large data bases, pp. 1185-1196. VLDB Endowment, 2007.

[10] Wolf, Joel, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh,
Deepak Rajan, Rohit Wagle, Kun-Lung Wu, and Lisa
Fleischer. "SODA: An optimizing scheduler for large-scale
stream-based distributed computer systems." In Middleware
2008, pp. 306-325. Springer Berlin Heidelberg, 2008.

[11] Wolf, Joel, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh,
Deepak Rajan, Rohit Wagle, and Kun-Lung Wu. "Job
admission and resource allocation in distributed streaming
systems." In Job Scheduling Strategies for Parallel
Processing, pp. 169-189. Springer Berlin Heidelberg, 2009.

217

