
Constructing Performance Model of
JMS Middleware Platform

Tomáš Martinec, Lukáš Marek,
Antonín Steinhauser, Petr Tůma

Faculty of Mathematics and Physics
Charles University

Prague, Czech Republic
last.name@d3s.mff.cuni.cz

Qais Noorshams, Andreas Rentschler,
Ralf Reussner

Chair Software Design and Quality
Karlsruhe Institute of Technology

Karlsruhe, Germany
last.name@kit.edu

ABSTRACT
Middleware performance models are useful building blocks
in the performance models of distributed software applica-
tions. We focus on performance models of messaging mid-
dleware implementing the Java Message Service standard,
showing how certain system design properties – including
pipelined processing and message coalescing – interact to
create performance behavior that the existing models do not
capture accurately. We construct a performance model of
the ActiveMQ messaging middleware that addresses the out-
lined issues and discuss how the approach extends to other
middleware implementations.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance Mea-
sures

General Terms
Performance

Keywords
Software Performance; Performance Analysis; Measurement;
Modeling; JMS

1. INTRODUCTION
Software performance engineering (SPE) is a discipline

that focuses on incorporating performance concerns into the
software development process, aiming to reliably deliver soft-
ware with particular performance properties [36]. Among
the tools employed by SPE are predictive performance mod-
els. Constructed in the early phases of the software develop-
ment process, the models help predict the eventual software
performance and thus guide the development [3].

To deliver the expected guidance, the predictive perfor-
mance models must capture all relevant system components.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2568088.2568096.

For modern software applications, this may entail model-
ing complex system layers such as the virtual machine or
the messaging middleware. Composing such complete per-
formance models directly is necessarily expensive and in-
efficient. Instead, the abstract application model can be
constructed first, with the models of standard system com-
ponents added later [39, 8]. This gives rise to the need for
composable performance models of standard system compo-
nents.

Our work focuses on the construction of such performance
models for messaging middleware, specifically messaging mid-
dleware that implements the Java Messaging Service (JMS)
standard [37]. Although JMS performance models were pub-
lished before [26, 14, 30, 9, 13, 11, 34], we illustrate that
the existing models often fail to capture important elements
of middleware behavior. In turn, this omission results in
reduced performance prediction accuracy, especially where
processor utilization and message latency are concerned. Our
contribution is as follows:

– Using code analysis and experimental measurements of
a mainstream JMS implementation, we illustrate sit-
uations where observed performance is not accurately
predicted by common models.

– We provide a detailed technical analysis of the ob-
served effects as an essential basis for further modeling.

– We design a performance model that captures these ef-
fects and validate the model using experimental mea-
surements.

We have decided to organize our presentation in a way
that familiarizes the reader with the necessary platform-
specific background as soon as possible. This helps avoid
potentially inaccurate generalizations in the introductory
text. In Section 2, we introduce our modeling context and
describe our experimental platform. Section 3 explains the
issues that complicate accurate performance modeling of our
platform. We show how to construct a performance model
that addresses these issues in Section 4, and follow by eval-
uating and discussing the model results in Section 5. This
is where we pay particular attention to explaining how our
results, so far presented in a platform-specific context, can
be generalized. Section 6 relates our modeling efforts to the
existing research, and finally Section 7 summarizes our con-
clusions.

123

2. MODELING CONTEXT
The expectations put on a performance model are closely

related to the intended model use. We therefore start by de-
scribing such uses, paying particular attention to the inputs
that are available to the modeler and the outputs that the
modeler would seek in each context.

As noted in the introduction, middleware performance
models are needed as building blocks in application perfor-
mance models. Such models are used in early stages of the
software development process to guide important design de-
cisions, or in software maintenance activities when a change
impact analysis can be conducted to choose among multiple
modification directions [21]. On the input side, the mod-
eler can usually collect information about the timing (or
more generally resource demands) of the operations used as
atomic elements of the model. Restrictions on the ability
to instrument particular operations may require using spe-
cialized microbenchmarks or deriving detailed information
from aggregate statistics such as overall system throughput.
On the output side, the modeler would require the model
to accurately predict general design feasibility and overall
scalability trends with respect to performance. The model
should also suffice for comparing design alternatives.

Middleware performance models can also be understood
as a description of the expected performance (rather than
an approximation of the actual performance). Besides sim-
ple software documentation purposes, this use can also ben-
efit software performance testing [5, 15]. In this context,
the models can be provided with the same inputs as in the
early stages of the software development process, with one
important addition – the models can be automatically cal-
ibrated against the actual performance in selected bench-
marks. Such calibration makes the question of absolute pre-
diction accuracy mute, the modeler instead evaluates the
ability to fit the model to the measurements with reason-
able values of the calibrated parameters.

It is also possible to use the models at runtime to plan
system adaptation [7]. Particular to this context is the need
to maintain low overhead in both collecting the inputs and
evaluating the model. The output of the model is used to
make adaptation decisions, reliable estimation of trends or
reliable comparison of alternatives is therefore preferred to
absolute prediction accuracy.

In summary, the three modeling contexts all put empha-
sis on predicting trends, which are used to make relative
comparisons or to assess system scalability. Where abso-
lute prediction accuracy is important, model calibration is
performed on the timing information collected through mea-
surement.

2.1 Modeling Messaging Brokers
Our work focuses on the construction of performance mod-

els for JMS middleware [37]. The JMS architecture envi-
sions multiple clients communicating by sending and receiv-
ing application specific messages. The messages travel either
through queues in a point-to-point pattern or through top-
ics in a publish-subscribe pattern. The JMS standard pro-
vides multiple quality-of-service settings, especially impor-
tant from performance perspective is deciding whether the
JMS middleware should keep messages in transient buffers or
persistent storage and whether the message delivery should
be subject to transaction processing.

The model we construct should be a suitable building
block in application performance models. It must be able to
predict basic performance metrics relevant for the JMS mid-
dleware – especially resource utilization, message through-
put and message latency – that would be observed for a
given workload on a given platform. The middleware model
does not describe the workload itself, that is the task of the
application performance models that would incorporate the
middleware model.

2.2 Experimental Platform
In our experience, the process of building and validat-

ing a performance model is necessarily platform-dependent.
Although the individual steps can follow a common over-
all approach, the modeling accuracy depends on multiple
technical details that need to be considered. We therefore
introduce our experimental platform and continue the pre-
sentation in a platform-specific context. Generalizations are
discussed as appropriate.

Our code analysis and experimental measurements are
performed on the ActiveMQ 5.4.2 messaging middleware [2],
which implements the JMS standard [37]. Central to the
middleware is the message broker, a process that manages
messaging channels, which are either queues or topics. Mes-
sage producers and message consumers connect to the broker
using sockets. We isolate broker performance by executing
it on a dedicated computer, a single-core 2.33 GHz Intel
Xeon machine with 4 GB RAM running Fedora Linux with
kernel 3.9.2-200 x86 64 and OpenJDK 1.6.0-24 x86 64. The
producers and consumers run on two additional comput-
ers connected through a dedicated gigabit Ethernet network
with accelerated Broadcom network adapters, chosen so that
they can saturate the broker while at low load themselves
– the producer is an eight-core (two chips four cores each)
2.30 GHz AMD Opteron machine with 16 GB RAM and
the consumer is an eight-core (two chips four cores each)
1.86 GHz Intel Xeon machine with 8 GB RAM.

From the many quality-of-service settings available, we
focus on the transient message passing mechanism with ac-
knowledgments. This setting targets applications that re-
quire low-latency high-throughput reliable message delivery
and is therefore a natural performance modeling subject. We
do not model quality-of-service settings that require persis-
tent message storage, because with such settings, the storage
performance tends to dominate the observations. Existing
storage performance modeling methods are then likely bet-
ter suited for capturing the observed performance [38].

The transient message passing mechanism is implemented
in four broker threads that process a message passing through
a broker queue, as shown on Figure 1:

– The first thread blocks waiting for messages arriving
through a network socket. On message arrival, the
thread reads the message, selects the destination queue
and stores the message in a container associated with
this queue. This thread is blocked when the container
is full.

– The second thread blocks waiting for messages arriving
in the container filled by the first thread. On message
arrival, the thread locates the message consumer and
passes the message to the third thread, responsible for
communicating with that consumer.

124

– The third thread blocks waiting for messages and sends
them on to the consumer through a network socket.

– The fourth thread blocks waiting for acknowledgments
arriving from the consumer through a network socket.
On acknowledgment arrival, the corresponding mes-
sage is recognized as processed.

Data message

Data message

Broker

Producer

Consumer
Acknowledgement
message

List.remove()

Socket.read()

Socket.read()

List.add()
Messages
in flight

 Thread 1

Thread 2 Thread 3

Thread 4

List.remove()

List.add()

List.remove()

Socket.write()

Figure 1: Transient message passing architecture in
ActiveMQ 5.4.2.

3. MODELING ISSUES
Existing models of messaging middleware1 typically be-

long to one of two broad classes, here called models with
queues and fitted models:

– A typical model with queues relies on the fact that
messaging channels resemble service queues. The model
would represent resources such as processor or storage
with service queues and approximate a message pass-
ing through a messaging channel with a single service
request in each of the queues.

Models with queues were shown to achieve high accu-
racy especially in complex systems with multiple mes-
saging channels, where the mean resource demands
at the bottleneck resources determine the achievable
throughput and the accumulated effects of queueing
at the messaging channels dominate the observed la-
tencies [18, 34].

– A fitted model is typically used when the observed
performance is determined through interactions at the
implementation level that are either not understood in

1We discuss the existing models in depth in the related work
section. We avoid the discussion here to maintain text flow.

sufficient detail or simply too complex. After quantify-
ing the workload properties that impact performance,
the model would derive a function that predicts perfor-
mance from the workload properties by fitting a func-
tion template to the observed measurements.

Fitted models were successfully used with workload
properties such as message size or filter count [13, 11],
whose impact is otherwise difficult to predict because
it consists of many minuscule implementation effects.

Despite their many strong points, both model classes ex-
hibit accuracy issues in certain situations inherent to our
modeling context. We describe these issues next.

3.1 Pipelined Message Processing
The ActiveMQ broker processes messages in several phases

that form a pipeline. When any of the phases limits con-
current processing – as is the case with the thread-per-
connection and thread-per-destination patterns in our bro-
ker – messages may queue inside the pipeline. Such queueing
has a relatively benign impact on throughput but a very sig-
nificant effect on latencies, as illustrated on Figure 2.

Latency [us]

R
e
la

ti
v
e
 s

h
a

re

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Latency [us]

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2: Impact of bursts on latency distribu-
tion. Constant throughput 5000 msg/s, left work-
load sending individual messages, right workload
sending bursts of ten messages.

Figure 2 shows the distribution of message latencies ob-
served at the throughput of 5000 msg/s in two workload con-
figurations, regular and bursty. In the regular configuration,
the producer emits one message every 200µs. In the bursty
configuration, the producer emits a burst of ten messages
every 2 ms.

Latency [us]

R
e

la
ti
v
e

 s
h

a
re

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Latency [us]

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 3: Predicting impact of bursts on latency dis-
tribution with G/G/1 queue. Constant throughput
5000 msg/s, left workload sending individual mes-
sages, right workload sending bursts of ten mes-
sages.

125

Figure 3 shows that approximating the broker with a sin-
gle service queue – as a model with queues might do – is not
enough when modeling the bursty workload latency. The
model used the same distribution of the arrival times and
the service times as Figure 2. For the regular workload, the
predicted latency matches the measurement reasonably well.
For the bursty workload, the predicted latency shows several
regular clusters from 40µs to 420µs but the measurement
forms a single cluster from 120µs to 240µs – the model not
only failed to predict the absolute latency, it also failed to
approximate the overall trend.

Section 5 shows how our model improves the prediction
accuracy by reflecting the pipeline architecture in the model
structure. A fitted model that would capture the latency
would have to include the information quantifying the bursts
in the workload properties. Unfortunately, adding new in-
dependent variables into the workload properties increases
the cost of building a fitted model.

3.2 Thread Scheduling Overhead
The use of multiple threads in the ActiveMQ broker in-

troduces the opportunity for context switching, that is, the
act of handing control of the processor from one thread to
another. Although the design intent is to make context
switch a fast operation, the accumulated overhead of context
switching can impact performance.

Two major reasons for a context switch are the scheduling
policies enforced by the operating system and the blocking
behavior exhibited by the executing threads. The scheduling
policies are usually only enforced after a thread has run for
some time – 750µs on our platform – which makes them
unlikely to impact relatively fast message processing – tens
of microseconds on our platform. In contrast, the thread
blocking behavior may trigger context switches arbitrarily
fast.

The cost of a context switch can vary significantly [35, 23].
On our platform, a simple benchmark where two threads
take turns blocking each other on a synchronization vari-
able estimates the context switch duration to be 3.3µs. The
pipelined message processing, which involves four threads
operating on each message, further multiplies the context
switch overhead. Even more importantly, the amount of con-
text switching per message varies. When messages arrive far
from each other in time, the threads finish processing a mes-
sage before the next one arrives and therefore block waiting
once per message. But when messages arrive close to each
other, the threads have a new message to process by the
time they finish processing the previous one and therefore
do not block waiting. This effect is shown on Figure 4.

Figure 4 illustrates that on our broker, the relative amount
of context switching changes from about 20 switches per
message for low throughput to about 1 switch per message
for high throughput. The peak throughput can be deduced
from Figure 5, which shows the dependency between the
target throughput and the actual throughput (the producer
attempts to generate messages at the target throughput
rate, but the broker flow control restricts the producer to
avoid message loss). Also worth noting is the implied fact
that peak processor utilization does not coincide with peak
throughput – a practically important effect because high
processor utilization is often taken to indicate a bottleneck.

To model this thread scheduling effect, a model with queues
would require a special load dependent service queue. A fit-

1000 4000 7000 11000 15000 19000 23000 27000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Target throughput [msg/s]

P
ro

c
e
s
s
o
r

u
ti
liz

a
ti
o
n

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

0
4
0
0
0
0

8
0
0
0
0

1
2
0
0
0
0

C
o
n
te

x
t
s
w

it
c
h
 r

a
te

 [
1
/s

]

● Context switches

Total CPU usage

Broker CPU usage

Figure 4: Dependency of broker processor utiliza-
tion and context switch rate on target throughput.

1000 4000 7000 11000 15000 19000 23000 27000

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0

Target throughput [msg/s]

C
o

n
s
u

m
e

r
th

ro
u

g
h

p
u

t
[m

s
g

/s
]

Figure 5: Dependency of actual throughput on tar-
get throughput.

ted model can probably capture the effect more easily, but
we are not aware of any work doing so.

3.3 Message Coalescing
The performance impact of both the pipelined process-

ing and the thread scheduling is more pronounced in bursty
workloads than in regular workloads. Besides bursts that
are inherent to the workload from the application perspec-
tive, more bursts can be introduced as the broker processes
the messages, again influencing the observed performance.
One source of such message bursts in our broker is the imple-
mentation of the TCP protocol in the network stack, which
is used to transport messages between the producers and
consumers and the broker. The protocol minimizes the pro-
cessing overhead by coalescing smaller messages into larger
packets, both in software and in hardware. Coalescing in
software follows RFC 896 [16] and is disabled by default –
because this is a sensible default, we leave it disabled in our
experiments. Coalescing in hardware is done as a part of the
Generic Receive Offload (GRO) [41] and Generic Segmenta-
tion Offload (GSO) [40] features.

Both GRO and GSO are enabled by default, and although
they can also be disabled, keeping the default makes the ex-
perimental platform more realistic. We believe existing sim-
ulation tools such as the ns simulator [31] are more suitable
for modeling the message coalescing behavior at the TCP
protocol level than the performance models considered here.
To avoid the need for modeling this behavior, we collect the
information quantifying the bursts on the broker machine.
Figure 6 illustrates message coalescing on our platform – the
producer uses the sendto socket function to transmit 1030 B
long messages at a rate of 20000 msg/s, the two graphs show
the statistical distribution of packet sizes observed through

126

the pcap monitoring interface when departing the producer
and when arriving at the broker. Without message coalesc-
ing, the graphs would show all messages having 1030 B plus
the TCP protocol header.

Message size [bytes]

R
e
la

ti
v
e
 s

h
a
re

0 5000 15000 25000

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Message size [bytes]

0 5000 15000 25000
0
.0

0
0
.0

5
0
.1

0
0
.1

5

Figure 6: Packet sizes observed when departing the
producer (left) and arriving at the broker (right).

Another opportunity for message coalescing arises in con-
nection with the garbage collection. On our platform, the
garbage collector occasionally stops the broker threads to
free heap space. Messages received while the broker threads
wait are held in the operating system buffers and processed
by the broker as soon as the garbage collector finishes. From
the perspective of the broker, this has the same effect as if
the messages arrived in one burst. Figure 7 displays the la-
tencies during a garbage collection pause. With pluses, we
show latencies measured at the points where messages enter
and leave the broker – the cluster of pluses at the end of the
garbage collection pause shows the broker reading the mes-
sages held in the operating system buffers during the pause.
With circles, we show latencies estimated at the points where
messages enter and leave the operating system buffers – the
slope of circles during the garbage collection pause shows
how the messages accumulate. Section 4 explains how this
effect is captured by our model.

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

● ●

●

●
● ●

●
●

● ●
● ● ● ● ● ●

●

● ● ● ●
●

●

10.125 10.126 10.127 10.128 10.129 10.130

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Experiment time [s]

L
a
te

n
c
y
 [
u
s
]

+++ +++

+++++++
+++++++++

++++ + +

+
++ ++

++ +
+ +

+ + ++ +++
+++ ++

+

●

+
Latencies with regular arrivals

Measured latenciesGC pause

Figure 7: Effect of garbage collection pause on la-
tency.

4. PERFORMANCE MODEL CONSTRUC-
TION

To address the modeling issues outlined in Section 3, we
construct a performance model that directly reflects the bro-
ker structure as shown on Figure 1. We use Queueing Petri
Nets (QPN) [20] as the modeling formalism, both because
it offers modeling abstractions that match the architecture
elements and because it has extensive tooling support [19].

QPN combines the modeling concepts of Petri Nets and
Queueing Networks. The essential elements of a QPN model

are immediate and timed places and immediate and timed
transitions. As usual, places can hold colored tokens, tran-
sitions consume tokens in input places and produce tokens
in output places. Immediate places always make their to-
kens available to transitions, timed places only make tokens
available after they pass an internal service queue. Tokens
can also be subject to departure discipline that imposes or-
dering restrictions. Immediate transitions have weights and
are considered to happen instantaneously, timed transitions
have firing rates and are considered to happen after a ran-
dom delay. QPN models can be nested, a timed place can
represent a nested QPN model, tokens arriving at the nested
place are submitted to the nested model, tokens departing
the nested model are made available to transitions.

4.1 Broker Model
We model the broker by a QPN model shown on Figure 8,

which is nested in the QPN model of the measurement har-
ness. This nesting is the reason why the model has a single
input place and a single output place – tokens representing
all incoming network traffic arrive at the input place, to-
kens representing all outgoing network traffic depart from
the output place. Colors are used to distinguish messages
from acknowledgments.

The path a message takes through the broker, implemented
by multiple threads described in Section 2.2, is modeled as
follows:

– A new message is represented by a token of the msg

color that arrives in the input place. The msg token
immediately transitions to the accept-msg place, with
another token deposited in the queue place to model
the storage occupied by the message.

– The accept-msg place represents the thread that reads
the message from the network socket and stores it in a
destination container. After processing, the msg token
transitions to the process place.

– The process place represents the thread that reads the
messages from the destination container and locates
the message consumer. After processing, the msg token
transitions to the dispatch place.

– The dispatch place represents the thread that sends
the messages to the consumer through the network
socket. After processing, the msg token transitions to
the system place.

– The system place represents processing done by the
operating system outside the broker, which does not
count towards latency measured as messages enter and
leave the broker, but still contributes to processor uti-
lization. After processing, the msg token departs the
broker network.

An acknowledgment will eventually confirm the reception
of the message. The path the acknowledgment takes through
the broker is modeled as follows:

– A new acknowledgment is represented by a token of
the ack color that arrives in the input place. The
ack token immediately transitions to the accept-ack

place.

127

gc-idle gc-active

accept-msg

input

accept-ack

queue

process dispatch system output

immediate place

timed place

transition

Figure 8: Nested broker QPN model

– The accept-ack place represents the thread that reads
the acknowledgment from the network socket and rec-
ognizes the corresponding message as processed. After
processing, the ack token is discarded by a transition
that also removes one token from the queue place to
indicate no storage is occupied by the message any-
more.

4.2 Garbage Collection
Section 3.3 explains how garbage collection causes mes-

sage coalescing in the operating system buffers. To model
this behavior, we need to represent the garbage collection
pauses. To do this, we observe how the broker allocates
memory.

The objects maintained by the broker are primarily con-
cerned with clients and messages and destinations. Individ-
ual instances of the objects represent individual clients and
messages and destinations. The lifetime of these objects
is necessarily related to the lifetime of the concepts they
represent, simply because keeping them around for longer
would cause memory leaks. This arrangement makes mes-
sages most important from the garbage collection perspec-
tive – objects related to messages have high allocation rates
(on par with throughput rates) and short lifetimes (on par
with roundtrip times).

Our experimental platform uses a generational garbage
collector that will never promote message-related objects be-
yond the young generation (except if the young generation
lifetime was shorter than the message roundtrip time, which
is not common [24]). We can therefore imagine that each
message passing through the broker will require allocating
objects of certain average size. When the accumulated size
of these objects reaches the young generation size, a young
generation collection will be triggered and all these objects
will be collected.

In the model on Figure 8, the garbage collector state is
modeled using the gc-idle and gc-active places and a sin-
gle collector token. The transition from the input place is
enabled only when the collector token resides in the gc-

idle place. Once the collector token transitions into the

gc-active place, no tokens transition to the accept-msg and
accept-ack places, simulating a garbage collection pause.
Multiple garbage tokens are used to represent allocated ob-
jects. The garbage tokens accumulate in the gc-idle place
with each message, the transition from the gc-idle place to
the gc-active place requires that enough garbage tokens
accumulate.

4.3 Context Switching
Section 3.2 explains how the thread scheduling overhead

impacts performance. We model this effect by introducing
a new processor scheduling strategy into the QPN formal-
ism. The strategy assumes each timed place represents a
thread that keeps executing until no more work remains or
until the scheduler executes another thread instead. In this
context, we mimic two elements of a typical thread sched-
uler behavior – the overhead of switching from one thread
to another and the limit on the time a thread is allowed to
execute when other threads wait.

The strategy accepts the context switch duration c and
the quantum duration q as parameters. Tokens from one
timed place are processed until the accumulated execution
time reaches q. At that moment, the strategy switches to
executing tokens from another timed place, extending the
execution time of the first token in that place by c.

4.4 Model Calibration
Before use, the model must be populated with a number of

parameters. These are the resource demands of the process-
ing performed by the broker threads, the resource demands
related to processing outside the broker, and additional con-
stants – the quantum duration, the context switch duration,
the garbage collection threshold.

To collect the processor demands of the broker threads, we
insert measurement probes into the broker source code, col-
lecting time needed to execute the relevant code fragments.
As a technical complication, the collected time may include
passive waiting, which is not a processor demand. In our
case, excluding passive waiting by the usual means (mea-

128

suring and subtracting the waiting duration or using clock
that stops while waiting) was burdened by excessive over-
head. We have therefore decided to measure the broker when
near saturation and discard the upper decile of the proces-
sor demand measurements. Running near saturation makes
passive waiting rare and because the times we measure are
short, measurements that are distorted by waiting are easily
identified by their extreme value. Our outlier filtering choice
may have a slight systematic impact on modeled latencies.

To measure the processor demand related to processing
outside the broker, we look at the difference between the
overall processor utilization and the processor utilization due
to the broker threads. From the data used in Figure 4, we
estimate the processor demand of the system place to be
20 % of the total processor demand used in the other timed
places in the model.

The collected processor demands are necessarily burdened
by measurement overhead. To assess and compensate, we
scale the average processor demand per message to match
the peak throughput. The data used in Figure 5 place
the peak throughput at 22400 msg/s, this gives us an av-
erage processor demand per message of 1/22400 or 45µs,
of which 20 % or 9µs is related to processing outside the
broker. Without overhead compensation, the average total
demand of the timed places in the model is 46µs, we com-
pensate by multiplying each broker demand by 0.96 to give
the average total demand of 45µs.

Section 3.2 explains how the amount of context switching
per message changes between rates that generate peak uti-
lization and peak throughput – the data used in Figure 4
shows these rates to be 11000 msg/s and 22400 msg/s. Our
model is constructed to involve five context switch penalties
at rates close to peak utilization and zero context switch
penalties at rates close to peak throughput, we can therefore
calculate a single context switch penalty to be (1/11000 −
1/22400)/5 or 11µs. This is a model parameter only, more
context switches with shorter duration actually happen in
reality. The other parameter related to scheduling – the
quantum duration – is a part of the operating system set-
tings.

Finally, we measure the number of messages that trig-
ger garbage collection by looking at the garbage collection
log. To avoid interference due to the virtual machine er-
gonomics [17], we fix the young generation size.

5. PERFORMANCE MODEL RESULTS
We show the behavior of our performance model on the

same workloads that were used to illustrate the modeling
issues in Section 3. We use transient message passing mech-
anism with acknowledgments to transport 975 B long byte
array messages between the producer and the consumer.
We vary the throughput rate, generating messages either
in a regular pattern (producing one message every 1/r for
throughput r) or in a bursty pattern (producing ten mes-
sages every 10/r for throughput r), and observe (and model)
processor utilization and message latency at the given through-
put rate. The model is fed the same distribution of the
arrival times as the broker in the measurement experiments.

To measure message latency, we use dynamic library wrap-
pers that intercept calls to the recvfrom and sendto socket
functions at the points where messages enter and leave the
broker. We use unique message identifiers embedded in the
message body to associate the calls with individual mes-

sages. Our measurements indicate the overhead of wrapping
the socket calls does not influence the achievable through-
put noticeably, however, we collect the latency information
separately from other measurements as a precaution.

The broker processor utilization information is collected
through the cpu controller of the control group subsystem [29].
While more accurate than other sources, this method does
not include the network processing part of the workload that
occurs inside the kernel rather than the broker. We there-
fore also plot the information in the proc pseudo file system,
which includes the kernel interrupt processing.

Our measurement harness, based on the performance tests
included with the messaging middleware, uses dedicated pro-
ducer and consumer machines to generate message traffic.
We check throughput and utilization at both machines, mak-
ing sure no bottlenecks limit the traffic. We collect the es-
sential measurements for 10 minutes at each throughput rate
and discard observations distorted by the warmup and shut-
down phases (some measurements are timed and inspected
manually).

5.1 Processor Utilization
Figure 9 shows how our model approximates the processor

utilization. The measured values are the same as shown on
Figure 4.

1000 4000 7000 11000 15000 19000 23000 27000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Target throughput [msg/s]

P
ro

c
e

s
s
o

r
u

ti
liz

a
ti
o

n

Total CPU usage

Broker CPU usage

Predicted CPU usage

Figure 9: Prediction of broker processor utilization.

The fact that the model captures the linear increase of
utilization with throughput is relatively mundane. As a
more important contribution, the model also captures the
fact that processor utilization peaks much sooner than at
maximum throughput – in our measurements, the processor
utilization exceeds 95 % at 10000 msg/s, but the maximum
throughput is around 22400 msg/s.

Compared to measurements, the model does not explain
the increase of processor utilization around 5000 msg/s. To
explain this effect, we show the outbound network traffic
information on Figure 10. We see that although the broker
transmits an almost constant amount of bytes per message,
at 5000 msg/s it suddenly uses about 25 % more packets per
message than at 4000 msg/s. This increase in network traffic
is reflected directly in the increase of processor utilization.

The reason for the network traffic increase is related to
detailed behavior the TCP protocol, which can be observed
by capturing the network traffic between the broker and the
consumer. At 4000 msg/s, the delay between sending a mes-
sage and receiving an acknowledgment is smaller than the
delay between sending two messages – at the TCP protocol
level, packets carrying messages from broker to consumer
and packets carrying acknowledgments from consumer to
broker therefore alternate and each acts as a TCP ACK for

129

1000 2000 3000 4000 5000 6000 7000 8000 9000

5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

Target throughput [msg/s]

P
a
c
k
e
ts

 [
1
/s

]

●

●

●

●

● ●

●

●

●

0
.0

e
+

0
0

5
.0

e
+

0
6

1
.0

e
+

0
7

1
.5

e
+

0
7

B
y
te

s
 [
1
/s

]

● Transmitted packets

Transmitted bytes

Figure 10: Network traffic from broker to consumer
measured in packets and bytes.

the previous packet. At 5000 msg/s, the delay between send-
ing a message and receiving an acknowledgment is close to
the delay between sending two messages, which means that
the broker sometimes manages to send two messages and
then receive two acknowledgments – at the TCP protocol
level, this means packets in the two directions no longer al-
ternate and the flow control mechanism mandates sending
extra TCP ACK packets, causing the increase in network
traffic. While an interesting phenomenon per se, we believe
this increase is outside a reasonable scope of performance
modeling.

5.2 Message Latency
Message latency consists of the time spent processing and

the time spent waiting. At low throughput, processing tends
to dominate and latencies are relatively low. At high through-
put, waiting tends to dominate and latencies are relatively
high. To avoid losing detail due to scale, we examine several
ranges separately.

1000 4000 7000 10000

0
2
0

4
0

6
0

8
0

1
2
0

Target throughput [msg/s]

L
a
te

n
c
y
 [
u
s
]

1000 4000 7000 10000

0
2
0

4
0

6
0

8
0

1
2
0

Target throughput [msg/s]

Figure 11: Measured (left) and predicted (right)
message latencies at low throughput with regular
workload.

Figure 11 shows the measured and predicted message la-
tencies for low throughput rates generated in the regular
pattern. Both the measurement and the model show the
same trend, which starts with mostly constant latencies and
gradually introduces variation. In absolute terms, the model
overestimates the latency roughly by a factor of two. One
reason for this difference is our calibration procedure, which
removes outliers and scales the remaining values to main-
tain throughput – because throughput is sensitive to outliers
in resource demands, removing outliers requires scaling the
remaining values towards higher resource demands, which
yield higher latency estimates.

1000 3000 5000 7000 9000 11000 14000 17000

0
2
0
0

6
0
0

1
0
0
0

L
a
te

n
c
y
 [
u
s
]

1000 3000 5000 7000 9000 11000 14000 17000

0
2
0
0

6
0
0

1
0
0
0

Target throughput [msg/s]

L
a
te

n
c
y
 [
u
s
]

Figure 12: Measured (upper) and predicted (lower)
message latencies at low to medium throughput with
regular workload.

Figure 12 shows the measured and predicted message la-
tencies for low to medium throughput rates. Again, both
the measurement and the model show the same trend, with
latencies increasing by about an order of magnitude around
the point where the throughput rate exceeds 10000 msg/s,
which also happens to be the point where the processor uti-
lization nears the peak. In absolute terms, the model does
not exhibit the variation apparent in the measurements. We
attribute this to the differences between our scheduler model
and the real scheduler. While our scheduler model handles
timed places in a round-robin fashion, the real scheduler on
our platform enforces strict fairness. More complex sched-
uler models may help here [10].

Figure 13 completes the latency prediction information for
all throughput rates generated in the regular pattern. When
the producer attempts to generate messages at rates above
peak throughput, the broker flow control restricts the pro-
ducer to avoid message loss. In this situation, the message
latency is determined by the storage threshold that triggers
flow control – approximated by the maximum capacity of
the queue place in our model. The fact that the model suc-
cessfully estimates the very high latency is therefore due to a
trivial model parameter, more important is the fact that the
model estimates the throughput at which the flow control is
triggered.

We point out that the behavior of the broker near peak
throughput is unstable, with long periods of degraded per-
formance. At high throughput rates, there is only little spare
capacity to deal with backlog that may form due to minor
disruptions. The broker therefore takes a long time to re-
cover from such disruptions, which leads to large accumu-
lated impact on latencies. Figure 14 illustrates this lack of
stability.

As the sole exception to the rule that the model is fed the
same distribution of the arrival times as the broker in the
measurement experiments, Figure 13 uses modeled arrival

130

1000 4000 7000 11000 15000 19000 23000 27000

0
.0

0
.5

1
.0

1
.5

2
.0

L
a
te

n
c
y
 [
s
]

1000 4000 7000 11000 15000 19000 23000 27000

0
.0

0
.5

1
.0

1
.5

2
.0

Target throughput [msg/s]

L
a
te

n
c
y
 [
s
]

Figure 13: Measured (upper) and predicted (lower)
message latencies at low to high throughput with
regular workload.

●

●

●

●

●

●
●

●

●

●

●

●●● ●●

●

●●●

●●

●

●

●

● ● ●●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●
●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

● ●●●●

●

●●

●

● ●

●

●
●

●

●

●
●

●●

●

●●

●

●

●● ● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

● ●

●●

●

●

●

●●

●

●●

●
●

●●
●

●
●● ●

●

●

●

●

●●●

●

● ●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●● ●

●

●

●
●

● ●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●
●

●

●● ● ● ●●● ●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●● ●

●

●●

●

●

●

●

●●

● ●

●

●

●
● ●

●

●

●

●

●

●

●●

●
●

●
● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●● ●
●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●
●

●

●●

●

● ● ●●
●

●

●

●● ●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●●

●

●

● ●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

● ●●

●

●

●

●

●
●

●
●

●
●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●● ●

●●

●● ●●●
●

●

● ●●

●

●
●●

●

●

●

●
●

●●●●

●

●●●
●

●

●●●

●

●

●

●

●

●
●

● ●

●

●

●●

● ●

●

●

●

●

●● ●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

● ●●

●●●

●

●

●

●

● ●●

●

●

●

●

●

●●

●
●
●

●

●

●● ●

●

●
●

●

● ●

●●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
●

●● ●
● ●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●●

●

●

●● ●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ● ●● ●

●

●

●

●

●

●

●●
●

●

●●
●

● ●

●

●

●●

●●

●
●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●● ●●

●

●

●

●

● ● ●●

●

●
●

● ●

●

●● ●

●

●● ●

●

●
●

●

●

●

●

●

●

27 28 29 30 31 32 33

0
.0

0
.2

0
.4

0
.6

0
.8

Experiment time [s]

L
a
te

n
c
y
 [
u
s
]

Figure 14: Unstable broker latencies at 19000 msg/s.

times that match the target throughput. This is necessary
because at high throughput rates, the measured arrival times
include broker flow control and therefore reflect the observed
throughput rate rather than the target throughput rate.

Figure 15 shows the measured and predicted message la-
tencies for low to medium throughput rates generated in
the bursty pattern. Similar to the regular workload results,
the bursty workload results show the same trend, with some
overestimation of latency and some underestimation of vari-
ation. As an important factor, the model correctly predicts
that introducing burstiness results in shifting the cluster
of observed latencies en bloc, rather than creating multi-
ple clusters as Section 3.1 illustrates. Compare Figure 16
with Figures 2 and 3.

5.3 Discussion
The results show that our model is capable of address-

ing the issues outlined in Section 3 as far as the trends are
concerned – we predict that pipelined processing of message
bursts results in a tight cluster of latencies, we show that
varying thread scheduling overhead leads to utilization and
throughput peaking at very different rates, and we do both

1000 3000 5000 7000 9000 11000 14000 17000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

L
a
te

n
c
y
 [
u
s
]

1000 3000 5000 7000 9000 11000 14000 17000

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Target throughput [msg/s]

L
a
te

n
c
y
 [
u
s
]

Figure 15: Measured (upper) and predicted (lower)
message latencies at low to medium throughput with
bursty workload.

Latency [us]

R
e
la

ti
v
e

 s
h

a
re

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Latency [us]

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 16: Predicting impact of bursts on latency
distribution. Constant throughput 5000 msg/s, left
workload sending individual messages, right work-
load sending bursts of ten messages.

in presence of realistic message coalescing. To our knowl-
edge, these effects were not captured by JMS models before.

The prediction of processor utilization is also very accu-
rate in absolute terms. The same cannot be said about la-
tency, where our predictions at low throughput are some-
what pessimistic and predictions at high throughput do not
fluctuate as much as measurements – as we explain, this is
in part due to model calibration and in part due to realistic
scheduling being more complex than the scheduling disci-
plines of our model. The accuracy of latency prediction is
very reasonable for uses outlined in Section 2. We should
note that we do not use measured latencies to calibrate the
model and still predict latencies of individual messages at
very high resolution. Again, we believe this was not done in
JMS models before.

An important question that we address in this discussion
is whether our results can be generalized beyond our exper-
iments. We present arguments for why we believe our work
is not strictly limited to our experimental platform. We also

131

provide the source code and the data we have collected and
used, so that more experiments are possible [1].

The most visible concern in generalizing our results is the
range of workloads used in the experiments. While we vary
both the throughput rate and the distribution of message ar-
rival times, we use messages of equal size and type exchanged
between a single producer and a single consumer. This con-
trasts especially with work that experiments on complex
workloads such as SPECjms2007 [34].

The existing body of work on JMS performance provides
a reliable summary of how individual workload parameters
influence performance, and in fact suggests that extending
the workload along many parameter axes would bring little
principal benefit. Work such as [33, 13] shows there usu-
ally is a linear dependency between the message size and
the associated processor demand, in contrast there usually
is almost no dependency on the number of clients and des-
tinations as long as messages are not replicated. Our model
can be extended to support multiple message sizes and types
by using multiple token colors with different associated pro-
cessor demands, as used in [34]. Support for multiple clients
and destinations should not require principal changes to our
model either – the relevant message processing paths in our
broker are reasonably similar to the message processing path
of our workload. On the other hand, workloads that require
persistent message storage would represent a challenge, due
to the dominating nature of storage latencies in the model
that otherwise deals in microseconds.

Experiments with limited workloads provide an impor-
tant benefit in that they help isolate individual modeling
concerns. Tracking the performance issues that we focus
on in a complex workload is virtually impossible – although
they are still likely to exist (there is no reason why context
switching or garbage collection would go away with more
complex workloads), their performance impact is combined
with the performance impact of workload variability.

As one item, our work covers the impact of thread schedul-
ing overhead on performance. The exact impact is both
workload-dependent and platform-dependent – in general,
we can expect the need for context switching to increase
with more clients and destinations (because clients and des-
tinations are served by separate threads) and to decrease
with more cores (because threads will not compete for cores
as much). As long as there are more clients and destina-
tions (and therefore internal broker threads) than cores, the
thread scheduling overhead should be present. The perfor-
mance impact of individual context switches is also likely
to increase with heavier workload, because such workload
is associated with heavier memory cache traffic and context
switches may flush memory cache content.

As another item, our work describes pipelined message
processing. This is an architectural decision that concerns
the broker implementation, one that is apparently reason-
able but certainly not the only one possible. Brokers that
use different architectures may require different models –
unfortunately, determining the broker architecture for per-
formance modeling purposes is a demanding endeavor even
when broker sources are available, and not likely to get easier
with closed source brokers.

Finally, our work requires measuring durations of opera-
tions that occur inside the broker. This is again easier when
broker sources are available, but with current instrumen-

tation techniques [28, 27], instrumenting major control flow
locations such as network communication or thread synchro-
nization inside closed source brokers is also possible.

6. RELATED WORK
Performance modeling of distributed systems based on

messaging is a frequent research subject. Some authors
choose to work at a relatively high abstraction level, model-
ing complex networks of computers that communicate through
messaging. At this level, details of individual node per-
formance are typically simplified and the modeling efforts
investigate important high level properties such as system
capacity limits. Some high level modeling work is very close
to our research, for example [18] proposes a method of con-
structing models that approximates communicating nodes
with M/M/1 queues and uses QPN for experimental eval-
uation. Our model can improve this approximation – the
possibility is actually mentioned by the authors, but there
is not enough technical information in the paper to estimate
the contribution of such model change to accuracy.

In [34], the SPECjms2007 benchmark is modeled with
QPN, using G/M/8 queues to approximate processors and
G/M/1 queues to approximate storage. The authors achieve
significant modeling accuracy on a variety of workloads – in
contrast with our work, the authors cover a wide variety
of message sizes and types and quality-of-service settings,
but keep the broker processor utilization below 80 %. The
authors use a nested QPN model with three timed places
in tandem representing the processor, the storage and the
network resources – our model can again improve this ap-
proximation when exploring workloads that lead to high bro-
ker utilization, provided it is extended with more quality-of-
service settings.

In [26], the broker is approximated with an M/M/* queue,
similar queues are used to model a component container and
a database. The authors predict throughput and latency in
a closed workload with zero think time – a situation which
exercises the ability of the broker to serve individual clients
fairly, leading to a linear dependency between the number
of clients and the latency.

In a broader context, other formal tools are used to model
messaging networks – for example, probabilistic timed au-
tomata are used to capture behavior in presence of message
loss in [12]. We observe that high level modeling is consid-
ered valuable even when validation against a real system is
not done.

Some studies focus on explorative evaluation of broker
performance. Among early examples is [6], where perfor-
mance of two JMS brokers were evaluated. The measure-
ments focus on maximum sustainable throughput with var-
ious quality-of-service settings. A thorough study of JMS
performance is [33], where one JMS broker is examined us-
ing the SPECjms2007 benchmark. Although these studies
do not construct performance models (and sometimes do not
even name the examined brokers due to licensing restric-
tions), they are a valuable source of common performance
trends that can be observed across brokers. One typical
observation is that message size is an important factor, in-
crease in message size causes linear increase in processor
demand. In contrast, the number of clients and destinations
does not seem to be important when the total traffic re-

132

mains constant. These observations support our discussion
on including additional validation workloads in our work.

Explorative evaluation of broker performance can help cre-
ate fitted models. This is the case in a large range of experi-
ments summarized in the doctoral thesis [13]. In a number of
separate publications, these experiments investigate param-
eters such as throughput [14] or latency [30] and construct
fitted models that approximate the measurements. Interest-
ingly, some of the experiment parameter ranges are chosen
with the assumption that peak processor utilization implies
peak throughput, which we show is not necessarily true.

A thorough process of building a fitted JMS model through
explorative experiments is described in [11]. The experi-
ments are carried on the ActiveMQ 5.3 messaging middle-
ware, which makes the results even closer to ours. Again, the
choice of experiment parameter ranges equals peak utiliza-
tion workload with peak throughput workload. The work
also demonstrates the difficulties of building an accurate
model for the range of workloads we consider – the proces-
sor utilization in the experiments used to create the fitted
model never exceeds 50 %, and the parameter dependencies
are collected in experiments that assume no resource con-
tention, which may limit suitable parameters.

Another work that creates a fitted JMS model is [9], the
authors show how the model can be integrated into a larger
performance model that captures particular SPECjms2007
interactions. The focus is on the integration process, tech-
nical details of the JMS model are not investigated. Similar
approach in the context of component systems was investi-
gated in [25].

Our work also touches on the issue of constructing a per-
formance model with limited knowledge of the modeled sys-
tem. Other authors have tackled this problem, in [4] an
enterprise application model is constructed from partial ar-
chitectural information and collected execution traces.

The problem of determining resource demands with lim-
ited measurement ability in the context of workload with
multiple request types was addressed in [32] and [22], the au-
thors of [42] estimate and adjust performance model param-
eters by tracking the prediction error. Using similar tech-
niques in combination with artificial workloads crafted to
exercise particular elements of the broker architecture can
likely provide enough information to calibrate the perfor-
mance model even when measurements based on instrumen-
tation are not available.

As a summary to our related work survey, we believe our
model can provide accuracy improvement in the context of
existing modeling work, which mostly acknowledges that
broker performance is implementation specific and provides
mechanisms for plugging detailed broker models into plat-
form independent application models. Where fitted models
are used, our work highlights important effects related to
pipelined processing and message coalescing that should be
considered when selecting the model parameters. We also
believe our work is the first to attract attention to the signif-
icant impact of pipelined processing and message coalescing
in the context of broker performance modeling.

7. CONCLUSION
Our work is based on observing performance of the Ac-

tiveMQ messaging middleware. We attract attention to the
fact that pipelined processing (the act of handling messages

in stages by multiple broker threads) and message coalescing
(the act of processing several adjacent messages together at
some stage) can interact even with very simple workloads to
create performance effects of significant magnitude that the
existing performance models do not capture. We provide
technical explanation for these effects and design a broker
model that describes them.

We show that our model provides a reasonably accurate
approximation of the identified effects. As an important
distinction – where the existing JMS models may capture
the effects by calibrating for a particular workload, our JMS
model is built by analyzing and reflecting the reasons behind
the effects. Our work therefore touches upon a broader ques-
tion of how calibrating and validating the model against the
same workload – something that is regularly done in model
validation experiments – contributes to perceived model ac-
curacy.

Although our work has used a specific platform and spe-
cific workloads, we argue that the effects we observe can
reasonably occur on other platforms. We provide the source
code and the data we have collected and used to make more
experiments possible [1].

Acknowledgement
This research has been funded by the EU project ASCENS
257414, by the German Research Foundation (DFG) grant
RE1674/5-1, by the Czech Science Foundation (GAČR) grant
P202/10/J042, and Charles University institutional funding.

8. REFERENCES
[1] Complementary material.

http://d3s.mff.cuni.cz/papers/jms-modeling-icpe.

[2] Apache Software Foundation. Apache ActiveMQ.
http://activemq.apache.org.

[3] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner.
Architecture-Based Reliability Prediction with the
Palladio Component Model. Transactions on Software
Engineering, 38(6), 2011.

[4] F. Brosig, S. Kounev, and K. Krogmann. Automated
Extraction of Palladio Component Models from
Running Enterprise Java Applications. In Proceedings
of ROSSA 2009, 2009.

[5] L. Bulej, T. Bures, J. Keznikl, A. Koubková,
A. Podzimek, and P. Tuma. Capturing performance
assumptions using stochastic performance logic. In
Proceedings of ICPE 2012. ACM, 2012.

[6] S. Chen and P. Greenfield. QoS Evaluation of JMS:
An Empirical Approach. In Proceedings of HICSS
2004. IEEE, 2004.

[7] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model Evolution by Run-Time
Parameter Adaptation. In Proceedings of ICSE 2009.
IEEE, 2009.

[8] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and
R. H. Reussner. Parametric Performance Completions
for Model-Driven Performance Prediction.
Performance Evaluation, 67(8), 2010.

[9] J. Happe, H. Friedrich, S. Becker, and R. Reussner. A
Pattern-Based Performance Completion for
Message-Oriented Middleware. In Proceedings of
WOSP 2008. ACM, 2008.

133

[10] J. Happe, H. Groenda, M. Hauck, and R. Reussner. A
Prediction Model for Software Performance in
Symmetric Multiprocessing Environments, 2010.

[11] J. Happe, D. Westermann, K. Sachs, and L. Kapova.
Statistical Inference of Software Performance Models
for Parametric Performance Completions. In
Proceedings of QOSA 2010. Springer, 2010.

[12] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. Formal
Analysis of Publish-Subscribe Systems by
Probabilistic Timed Automata. In Proceedings of
FORTE 2007. Springer, 2007.

[13] R. Henjes. Performance Evaluation of
Publish/Subscribe Middleware Architectures, 2010.

[14] R. Henjes, M. Menth, and C. Zepfel. Throughput
Performance of Java Messaging Services Using
WebSphereMQ. In Proceedings of ICDCS 2006
WORKSHOPS, 2006.

[15] V. Horky, F. Haas, J. Kotrc, M. Lacina, and P. Tuma.
Performance Regression Unit Testing: A Case Study.
In Proceedings of EPEW 2013. Springer, 2013.

[16] Internet Engineering Task Force. Congestion Control
in IP/TCP Internetworks.
http://tools.ietf.org/html/rfc896.

[17] R. Jones and R. Lins. Java SE 6 HotSpot Virtual
Machine Garbage Collection Tuning.
http://www.oracle.com/technetwork/java/javase/gc-
tuning-6-140523.html.

[18] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. A
Methodology for Performance Modeling of Distributed
Event-Based Systems. In Proceedings of ISORC 2008.
IEEE, 2008.

[19] S. Kounev, S. Spinner, and P. Meier. QPME 2.0 - A
Tool for Stochastic Modeling and Analysis Using
Queueing Petri Nets. In From Active Data
Management to Event-Based Systems and More, 2010.

[20] S. Kounev, S. Spinner, and P. Meier. Introduction to
Queueing Petri Nets: Modeling Formalism, Tool
Support and Case Studies (Tutorial Paper). In
Proceedings of ICPE 2012. ACM, 2012.

[21] H. Koziolek, B. Schlich, C. Bilich, R. Weiss, S. Becker,
K. Krogmann, M. Trifu, R. Mirandola, and
A. Martens. An Industrial Case Study on Quality
Impact Prediction for Evolving Service-Oriented
Software. In Proceedings of ICSE 2011. ACM, 2011.

[22] S. Kraft, S. Pacheco-Sanchez, G. Casale, and
S. Dawson. Estimating Service Resource Consumption
from Response Time Measurements. In Proceedings of
VALUETOOLS 2006. ACM, 2006.

[23] C. Li, C. Ding, and K. Shen. Quantifying The Cost of
Context Switch. In Proceedings of ExpCS 2007. ACM,
2007.

[24] P. Libič, P. Tůma, and L. Bulej. Issues in Performance
Modeling of Applications With Garbage Collection. In
Proceedings of QUASOSS 2009. ACM, 2009.

[25] Y. Liu, A. Fekete, and I. Gorton. Design-Level
Performance Prediction of Component-Based
Applications. IEEE Transactions on Software
Engineering, 31(11), 2005.

[26] Y. Liu and I. Gorton. Performance Prediction of J2EE
Applications Using Messaging Protocols. In
Proceedings of CBSE 2005. ACM, 2005.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In
Proceedings of PLDI 2005. ACM, 2005.

[28] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni,
W. Binder, and Z. Qi. DiSL: A Domain-Specific
Language for Bytecode Instrumentation. In
Proceedings of AOSD 2012. ACM, 2012.

[29] P. Menage. Linux Control Groups.
https://www.kernel.org/doc/Documentation/cgroups
/cgroups.txt.

[30] M. Menth and R. Henjes. Analysis of the Message
Waiting Time for the FioranoMQ JMS Server. In
Proceedings of ICDCS 2006, 2006.

[31] NS-3 Project. NS-3. http://www.nsnam.org/.

[32] G. Pacifici, W. Segmuller, M. Spreitzer, and
A. Tantawi. Dynamic Estimation of CPU Demand of
Web Traffic. In Proceedings of VALUETOOLS 2006.
ACM, 2006.

[33] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance Evaluation of Message-Oriented
Middleware Using the SPECjms2007 Benchmark.
Performance Evaluation, 2009.

[34] K. Sachs, S. Kounev, and A. Buchmann. Performance
Modeling and Analysis of Message-Oriented
Event-Driven Systems. Journal of Software and
Systems Modeling, 2012.

[35] B. Sigoure. How Long Does It Take To Make A
Context Switch ?
http://blog.tsunanet.net/2010/11/how-long-does-it-
take-to-make-context.html.

[36] C. U. Smith and L. G. Williams. Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley, 2002.

[37] Sun Microsystems. Java Message Service Specification
Version 1.1, 2002.

[38] E. Varki, A. Merchant, J. Xu, and X. Qiu. Issues and
Challenges in the Performance Analysis of Real Disk
Arrays. IEEE Transactions on Parallel and
Distributed Systems, 15(6), 2004.

[39] T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester.
Automatic Inclusion of Middleware Performance
Attributes into Architectural UML Software Models.
IEEE Transactions on Software Engineering, 31(8),
2005.

[40] H. Xu. GSO: Generic Segmentation Offload.
http://lwn.net/Articles/188489/.

[41] H. Xu. net: Generic Receive Offload.
http://lwn.net/Articles/311357/.

[42] T. Zheng, C. M. Woodside, and M. Litoiu.
Performance Model Estimation and Tracking Using
Optimal Filters. IEEE Transactions on Software
Engineering, 2008.

134

