
On The Limits of Modeling Generational
Garbage Collector Performance

Peter Libič∗ Lubomír Bulej† Vojtěch Horký∗ Petr Tůma∗

∗Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics, Charles University, Czech Republic

{libic,horky,tuma}@d3s.mff.cuni.cz
†Faculty of Informatics, University of Lugano, Switzerland

lubomir.bulej@usi.ch

ABSTRACT

Garbage collection is an element of many contemporary soft-
ware platforms whose performance is determined by complex
interactions and is therefore difficult to quantify and model.
We investigate the difference between the behavior of a real
garbage collector implementation and a simplified model on
a selection of workloads, focusing on the accuracy achievable
with particular input information (sizes, references, lifetimes).
Our work highlights the limits of performance modeling of
garbage collection and points out issues of existing evaluation
tools that may lead to incorrect experimental conclusions.

Categories and Subject Descriptors

D.4.8 [Performance]: Measurements; D.4.2 [Storage Man-
agement]: Garbage collection

General Terms

Performance

Keywords

performance modeling; garbage collector; java

1. INTRODUCTION
A garbage collector (GC) is an essential part of modern

runtime platforms. Whether used in mature virtual machine
environments such as Oracle Java Virtual Machine (JVM),
and Microsoft Common Language Infrastructure (CLI), in
functional languages such as Lisp, and Haskell [15], or in
dynamic languages such as Ruby, and JavaScript, the GC
plays a major role in the overall system performance.
There are many ways to implement a GC—the design

space comprises different algorithms and parameter configu-
rations [10], but there is no single GC that works best for all

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE’14, March 22–26, 2014, Dublin, Ireland.

Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.

http://dx.doi.org/10.1145/2568088.2568097.

applications. Some garbage-collected environments provide
multiple GC implementations—either to enable workload-
specific tuning (Oracle HotSpot JVM), or to facilitate ex-
perimental variability for development and evaluation of GC
algorithms (Jikes RVM).
The choice of a GC and its configuration can have sig-

nificant impact on application performance [6], but due to
complex interactions between the GC and the application
workload, there are no exact guidelines (or algorithm) telling
a developer what GC to choose and how to configure it.
Instead, developers are given recommendations for trial-and-
error tuning [11, 17, 16].

While many developers embraced the GC-based platforms
due to increased productivity brought about by automatic
memory management, the influence of a GC on application
performance is significantly less well understood. Indeed,
even in the performance engineering community, the GC
overhead is often modeled as a constant factor to be cali-
brated with other model parameters [5, 25]. However, the
accuracy of such models is at best difficult to ascertain, be-
cause anomalous GC overhead under certain workloads can
account for tens of percents of execution time [12].

Assuming the perspective of an application developer with
knowledge of GC principles—but very limited influence on
particular GC internals—our goal is to determine whether
the developer can get a reasonably intuitive understanding of
GC performance, which would allow to relate GC behavior
to application-level performance and vice versa. Mismatches
between the observed and expected application-level perfor-
mance would indicate situations where special attention is
needed, especially if predictable performance is desired.
To this end, we investigate the performance behavior of

a real GC implementation compared to a simplified model
implemented as a GC simulator. In particular, we evaluate
the model accuracy on a variety of workloads and perform
sensitivity analysis with respect to the input describing the
application workload. Our contribution is as follows:

– We define simplified models of a one-generation and a
two-generation GC, and evaluate their GC prediction
accuracy on a variety of workloads, showing surprisingly
good results for some of them.

– We analyze how the prediction accuracy depends on the
information present in the input data, and discuss the

15

results in light of the complex interactions that govern
the behavior of contemporary garbage collectors.

– We highlight the limits of GC performance modeling,
pointing out issues that hinder experimental evaluation
and that may lead to incorrect conclusions with existing
tools.

The paper is structured as follows: we complement the
introduction with a short overview of related work in Sect. 2.
In Sect. 3, we present the general approach applied to mod-
eling one-generation GC in Sect. 4 and two-generation GC
in Sect. 5. We analyze model sensitivity to reduced and inac-
curate input in Sections 6 and 7, respectively, and conclude
the paper in Sect. 8.

2. RELATED WORK
The primary source of information on GC performance

is the GC research community—a GC design necessarily
needs to make many low-level design decisions related e.g.
to barriers, data structures, or traversal algorithms [9, 2, 22,
4, 7], and the overhead of every proposed GC algorithm is
carefully evaluated. Despite the insights provided by the
research on GC design, it is difficult for both developers and
performance engineers to relate the knowledge of GC inter-
nals to application-level performance. To gain information on
observable performance, benchmarks from established bench-
mark suites such as SPECjbb, SPECjvm, or DaCapo are
typically used. Of these three, the SPECjbb and SPECjvm
suites are intended for general JVM performance evaluation,
while the DaCapo suite is designed to exercise the GC [6].

A significantly smaller body of work can be found in the
area of GC modeling. Since object lifetimes play a major
role in GC behavior, an efficient algorithm for collecting the
lifetime data has been developed [13] and implemented [20]—
yet attempts at modeling garbage collector performance are
rare. The performance engineering community typically
models GC overhead as a constant factor [5, 25], while more
specific models can be mostly found in the domain of GC
parameter optimization. Vengerov [23] derived an analytical
model for the throughput of the generational GC in the
HotSpot JVM, which allows optimizing the sizes reserved for
the young and old object generations. White et al. [24] used
a control-theoretic approach (a PID controller) to adapt the
heap size in response to measured GC overhead.

3. GENERAL APPROACH
In general, our approach is based on comparing the behav-

ior of a GC model to the behavior of a real GC implemen-
tation. We consider both a simple one-generation GC and
a more common two-generation GC. For each GC type, we
define a simplified model based on the principles inherent to
that particular type. Compared to a real GC implementation,
the model omits technical details (such as what the barriers
look like or how the GC manages used and free memory) that
an application developer would be unlikely to care about or
unable to control.
We use the frequency of garbage collection cycles as the

metric to evaluate the model accuracy on. We investigate the
reasons for mismatches between the modeled and observed
behavior—from the application developer perspective, these
mismatches indicate situations where the GC behavior cannot
be explained based on the intuitive understanding of the basic

principles of GC operation. Knowing what the underlying
cause for the mismatch is allows the developer to either
look for a GC that behaves more predictably, or adapt the
application code to avoid triggering the behavior.

To analyze the sensitivity of the model to the input describ-
ing the application workload, we compare the behavior of the
real and simulated GC with different inputs, ranging from
complete traces (containing object lifetimes, object sizes, and
reference updates) to minimal input in form of probability
tables (capturing object lifetime and size distributions). In
contrast to the existing work, we measure object lifetime in
total object allocations, instead of method invocations [20],
or total bytes allocated [13].

At this stage, we do not attempt to model GC overhead in
terms of execution time, because that is virtually impossible
without getting the fundamental metrics right and thus being
able to tell when a collection occurs. Our initial experiments
suggest that the duration of individual collections is often
in an approximately linear relationship with the number
of objects surviving the collection, but we defer detailed
investigation to future work.

4. ONE-GENERATION COLLECTOR
To validate the feasibility of our approach, we first consider

a one-generation GC and build a simplified model with the
following assumptions: (a) objects have headers and observe
address alignment rules, (b) objects are allocated sequentially
in a single heap space, (c) garbage collection is triggered when
the heap runs out of free space, (d) all unreachable objects
on the heap are reclaimed in a single GC run, and (e) there
is no significant fragmentation on the heap.
To determine when (in terms of virtual time represented

as object allocation count) a garbage collection occurs, we
reason about the operation of a lifetime trace-based simulator.
A lifetime trace contains a chronological record of all object
allocations in an application, along with size and lifetime
(number of allocations until an object becomes unreachable)
of each object. Using this trace, the simulator allocates
objects as directed, and when the combined size of allocated
objects reaches the heap size, a garbage collection is triggered.
The simulator then discards all unreachable objects (whose
lifetime has expired) from the simulated heap. We model
this behavior using the following equation:

HS =

ni
∑

j=ni−1+1

SIZE [j]

+

∑

j∈{1...ni−1}
DEATH [j]≥ni−1

SIZE [j]

(1)

HS is the size of the modeled heap. In real VMs, this
corresponds to setting both the minimal and maximal
heap size to this value.1

ni is the virtual time of i-th garbage collection. Since the
virtual time is measured in object allocations, we know
that i-th GC occurred after allocating ni objects.

SIZE [j] is the size of j-th allocated object in bytes.

DEATH [j] is the virtual time of j-th object’s death (object
became unreachable). This happens after allocating

1Using the -Xmx and -Xms (or similar) parameters.

16

object number DEATH [j] and before allocating ob-
ject number DEATH [j] + 1. Given the lifetime trace,
DEATH [j] = j + LIFETIME [j].

The first term of Eq. 1 thus represents the amount of memory
occupied by objects allocated between collections (i−1) and i,
while the second term represents the amount of memory occu-
pied by objects surviving the previous (i−1) collections. The
whole equation must be understood as an approximation—it
is unlikely that the allocated object sizes would exactly add
up to the given heap size. However, this particular relaxation
simplifies reasoning and makes the equation less complex.
For a given application and heap size, the ni series is the

only unknown in Eq. 1. The values of ni can be computed
with the knowledge of object sizes and lifetimes contained
in a lifetime trace, but it requires collecting and processing
huge amounts of data.

To make the formula more practical, we replace the exact
object sizes and lifetimes by averages, which are easier to
obtain. The average object size can be measured by observing
the individual allocations. The average object lifetime can be
determined indirectly, exploiting the fact that it is necessarily
equal to the average number of live objects on the heap, which
can be calculated from samples of the number of live objects
after each garbage collection. Given the average object size
OS and the average lifetime LT , we can simplify Eq. 1 into:

ni − ni−1 =
HS

OS
− LT (2)

The equation then captures an intuitive observation that
the average number of objects allocated between consecutive
collections (left side) must correspond to the average amount
of garbage collected per collection (right side).

4.1 Model Evaluation
Although Eq. 2 is fairly simple, the potential loss of accu-

racy introduced by averaging is difficult to estimate analyti-
cally. We have therefore validated Eq. 2 experimentally for
the DaCapo 2006.10 benchmark suite [8] running on the Jikes
RVM 3.1.0 with the BaseBaseSemiSpace configuration [3].

For each benchmark, the results in Table 1 list the range of
evaluated heap sizes, the average lifetimes, the average object
sizes, and the ratio of the measured to the predicted collection
intervals (i.e. the number of allocations between collections).
A ratio of 1.0 means exact prediction, values greater than
1.0 mean Eq. 2 predicts fewer allocations between collections
and vice versa.
Given the extreme simplicity of Eq. 2, we consider the

results promising—while not usable for accurate performance
prediction, they suffice for better-vs-worse analysis and simi-
lar uses. We now proceed with a similar investigation for a
common two-generation collector.

5. TWO-GENERATION COLLECTOR
Compared to the one-generation GC discussed earlier, the

behavior of a two-generation GC is considerably more com-
plex. We make the following assumptions to build our sim-
plified model: (a) objects have headers and observe address
alignment rules, (b) sizes reserved for generations are fixed,
(d) the young generation uses copying GC, its memory con-
sists of one eden space and two survivor spaces, (e) the old
generation uses mark-and-sweep GC, its memory consists of
one old space, (b) GC stops the mutator, (f) minor collection

(young generation only) is triggered by full eden space, (g)
full collection (both generations) is triggered by close-to-
full old space, (h) objects are tenured (promoted from the
young to the old generation) after surviving certain number
(tenuring threshold) of minor collections, or when a minor
collection fills the survivor space, or on a full collection, (i)
references pointing from the old to the young generation
are in root reference set of minor collections, (j) order of
reference traversal is arbitrary, and (k) there is no significant
fragmentation on the heap.
Re (b). While generation sizing is usually adaptive, we

assume the adaptation to eventually reach a stable state—it
is generally recognized that the generation sizes may need to
be fixed for optimal performance [16].
Re (d) (e). The choice of a particular type of GC for the

young and old generations in our model is not essential—from
the modeling perspective, we are mainly interested in the
number of memory spaces (and their respective size limits) a
particular design uses. We therefore chose to mimic a widely
used configuration.

Re (g). The close-to-full condition is modeled by reserving
a space in the old generation corresponding to the average
size of objects that were promoted during few recent minor
collections. The old generation is considered full when the
amount of available space drops below this reserve.

Re (j). Order of reference traversal may become important
in connection with the tenuring rules. We do not address
this aspect due to space constraints.

The above assumptions are a close match for the Serial and
Parallel collector configuration found in the HotSpot JVM,
and in general fit the GC configuration recommended for
maximum throughput in the Oracle HotSpot JVM versions
starting with 1.4.
Even after abstracting from the implementation details,

the behavior of a two-generation GC remains too complex to
hope for useful analogues of Equations 1 and 2—these would
turn out to be either overly complex or overly simplified. We
therefore proceed by evaluating the model using a simulator.

5.1 Two-Generation GC Simulator
To evaluate the accuracy of our simplified two-generation

GC model, we again test the ability of the model to predict
the frequency and type (minor or full) of garbage collection
cycles. To this end, we have implemented a simulator that
takes an application trace, heap configuration, and tenuring
threshold as its input and produces a record of all garbage
collections triggered during the simulation, including their
type and sizes of heap spaces before and after the collection.
The application trace is a more detailed variant of the

lifetime trace used for the one-generation GC. Besides object
sizes and lifetimes, it also contains records for all reference
updates, both in fields and array elements. The heap con-
figuration defines the sizes of the eden and survivor spaces
in the young generation, and the size of the old space in the
old generation.
During operation, the simulator replays actions from the

application trace and keeps track of all objects in all heap
spaces, as well as all references that point to objects in the
young generation (because such references can make some
unreachable objects in the young generation survive minor
collections). When a garbage collection is triggered, the
simulator performs the appropriate collection and outputs a
corresponding collection record.

17

Table 1: Collection intervals measured / predicted by Eq. 2.

Benchmark -Xmx, -Xms LT OS Measured / Predicted

antlr 64− 192MB 251 293.41− 266 981.03 65.08− 65.18 0.88− 0.95
bloat 128− 384MB 459 737.93− 510 697.55 44.14− 44.41 0.95− 1.01
fop 64− 192MB 424 407.13− 483 685.75 48.87− 49.39 0.94− 0.96
hsqldb 512− 1 536MB 4 182 741.2 − 5 580 740 46.75− 48.14 0.75− 0.77
jython 128− 384MB 506 214.03− 506 559.54 69.50− 69.52 0.79− 1.00
luindex 64− 192MB 239 975.48− 272 593.07 39.78− 39.80 0.97− 1.08
lusearch 128− 384MB 281 455.74− 283 635.68 109.88− 110.47 1.55− 1.70
pmd 128− 384MB 385 953.04− 386 825.17 31.35− 31.36 0.89− 1.07

5.2 Obtaining Application Traces
There are two basic approaches to obtaining the object

lifetime information. The first relies on periodically forcing
garbage collection to discover unreachable objects. It is easy
to implement but fairly slow and the result accuracy depends
on the period between the forced collections. The second
approach—based on the Merlin algorithm [13]—is both faster
and more accurate, but also more complex and difficult to
implement on widely used JVMs.

Because Elephant Tracks [20] (probably the sole currently
working implementation of the Merlin algorithm) was not
available at the time, and now uses a time metric different
from ours, we have developed a tracing tool using DiSL [14]
and a custom JVMTI [18] agent. We use the brute force
approach to obtain object lifetimes, and always report the
granularity (period of forced garbage collections expressed
in object allocation units) at which they were collected.

To track object allocations, we instrument the NEW, NEWAR-
RAY, ANEWARRAY, and MULTIANEWARRAY bytecode in-
structions to report allocation events to the agent, which
also receives the VMObjectAlloc events from the JVM. The
agent tracks the virtual time (object allocation count) and
collects information on object sizes and allocation times.
After a specified number of allocations, the agent forces a
garbage collection and collects the lifetime information for
unreachable objects reported by the JVM via the ObjectFree
callback. To track reference updates, we instrument the
PUTFIELD and AASTORE bytecode instructions to report
reference update events to the agent, which records the new
reference and the target it is written to.

5.3 Model Evaluation
To evaluate the accuracy of the model implemented by

the GC simulator, we again compare the frequency of young
generation and old generation GC cycles reported by the
simulator to that observed on a real GC implementation. We
perform all experiments on the OpenJDK 1.6.0-22 JVM2,
with heap spaces fixed to predefined sizes and adaptive heap
space sizing disabled.3 This also results in fixing the tenuring
threshold at the default value of seven.
We collect the application traces for selected workloads

from the DaCapo 9.12-bach benchmark suite [8]—here, we

2OpenJDK Runtime Environment IcedTea 6 1.10.3 Gentoo
Build 1.6.0-22-b22 and OpenJDK 64-Bit Server VM Build
20.0-b11 Mixed Mode
3Using the -XX:ParallelGCThreads=1 -XX:-UsePSAdaptive-
SurvivorSizePolicy -XX:NewSize -XX:MaxNewSize -Xmx -Xms
JVM options.

report specifically on the batik, fop, xalan and tomcat work-
loads. Given that these are fixed-duration benchmarks, the
evaluation metric can be simplified to the number of garbage
collection cycles.

Because all the workloads have relatively modest memory
footprints, we iterate over each workload 100 times.4 To
provide an alternative scaling method, we implemented a
modified benchmark harness that executes multiple copies
of the same workload in parallel and uses multiple class
loaders and separate data directories to isolate the executing
workload instances. Using this harness, we run the workloads
in 8 threads, iterating over each workload 10 times in each
thread. Due to various technical issues, this scaling method
works reliably only with the fop workload, which we refer to
as multifop.
Limiting the spectrum of the benchmark workloads was

motivated by different factors for each workload. The eclipse,
tradebeans and tradesoap workloads use class loading in a
manner that is not compatible with the code instrumentation
required by our experiments. The avrora, lusearch and luindex
workloads do not exhibit interesting behavior with respect to
garbage collection frequencies. The h2 and jython workloads
generate an excessively large trace that our infrastructure
was not able to accommodate.

We should point out that despite omitting some workloads,
the range of experiments we perform is still extreme—a single
set of traces from the selected workloads is close to quarter
of a terabyte in size. Just collecting such a set takes over a
month of parallel execution time on a 2.33 GHz eight-core
machine, and the time to simulate the considered heap size
configurations for a single workload—a single line in some of
the plots presented later—is measured in days.

We first report the results obtained when providing the
simulator with a complete application trace, which includes
object lifetimes, sizes, and reference updates.
For the baseline evaluation, the application traces were

collected with the following granularities: 10000 allocations
for batik and fop, 2000 allocations for multifop and tomcat,
and 1000 allocations for xalan. These choices help maintain
variability between the experiments while balancing accuracy
and overhead.

For the heap size configuration, we use a combination of 8
young generation sizes and 6 old generation sizes, yielding
48 heap size configurations for each benchmark. The range
of young generation sizes is the same for all benchmarks: 16,
24, 32, 48, 64, 96, 128, and 192MB. The size of each of the
two survivor spaces is always 1/8 of the young generation

4Using the DaCapo -no-pre-iteration-gc -n100 options.

18

size, leaving the remaining 6/8 for the eden space. The range
of old generation sizes is given in the following table—the
benchmarks differ in memory requirements, we therefore
choose the ranges so that the smallest size in the range is
always close to the bare minimum required to execute the
benchmark.
Due to space limitations, we plot results from this and

the following two sections together in Figures 1–12. The
legend to the plot labels is in Table 2, the first four labels
are relevant to this section. While this arrangement makes
it difficult to discern individual results, it fits the goal of
illustrating the differences between results of various experi-
mental configurations in the limited space of the paper.

Benchmark Old generation sizes (MB)

batik 128 160 192 256 384 512
fop 64 128 192 256 384 512
multifop 256 288 320 384 512 1024
tomcat 48 64 96 128 192 256
xalan 160 192 256 384 512 768

Table 2: Plot legend labels

Legend label Configuration

JVM: JIT JVM in default mode with JIT enabled
JVM: no JIT JVM in interpreted mode (-Xint option)
JVM: DiSL JVM with instrumented code
Default Simulator with complete input
P(survived) Simulator with lifetime trace and probability

of object being marked and because of that
surviving

P(marked) Simulator with lifetime trace and probability
of object being marked

LT&SZ only Simulator with lifetime trace and object sizes
only

Generated 1 Simulator with generated lifetime trace, seed 1
Generated 2 Simulator with generated lifetime trace, seed 2

The plots in Fig. 1 and in Fig. 2 show the young generation
GC counts for the fop and multifop workloads, respectively.
The results obtained from the GC model simulator with full
application trace as an input are labeled Default, while the
results observed on a real GC are labeled JVM: JIT. We omit
plots for other workloads to save space, because all result
variants are very similar to fop, and in general show good
accuracy with the exception of the multifop workload.

The minor collection counts for the simulated and the real
GC should approximately equal the total size of all allocated
objects divided by the eden size. The large difference between
the simulated and the observed collection counts therefore
indicates that the total sizes of objects observed during the
trace collection and during the actual JVM execution differ.
The reason for the difference rests with the escape analysis
performed by the JIT. It is used to introduce stack alloca-
tion for objects that only exist in the scope of one method.
Because our instrumentation calls a native method with a
newly allocated object as a parameter, it makes all object
escape and thus effectively disables the stack allocation.
Until we can include this optimization in the GC model,

we can disable it by running the benchmarks with the tracing
instrumentation inserted (even when no agent is using it).
In the plots, the results of this configuration are labeled

JVM: DiSL. The minor collection counts from the simulator
then become very similar to the counts observed in the
instrumented JVM. As a sanity check, we also execute the
benchmarks in interpreted mode, with results labeled JVM:
no JIT in the plots. We should point out that this particular
issue is likely to impact all tools that rely on instrumentation
to collect traces, even when those tools claim to be precise,
such as Elephant Tracks [20].

The plots in Figures 3, 5, 7, 9 and 11 show the full GC
counts for the batik, fop, tomcat, xalan, and multifop work-
loads, respectively. The results from the GC model simulator
obtained using complete application trace are labeled Default,
while the results from a real GC observed in three JVM runs—
default, instrumented, and interpreted—are labeled JVM:
JIT, JVM: DiSL, and JVM: no JIT, respectively. Depend-
ing on the workload and heap configuration, the prediction
accuracy varies from very high (fop in smaller heap) to very
low (tomcat in smaller heap). The plots alone contribute to
our goal of illustrating how far a simplified model explains a
real GC implementation. We analyze some reasons in more
detail in the following sections.

6. IMPACT OF REDUCED INPUT
In this section we complement the baseline evaluation with

experiments that focus on finding the limits and trends in
model accuracy depending on the available input data. Com-
plete application trace—lifetimes, object sizes and reference
updates—are huge, easily into gigabytes for workloads that
only take a few minutes to execute. Collecting such traces is
neither always possible nor always practical, and simulation
with complete input data is also computationally expensive—
merely reading the input data usually takes longer than
executing the workloads. It is therefore important to under-
stand what accuracy can be expected when some of the input
data is aggregated or approximated, which is an approach
any practical models would have to follow.
In Sect. 6.1, we approximate the reference updates infor-

mation in the input data with a single probability value,
leaving only the lifetimes and object sizes. In Sect. 6.2, we
experiment with ignoring the reference updates altogether.
And finally, in Sect. 6.3, we also replace object lifetimes and
sizes with probability distributions.

6.1 Lifetime Trace with Mark Probabilities
This is the experiment where we start to shrink the model

input data. We start with the reference update trace, which
usually makes up more than 80% of the input size. Our goal
is to discard this data but still model the fact that some
unreachable objects in the young generation survive minor
collections due to references from the old generation.

Our approach is to replace the reference update trace with
one of two stochastic approximations. We compute the prob-
ability that an object is reachable from the old generation—
marked for short—during a minor garbage collection, either
for all objects (denoted P(marked)) or for objects whose
lifetime has expired (denoted P(survived)). For illustration,
we show the probabilities for fop in Fig. 13 and for tomcat
in Fig. 14. Both probabilities are relatively stable for a given
young generation size across all our benchmarks, we therefore
evaluate our model with one value of P(marked) and one
value of P(survived) for each young generation size.

We calculate the average probabilities for each heap config-
uration using our simulator—we were hoping to approximate

19

0
2
0
0

4
0
0

6
0
0

8
0
0

1
2
0
0

M
in

o
r

G
C

 c
o
u
n
ts

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

●

●

Default
JVM: DiSL
JVM: JIT

P(survived)
P(marked)
LT&SZ only

Generated 1
Generated 2
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 1: Young GC counts: fop

0
2
0
0

4
0
0

6
0
0

8
0
0

M
in

o
r

G
C

 c
o
u
n
ts

●●●●●●

●
●●

●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ●

●

●

Default
JVM: DiSL
JVM: JIT

P(survived)
P(marked)
LT&SZ only

Generated 1
Generated 2
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 2: Young GC counts: multifop

0
2
0

4
0

6
0

8
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

Default
JVM: DiSL

JVM: JIT
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 3: Full GC counts – JVM: batik

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● Default
P(survived)
P(marked)

LT&SZ only
Generated 1
Generated 2

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 4: Full GC counts – simulators: batik

0
1
0

2
0

3
0

4
0

5
0

6
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●
● ● ● ● ● ● ● ●

●

●

Default
JVM: DiSL

JVM: JIT
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 5: Full GC counts – JVM: fop

0
2
0

4
0

6
0

F
u
ll

G
C

 c
o
u
n
ts ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
● ●

● ● ● ● ● ● ● ●

● Default
P(survived)
P(marked)

LT&SZ only
Generated 1
Generated 2

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 6: Full GC counts – simulators: fop

0
5

1
0

1
5

2
0

2
5

3
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●●

●

●

●
●

●●
●●●●●●●●●●●●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ● ●

●

● ● ● ● ●

●

●

Default
JVM: DiSL

JVM: JIT
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 7: Full GC counts – JVM: tomcat

0
1
0

2
0

3
0

4
0

5
0

6
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●
●

● ●

●

●

●
●

● ●

●

●

●
●

● ●

●

●

●
●

● ●

●

●

●

●
● ●

●

●

●
●

●
●

●

● ● ● ● ●
●

● ● ● ● ●

● Default
P(survived)
P(marked)

LT&SZ only
Generated 1
Generated 2

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 8: Full GC counts – simulators: tomcat

20

0
2

4
6

8

F
u
ll

G
C

 c
o
u
n
ts

●●

●

●

●

●

●●

●

●

●

● ●

●

● ●

●

●

Default
JVM: DiSL

JVM: JIT
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 9: Full GC counts – JVM: xalan

0
2

4
6

8
1
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

● ●

●

● ●

● Default
P(survived)
P(marked)

LT&SZ only
Generated 1
Generated 2

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 10: Full GC counts – simulators: xalan

0
2

4
6

8
1
0

1
2

F
u
ll

G
C

 c
o
u
n
ts

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

●

●

Default
JVM: DiSL

JVM: JIT
JVM: no JIT

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 11: Full GC counts – JVM: multifop

0
5

1
0

1
5

F
u
ll

G
C

 c
o
u
n
ts

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● ● ● ●

●

●

● Default
P(survived)
P(marked)

LT&SZ only
Generated 1
Generated 2

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MBYoung gen

Old gen

Figure 12: Full GC counts – simulators: multifop

the probabilities from some benchmark or configuration char-
acteristic, but we have not found a way to do so.

When using the P(marked) probability, the simulator ran-
domly marks all objects in the young generation every minor
collection, with probability P(marked). When using the
P(survived) probability, the simulator randomly marks only
those objects whose lifetime has expired, with probability
P(survived). In both cases, the marked objects survive the
minor collection regardless of their actual lifetime.

The results from the experiments described in this section
are in Figures 4, 6, 8, 10 and 12. The results labeled De-
fault are from simulations with complete input, the results
labeled P(marked) and P(survived) are from simulations that
respectively use one of the two probabilities.

6.2 Lifetime Trace Only
In this set of experiments, we completely avoid reference

updates and use only lifetime and size of objects. This means
that no unreachable objects survive the simulated collection—
both minor and full collections are complete. The number
of minor collections should not change, the number of full
collections can be smaller than in the previous experiments—
this is confirmed in Figures 4, 6, 8, 10 and 12, where the
results from this experiment are labeled LT&SZ only.

6.3 Lifetime and Size Distributions
The last set of experiments uses the smallest input, replac-

ing the entire trace with a table that tells the probability
of records with particular lifetime and object size appearing

in the trace. The table consists of buckets that correspond
to lifetime ranges, each bucket lists unique object sizes and
counts for objects with that lifetime. In addition to the table,
which characterizes lifetimes and object sizes, we use the
P(survived) probability from Sect. 6.1.

The lifetime ranges are used to keep the table reasonably
small, however, we have to be careful to avoid losing too much
information. Accuracy is essential for objects with small life-
times, where fluctuations influence the tenuring decision,
and for objects with large lifetimes, where fluctuations influ-
ence average old generation occupancy. In contrast, knowing
medium lifetimes accurately is of smaller importance. We
use tables of 200 buckets, with eight lifetime ranges for the
smallest lifetimes and five lifetime ranges for the largest life-
times growing and shrinking in logarithmic steps, the ranges
of the remaining buckets are of equal size.

The buckets keep exact sizes and counts. Our benchmarks
use only about 500 to 1200 different object sizes, which makes
keeping exact sizes possible. For workloads that generate
objects of many different sizes (for example arrays with
varying sizes), we would modify the algorithm to create size
buckets as well.

To avoid potentially error-prone modifications, we keep our
simulator as is and run it on synthetic traces that conform
to the description in the table—that is, we first compute the
tables that characterize our benchmarks and then simulate
GC on traces generated from these tables. The procedure of
generating such traces is described next.

21

●●●●●●

●●●●●●
●●●●●● ●

●●●●●
●●●●●● ●●●●●●

●●●●●●

●●●●●●

0
.0

0
0

.0
4

0
.0

8
0

.1
2

P
ro

b
a

b
ili

ty

16MB 24MB 32MB 48MB 64MB 96MB 128MB 194MB

● P(marked)

P(survived)

Configuration (young generation size)

Figure 13: Mark probabilities: fop

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●
●●

●●●●●● ●●●●●●

0
.0

0
0

.0
1

0
.0

2
0

.0
3

P
ro

b
a

b
ili

ty

16MB 24MB 32MB 48MB 64MB 96MB 128MB 192MB

● P(marked)

P(survived)

Configuration (young generation size)

Figure 14: Mark probabilities: tomcat

Trace Generator Description.
The procedure of generating a trace from the table of life-

times and sizes is complicated by the fact that individual
lifetimes are not independent random variables—in particu-
lar, when there are only N allocation events left to generate
in the trace, the biggest lifetime the allocated object can
have is also N .
Our trace generation algorithm addresses the problem as

follows. At any moment, we know the number of allocation
events still to be generated (denoted N), the bucket whose
lifetime range includes N (here called the oldest bucket), and
the number of objects to be generated from the oldest bucket
(denoted I). For the oldest bucket, we prepare I random
lifetimes in the corresponding lifetime range, sorted by value.
When N is greater than the oldest prepared lifetime, we
pick a random bucket and a random size from that bucket
and emit a corresponding allocation event into the generated
trace. When N reaches the oldest prepared lifetime in the
oldest bucket, we pick a random size from that bucket and
emit an allocation event with the oldest prepared lifetime
and the chosen size. After emitting an event, we decrement
N (this may designate new bucket as the oldest bucket),
decrement the count of objects of the used size in the used
bucket, and remove the prepared lifetime from the oldest
bucket if applicable.

The random bucket choice uses a discrete probability dis-
tribution, the probability of picking a bucket corresponds to
the share of objects to be generated from the bucket. The
random lifetimes are picked from a uniform distribution with
minimum and maximum corresponding to the lifetime range
of the bucket. For practical reasons, we do not prepare the
random lifetimes for the buckets with shortest lifetimes.

We present results of two simulations for each benchmark.
The input was created using the trace generation algorithm
with two different random number generator seeds. The
results are displayed in Figures 4, 6, 8, 10 and 12. We use
the legend labels Generated 1 and Generated 2 for the data.

6.4 Accuracy Metric
Besides the visual evaluation using the plots in Figures 5–

12, we also provide a numeric accuracy metric. Among
typical model evaluation metrics are the ratio of the model
results to the measured values, or the proportion of successful
predictions (i.e. results within tolerance) to all predictions.

In our case, such metrics would allow reporting arbitrarily
good accuracy by including more configurations where no
collections happen—as in the xalan workload. We therefore
use a metric based on the relative area difference in the

plots, which eliminates the effect of configurations with no
collections. We denote this metric as inaccuracy, calculated
as follows:

Inaccuracy =
AREAdifferences

AREAbaseline

(3)

The AREAdifferences is the area between the two lines of plots
we compare and AREAbaseline is the area under the plot
depicting the baseline—the two areas, which can overlap, are
shown on the following illustration.

AREAdifferences AREAbaseline

For the scale, we use collection count on the vertical axis
and equidistant units on the horizontal axis. For the full
collections, the results are shown in Table 3. We use the
instrumented JVM runs as the baseline. The smaller the
value is, the better the accuracy—zero means perfect fit.

The table shows that although the results across bench-
marks fluctuate, the overall tendency is a gradual decrease
in accuracy as the inputs are reduced. As an anomaly, the
accuracy with the reduced input based on P(marked) ap-
pears better than the accuracy with full input. This is due
to the fact that using P(marked) leads to overestimating the
number of objects surviving young collections, and because
the model with full input tends to predict fewer collections,
this overestimation turns out to be helpful.

Table 3: Inaccuracy for full collections

Simulator batik fop multifop tomcat xalan

Default 0.46 0.28 0.14 1.31 0.26
P(marked) 0.30 0.35 0.13 1.09 0.13
P(survived) 0.57 0.30 0.13 1.10 1.00
LT&SZ only 0.57 0.38 0.13 1.08 1.00
Generated 1 0.66 0.36 0.23 2.39 0.17
Generated 2 0.67 0.36 0.22 2.26 0.17

Overall: Default 0.41, P(marked) 0.32,
P(survived) 0.48, LT&SZ only 0.50, Generated 0.60

22

6.5 Results Discussion
From the results presented on the GC count plots (Fig-

ures 1–12), we can tell that the simulation gives accurate
counts of minor collections, but the accuracy of the full col-
lection counts is limited. This is mostly an expected result,
because our simplified model does not capture all the behav-
ior of the JVM collector implementation and because the
input trace is not precise—we illustrate the sensitivity to
inputs in Sect. 7.

The good accuracy in predicting minor collections is related
to the simplicity of the triggering condition. The matching
results confirm that the total size of the objects in the trace
is roughly the same as in the real application run. We have
observed only one exception (especially visible in the multifop
workload), which we attribute to the use of escape analysis for
stack allocation. We have separated the effect in evaluation
by using the instrumented JVM runs as the baseline.

Another optimization that could affect the accuracy is the
usage of Thread-Local Allocation Buffers (TLAB)—small
memory buffers the threads allocate from to minimize locking.
Among our workloads, xalan, tomcat and multifop use more
mutator threads, but the results show no anomalies, we
therefore conclude that TLAB use does not affect the minor
collection count considerably.

Restricting the input data sets cannot impact the predicted
minor collection count except for the randomly generated
traces. In the other experiments, the total size of objects in
the traces does not change and therefore the minor collection
counts must remain the same as well. For the generated
traces, some differences may occur in principle, but our re-
sults show they are small—the total inaccuracy in predicting
minor collections in the two simulations with generated traces
is 0.069 and 0.072, almost the same as in the simulations
with measured traces (0.068 across all traces).

When it comes to the full collection counts, we can sum-
marize the results as follows: good accuracy for multifop
and xalan, often but not always good accuracy for fop, poor
accuracy for batik and tomcat workloads. This summary
is for the JVM runs with instrumentation enabled, which
isolates the escape analysis issue.

One reason for the poor accuracy cases rests with the trace
collection method, as analyzed in [13]. For a particular trac-
ing granularity, the collected lifetimes increase on average by
half the granularity value. This increase is reflected in larger
live heap sizes and should therefore cause more collections.
This is not what we observe, however—when inaccurate, the
simulator tends to predict fewer full collections. This sug-
gests our trace collection method is not the (sole) cause of
the result inaccuracy.
As an important observation, we note that the full GC

counts are fractions of 100 (100/X − 1 for various X, i.e. 99,
49, 32, 24) for a surprisingly large number of heap config-
urations. Given that we use 100 iterations in the DaCapo
workloads, this is unlikely to be a coincidence. We illustrate
the effect in detail in Fig. 15, where we show the full col-
lection counts for fop across more heap configurations—the
old generation sizes are 44, 48, 52, 56, 60, 64, 72, 80, 88,
96, 112, 128, 160, 192, 224, 256, 320 and 384MB. The data
points would normally roughly follow the 1/x hyperbolic
shape, as is the case for the 128MB young generation size,
but the results show clusters at 49, 32 and 24 collections
(emphasized by dotted lines in the plot) for the other three
young generation sizes.

0
2

0
4

0
6

0
8

0
1

0
0

F
u

ll
G

C
 c

o
u

n
ts ●

●●●●

●
●●

●●

●

●
●●

●
●●

●

●

●●●●

●●
●

●●

●

●
●

●●
●●

●

●

●●●

●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●●

16MB 32MB 64MB 128MBYoung gen

Old gen

Figure 15: Dense configurations: fop

To explain this phenomenon, we look into how the live size
of the workloads changes in time. Using the allocation count
as the time unit, we plot the live heap sizes calculated from
the traces of the batik, fop, multifop and tomcat workloads.
Figures 16 and 18 show the first four iterations out of 100
for fop and batik, Fig. 17 the first four out of 10 for multifop,
and Fig. 19 the first nine out of 100 for tomcat. The sawtooth
shape suggests all four workloads release most of the objects
allocated in each iteration. Additionally, the gradual rise
between iterations in tomcat resembles a memory leak.

The sawtooth shape is due to the way the DaCapo harness
implements iterations. Most of the objects allocated in an
iteration become garbage at the iteration end. This makes the
minimum memory requirements of the workload (minimum
heap size where the workload still executes) close to the
minimum memory requirements of a single iteration. Each
new iteration will allocate new objects and unless the heap
size exceeds the minimum requirements at least twice, GC
will be triggered. This GC will release objects from the past
iterations (which since became garbage), providing enough
memory for this iteration but not the next one, and the entire
cycle will repeat. As a result, the number of collections will
match the number of iterations for any heap size between the
minimum requirements and twice the minimum requirements.
Along the same lines, the number of collections will be half
the number of iterations if two but not three iterations fit the
heap size, and so on. This explains the clusters in Fig. 15.
The sawtooth shape not only makes the workload less

sensitive to heap size changes, it also makes the GC more
difficult to predict. Clearly, a GC cycle triggered just before
the end of an iteration will free much less memory than a GC
cycle triggered just after the end of an iteration, even though
the two can be just a few allocations apart. The impact
on GC count can be large because the former situation will
require another GC sooner rather than later, and there is
no guarantee the new GC will be more successful. As an
example of this effect, the batik workload (configuration with
16MB young and 128MB old generation) triggers full garbage
collections with the live sizes of 60MB in the instrumented
JVM and 40MB in the default simulator. This is a major
factor for the prediction accuracy results we observe.
Our analysis is further supported by the difference in

results between the default simulator and the simulation with
generated traces—the traces generated from the tables do not
exhibit the sawtooth shape of the live heap size, making the
clusters disappear. This is very visible on the results for the

23

0 2000000 6000000 10000000

0
5

1
0

1
5

2
0

2
5

Virtual time (allocations)

S
iz

e
 o

f
liv

e
 o

b
je

c
ts

 [
M

B
]

Figure 16: Partial live size trace: fop

0 20000000 40000000 60000000 80000000

0
5

0
1

0
0

1
5

0

Virtual time (allocations)

S
iz

e
 o

f
liv

e
 o

b
je

c
ts

 [
M

B
]

Figure 17: Partial live size trace: multifop

0 1000000 2000000 3000000 4000000

0
1

0
3

0
5

0

Virtual time (allocations)

S
iz

e
 o

f
liv

e
 o

b
je

c
ts

 [
M

B
]

Figure 18: Partial live size trace: batik

0 10000000 30000000 50000000

8
9

1
0

1
1

1
2

1
3

Virtual time (allocations)

S
iz

e
 o

f
liv

e
 o

b
je

c
ts

 [
M

B
]

Figure 19: Partial live size trace: tomcat

multifop workload (Fig. 12), where horizontal clusters evident
when simulating real traces change into gradual slopes with
the generated traces.
Finally, the gradual rise in the live heap size between

iterations in tomcat also complicates predictions. As the
heap becomes more and more occupied, the GC frequency
increases and any loss of accuracy is magnified.

7. IMPACT OF INACCURATE INPUT
Collecting inputs for the GC model simulator is non-

trivial and not always guaranteed to provide fully accurate
information—this is most pronounced in the case of object
lifetimes, where the collection granularity directly influences
lifetime accuracy (see Sect. 5.2). Technically, the inaccuracy
due to data collection process results in different values for
object sizes and lifetimes in the input data—we can as well
modify the input data ourselves to determine how certain
changes in the workload, e.g. systematically allocating more
objects or enlarging object sizes, influence the GC behavior.
We therefore perform sensitivity analysis to determine

how certain changes in object lifetimes and sizes impact the
model results. For object lifetimes, we consider changes due
to an additive constant, a multiplicative factor, a random
error, and limits on the minimum and maximum lifetimes.
For object sizes, we consider changes due to an additive
constant, a multiplicative factor, and a random error. Due
to space limitations, we only report results for changes due
to a multiplicative factor, and a random error.

7.1 Sensitivity to Lifetime Changes
Multiplying object lifetimes by a constant factor models

two hypothetical situations. In the first, a process collecting
lifetime information systematically ignores certain allocations,
perhaps because it could not instrument all paths in the JVM
that allocate objects. In the other, we may be interested in

what happens if a certain workload started to systematically
allocate more objects with short lifetimes. In both cases, if
either the missing or additional allocations were spread evenly
throughout the workload, it would correspond to scaling all
object lifetimes.

Figure 20 shows how the number of full collections changes
when all lifetimes are scaled using a constant factor, i.e.
l′ = l×k for chosen values of k. For k < 1, the object lifetimes
are shortened, and the resulting trace may contain reference
updates on objects whose lifetime has already expired—we
remove such invalid reference updates from the trace. We
only investigate the impact on the number of full collections,
because minor collections are lifetime insensitive.

The results illustrate how lifetime scaling interacts with the
young generation size. For a young generation that is small
relative to the workload requirements (16MB), the effect
of scaling the lifetimes down is subdued—most objects still
live long enough to be promoted and cause full collections.
For a young generation that is large relative to the workload
requirements (64MB), it is the effect of scaling the lifetime
up that is subdued—most objects that die young before
scaling also die young afterwards.

Adding a random error to object lifetimes models the effect
of collecting lifetimes with a particular collection granularity,
which necessarily impacts our experiments (c.f. Sect. 5.2).
To include both frequent small deviations and occassional
large ones, we model the error as a random variable with a
shifted exponential distribution, the observations of which
are added the object lifetimes, i.e. l′ = l +Exp(1/µ)− µ for
chosen values of µ. We adjust the possibly negative lifetimes
so that the modification preserves the average lifetime.
The results for selected values of µ are shown in Fig. 21.

The observed effects are again related to the young generation
size—the average object size in fop is 95B, a young generation
of 16MB can accommodate about 155000 such objects, an
object therefore has to live at least around million allocations

24

0
5
0

1
0
0

1
5
0

F
u
ll

G
C

 c
o
u
n
ts

●

●
●

●

●
●

●

●
●

● ● ●

●

Scaling factor

0.5

1.0

1.2

2.0

3.0

16MB 32MB 64MB 256MB

64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB

Young gen

Old gen

Figure 20: Lifetime scaling: fop

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

●

●

●

●

●
●

● ● ●

●

µ

10000

40000

120000

480000

800000

16MB 32MB 64MB 256MB

64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB

Young gen

Old gen

Figure 21: Lifetime randomization: fop

0
2
0

4
0

6
0

8
0

1
0
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

●

●
●

●

●
●

● ● ●

●

Scaling factor

0.2

0.8

1.0

1.1

1.5

16MB 32MB 64MB 256MB

64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB

Young gen

Old gen

Figure 22: Size scaling: fop
0

2
0

4
0

6
0

8
0

1
0
0

F
u
ll

G
C

 c
o
u
n
ts

●

●

●

●

●
●

●

●
●

● ● ●

●

µ

1

10

40

100

150

16MB 32MB 64MB 256MB

64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB 64MB 256MB 512MB

Young gen

Old gen

Figure 23: Size randomization: fop

to be tenured. With larger young generations, the numbers
grow further, making it less likely that the positive random
errors get enough objects tenured to impact the number of full
collections. The negative random errors in our experiment
are bounded by µ and therefore even less significant than
the positive ones.

7.2 Sensitivity to Object Size Changes
Multiplying objects sizes by a constant factors models a

situation where we change the size of a fundamental data type
that is used by most objects, e.g. by introducing compressed
references [1] to reduce memory overhead on 64-bit systems.

Figure 22 shows how the number of full collections changes
when all object sizes are scaled using a constant factor, that
is, s′ = s × k for chosen values of k. The results again
highlight the clustering effect discussed in Sect. 6.5—for the
young generation size of 16MB, deflating all objects by 20%
has no effect, and inflating all objects by 10% has the same
effect as inflating by 50%.
Adding a random error to object sizes again models the

inaccuracies we may encounter when collecting application
traces, e.g. a systematic measurement error due to object
size alignment rules. Again, we model the error as a ran-
dom variable with a shifted exponential distribution, the
observations of which are added the object sizes, that is,
s′ = s+ Exp(1/µ)− µ for chosen values of µ.
The results for selected values of µ are shown in Fig. 23.

They again confirm the clustering effect and show that it is
not sensitive to small changes in object size.

8. CONCLUSION
Motivated by the need to understand garbage collection

behavior from the application developer perspective, and

some motivating results from one-generation GC, our work
uses extensive experiments to compare the behavior of a real
GC implementation with the behavior of a simplified model,
such as the developer may form based on commonly available
information [19, 21].
Given an almost-complete information about workload

behavior in the form of application traces with object sizes,
lifetimes, and reference updates, we show that the model
can fairly accurately predict frequency of minor garbage
collections in a two-generation GC.
The model retains a relatively stable prediction quality

across workloads and inputs ranging from full application
traces to probabilistic distributions of object sizes and life-
times. However, predicting the frequency of full collections
for the very same two-generation GC turns out to be a very
different story—even with full application trace used as the
simulator input, the prediction quality is mediocre, ranging
from 14% inaccuracy to 131% inaccuracy in our examples.
We illustrate how the prediction quality gradually deteri-

orates as the inputs of the model are reduced. The overall
tendency is a gradual decrease, from 41% inaccuracy to 60%
inaccuracy in our metric. Looking at the individual work-
loads, the inaccuracy could be much worse, exceeding 200%
in case of tomcat.
The prediction quality ultimately depends on the ability

of the GC model to accurately evaluate the GC triggering
conditions. In the case of the full collections, this seems to be
particularly difficult, because small changes in the input or
in the interactions among detailed features can significantly
impact the observed behavior. In our experiments, we have
seen how reducing object size by 20% did not impact full
collection count at all, or how increasing object size by 10%

25

doubled the full collection count, but further increase by
40% did not have an impact anymore.

This is unfortunate from the developer perspective, who
would naturally expect a reasonable reaction to workload
changes. While we explain the causes for such behavior when
analyzing the results, we were only able to do that with
detailed insight, which goes beyond the basic principles our
GC model is built with. Therefore, besides illustrating the
complex character of interactions that govern the behavior
of contemporary garbage collectors, our work also explains
why—rather than getting definite instructions on garbage
collector configuration—application developers are instead
given recommendations for trial-and-error tuning.

Our experiments are also related to the available knowledge
about sensitivity to workload parameters. Earlier work [13]
points out that exact knowledge of object lifetimes is im-
portant for accurate simulation of several garbage collector
metrics including ratio of live to allocated objects or number
of reference updates that cross generation boundaries. We
illustrate the sensitivity to lifetime changes and object size
changes on the simplified model.
Finally, our experiments draw attention to drawbacks of

the existing garbage collector evaluation methods. One con-
cerns the process of collecting the workload traces—we high-
light how program instrumentation interferes with the escape
analysis, effectively disabling a class of stack allocation op-
timizations. This makes it possible to better qualify the
behavior of tools that use instrumentation to collect the
workload traces, such as Elephant Tracks [20]. While such
tools may collect an accurate trace of the allocation opera-
tions in the application, this is not necessarily an accurate
trace of the operations that manipulate the heap.
The final issue concerns the behavior of the workload

scaling method in the DaCapo benchmark suite [8]. The
repetition of isolated workload instances creates memory
usage profiles that regularly make most objects unreachable,
leading to possibly anomalous situations where changes in the
heap size have no impact on the garbage collection frequency.
To complement our submission, complete tools and re-

sults are available on-line at http://d3s.mff.cuni.cz/papers/
gc-modeling-icpe.

Acknowledgements

This work was partially supported by the Czech Science
Foundation project GACR P202/10/J042, the EU project
ASCENS 257414, the Swiss National Science Foundation
project CRSII2 136225, and the Charles University institu-
tional funding.

9. REFERENCES
[1] A. Adl-Tabatabai et al. Improving 64-bit Java IPF

performance by compressing heap references. In CGO,
2004.

[2] T. A. Anderson. Optimizations in a private
nursery-based garbage collector. In ISMM, 2010.

[3] B. Alpern et al. The jalapeño virtual machine. IBM
Syst. J., 39(1), Jan. 2000.

[4] K. Barabash and E. Petrank. Tracing garbage
collection on highly parallel platforms. In ISMM, 2010.

[5] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. J. Syst. Softw., 82(1), 2009.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths
and realities: the performance impact of garbage
collection. Perform. Eval. Rev., 32(1), 2004.

[7] S. M. Blackburn and K. S. McKinley. Immix: a
mark-region garbage collector with space efficiency, fast
collection, and mutator performance. In PLDI, 2008.

[8] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. SIGPLAN
Not., 41(10), 2006.

[9] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In ISMM, 2004.

[10] R. Jones, A. Hosking, and E. Moss. The Garbage
Collection Handbook: The Art of Automatic Memory
Management. Chapman & Hall/CRC, 1st edition, 2011.

[11] S. Joshi and V. Liaskovitis. Java Garbage Collection
Characteristics and Tuning Guidelines for Apache
Hadoop TeraSort Workload, 2010.

[12] P. Libič, P. Tůma, and L. Bulej. Issues in performance
modeling of applications with garbage collection. In
QUASOSS, 2009.

[13] M. Hertz et al. Generating object lifetime traces with
merlin. ACM Trans. Program. Lang. Syst., 28(3), May
2006.

[14] L. Marek, Y. Zheng, D. Ansaloni, W. Binder, Z. Qi,
and P. Tuma. DiSL: an extensible language for efficient
and comprehensive dynamic program analysis. In
DSAL, 2012.

[15] S. Marlow, T. Harris, R. P. James, and S. Peyton Jones.
Parallel generational-copying garbage collection with a
block-structured heap. In ISMM, 2008.

[16] Oracle. Java SE 6 HotSpot Virtual Machine Garbage
Collection Tuning. http://www.oracle.com/technetwork/
java/javase/gc-tuning-6-140523.html.

[17] Oracle. Tuning Garbage Collection with the 5.0 Java
Virtual Machine, 2003. http://www.oracle.com/
technetwork/java/gc-tuning-5-138395.html.

[18] Oracle. JavaTM Virtual Machine Tool Interface, 2011.
http://docs.oracle.com/javase/6/docs/technotes/
guides/jvmti/.

[19] T. Printezis. Garbage Collection in the Java HotSpot
Virtual Machine, 2004.
http://www.devx.com/Java/Article/21977.

[20] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant
tracks: portable production of complete and precise gc
traces. In ISMM, 2013.

[21] Sun Microsystems, Inc. Memory management in the
Java HotSpot virtual machine.
http://www.oracle.com/technetwork/java/javase/
memorymanagement-whitepaper-150215.pdf, 2006.

[22] K. Ueno, A. Ohori, and T. Otomo. An efficient
non-moving garbage collector for functional languages.
In ICFP, 2011.

[23] D. Vengerov. Modeling, analysis and throughput
optimization of a generational garbage collector. In
ISMM, 2009.

[24] D. R. White, J. Singer, J. M. Aitken, and R. E. Jones.
Control theory for principled heap sizing. In ISMM,
2013.

[25] J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy.
Performance modeling and prediction of enterprise
JavaBeans with layered queuing network templates.
SIGSOFT Softw. Eng. Notes, 31(2), 2006.

26

http://d3s.mff.cuni.cz/papers/gc-modeling-icpe
http://d3s.mff.cuni.cz/papers/gc-modeling-icpe
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://docs.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://www.devx.com/Java/Article/21977

	Introduction
	Related Work
	General Approach
	One-Generation Collector
	Model Evaluation

	Two-Generation Collector
	Two-Generation GC Simulator
	Obtaining Application Traces
	Model Evaluation

	Impact of Reduced Input
	Lifetime Trace with Mark Probabilities
	Lifetime Trace Only
	Lifetime and Size Distributions
	Accuracy Metric
	Results Discussion

	Impact of Inaccurate Input
	Sensitivity to Lifetime Changes
	Sensitivity to Object Size Changes

	Conclusion
	References

