
Adaptive Model Learning for Continual Verification of
Non-Functional Properties

Radu Calinescu
Department of Computer

Science
University of York, UK

radu.calinescu@york.ac.uk

Yasmin Rafiq
Department of Computer

Science
University of York, UK
yr534@york.ac.uk

Kenneth Johnson
Department of Computer

Science
University of York, UK

kenneth.johnson@york.ac.uk

Mehmet Emin Bakır
Department of Computer

Science
University of York, UK
meb524@york.ac.uk

ABSTRACT
A growing number of business and safety-critical services
are delivered by computer systems designed to reconfigure
in response to changes in workloads, requirements and in-
ternal state. In recent work, we showed how a formal tech-
nique called continual verification can be used to ensure that
such systems continue to satisfy their reliability and perfor-
mance requirements as they evolve, and we presented the
challenges associated with the new technique. In this paper,
we address important instances of two of these challenges,
namely the maintenance of up-to-date reliability models and
the adoption of continual verification in engineering prac-
tice. To address the first challenge, we introduce a new
method for learning the parameters of the reliability models
from observations of the system behaviour. This method
is capable of adapting to variations in the frequency of the
available system observations, yielding faster and more ac-
curate learning than existing solutions. To tackle the second
challenge, we present a new software engineering tool that
enables developers to use our adaptive learning and contin-
ual verification in the area of service-based systems, without
a formal verification background and with minimal effort.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verifi-
cation—model checking; reliability; statistical methods

Keywords
on-line model learning, runtime quantitative verification,
discrete-time Markov models, service-based systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

Copyright 2014 ACM 978-1-4503-2733-6/14/03 $15.00
http://dx.doi.org/10.1145/2568088.2568094.

1. INTRODUCTION
Rarely a day passes without new announcements of yet

more applications being “moved to the cloud” or “running
on the Internet-of-Things” in the name of increased flexibil-
ity, richer functionality, or cost and energy savings. Nev-
ertheless, few of these announcements mention the depend-
ability and performance implications of such long-reaching
decisions. As the applications involved increasingly include
services such as UK Government ICT procurement1, New
York Stock Exchange market data analysis2 and US De-
partment of Defence solutions3, this raises serious concerns.

In recent work, we advocated the continual formal verifica-
tion of the non-functional properties (NFPs) of such evolving
critical systems [2, 3], and devised theoretical and practical
tools supporting the approach [4, 6, 7, 21]. These tools
employ established or new, lower-overhead model checking
techniques to assess whether the quality-of-service (QoS) re-
quirements of a system continue to be satisfied as the sys-
tem evolves. The approach has been used successfully in
applications including QoS management and optimisation
of service-based systems [4, 6], and reliability NFP analysis
for cloud computing infrastructure [7, 21].

As part of the aforementioned work, we identified the key
research challenges that need to be addressed in order to ex-
tend the applicability of continual verification, and to sup-
port its adoption in QoS engineering practice [3]. In this
paper, we propose solutions that tackle important instances
of two of these challenges. The first challenge is the mainte-
nance of an up-to-date QoS model of an evolving critical sys-
tem. The new on-line model learning method presented in
the paper addresses this challenge for discrete-time Markov
chains (DTMCs), such as those used for the continual ver-
ification of the reliability NFPs of evolving critical systems
(e.g., [4, 8, 12]). The second challenge that we tackle is the
adoption of continual verification in QoS engineering prac-
tice. We introduce a new software engineering tool that
uses our model learning method, and contributes to enabling
practitioners to exploit continual NFP verification with lim-

1http://gcloud.civilservice.gov.uk
2http://www.nyse.com/press/1306838249812.html
3http://aws.amazon.com/federal/

87

ICPE’14, March 22–26, 2014, Dublin, Ireland.

http://gcloud.civilservice.gov.uk
http://www.nyse.com/press/1306838249812.html
http://aws.amazon.com/federal/

ited effort and without formal verification expertise. The
main contributions of the paper are:

1. A parameterised on-line learning method that infers the
state transition probabilities of a DTMC model of a sys-
tem from observations of the system behaviour, and ad-
justs its parameters dynamically depending on the fre-
quency of these observations. This adaptive learning
leads to a faster and more accurate inference of the tran-
sition probabilities than that provided by existing meth-
ods.

2. Rigorous theoretical results linking the parameters cho-
sen dynamically by our learning method to the expected
error in the accuracy of the learnt state transition prob-
abilities. This allows the configuration of the adaptive
learning method so that it yields results within an ac-
ceptable expected error range.

3. A software-as-a-service (SaaS) development tool that au-
tomatically generates web service proxies which use our
adaptive learning method to support continual reliability
NFP verification in service-based systems. The new tool
is freely available as an Amazon Machine Image (AMI)
that service-based system developers can use with no in-
stallation or configuration effort.

4. The integration of the SaaS tool with our existing COn-
tinual VErification (COVE) framework from [6]. The
integrated toolset supports the end-to-end development
of reconfigurable service-based systems that take advan-
tage of the results introduced in this paper with minimal
practitioner effort and formal verification expertise.

The paper is organised as follows. Section 2 introduces
concepts and notation used throughout the rest of the paper.
Section 3 presents our adaptive model learning method, and
several experiments used to evaluate and compare its effec-
tiveness with that of related approaches. Next, Section 4 de-
scribes our software-as-a-service engineering tool that allows
developers of service-based systems to take advantage of the
new learning technique. A case study from the telehealth
application domain is used to demonstrate the effectiveness
of this tool in Section 5, and related work is discussed in Sec-
tion 6. Section 7 concludes the paper with a brief summary
and an overview of future work directions.

2. BACKGROUND

2.1 Quantitative Verification of Discrete-Time
Markov Chains

Definition 1. A cost-annotated discrete-time Markov
chain (DTMC) is a tuple

M = (S , s0,P ,L, c), (1)

where:

• S is a finite set of states;

• s0 ∈ S is the initial state;

• P is an | S | × | S | transition probability matrix;

• L : S → 2AP is a labelling function which assigns a set
of atomic propositions from AP to each state in S;

• c : S → R+ is a costing function that associates a cost
c(s) ≥ 0 with each state s ∈ S.

For any states si , sj ∈ S, the element pij from P represents

the probability of transitioning to state sj from state si , and∑
sj∈S pij = 1.

Quantitative or probabilistic model checkers (e.g., PRISM
[24], MRMC [22] and Ymer [31]) operate on Markovian mod-
els expressed in a high-level, state-based language. Given
a DTMC description in this language, the low-level repre-
sentation (1) is derived automatically. Our work uses the
probabilistic model checker PRISM [24], which supports the
analysis of DTMC properties specified in a cost/reward-
augmented version of probabilistic computational tree logic
(PCTL) [20], whose syntax is defined below.

Definition 2. Let AP be a set of atomic propositions
and a ∈ AP, p ∈ [0, 1], k ∈ N, r ∈ R and ./ ∈ {≥, >,<,≤}.
Then a state-formula Φ and a path formula Ψ in PCTL are
defined by the following grammar:

Φ ::= true|a|Φ ∧ Φ|¬Φ|P./p(Ψ)
Ψ ::= X Φ|ΦU Φ|ΦU≤kΦ

(2)

and the cost/reward augmented PCTL state formulae are
defined by the grammar:

Φ ::= R./r [I=k]|R./r [C≤k]|R./r [FΦ]. (3)

PCTL distinguishes between state and path formulae. The
state formulae include the standard logical operators ∧ and
¬, which also allow a formulation of other usual logical op-
erators (disjunction (∨), implication (⇒), etc.) and false.
The main extension of the state formulae, compared to non-
probabilistic logics, is the replacement of the traditional
path quantifiers ∃ and ∀ with a probabilistic operator P.
This operator defines upper or lower bounds on the proba-
bility of the system evolution. As an example, the formula
P≥p(Ψ) is true at a given state if the probability of the fu-
ture evolution of the system satisfying Ψ is at least p. The
path formulae that can be used with the probabilistic path
operator are:

• the “next” formula X Φ, which holds if Φ is true in the
next state of a path;

• the time bounded “until” formula Φ1U≤kΦ2, which re-
quires that Φ1 holds continuously up to some time step
x < k and Φ2 becomes true at time step x + 1;

• unbounded “until” formula Φ1U Φ2, whose semantics is
identical with that of the bounded “until”, but the time-
step bound is set to infinity t =∞.

Finally, the cost/reward operator R can be used to analyse
the expected cost at timestep k (R./r [I=k]), the expected
cumulative cost up to time step k (R./r [C≤k]), and the ex-
pected cumulative cost to reach a future state that satisfies
a property Φ (R./r [FΦ]).

The semantics of the PCTL is defined with a satisfaction
relation |= over the states S and possible paths PathM (s)
that are possible in a state s ∈ S of a model M with the
structure from (1). Further details about the formal seman-
tics of PCTL are available from [11, 20].

2.2 On-line Learning of DTMC Transition
Probabilities

The DTMC modelling and analysis formalism from the
previous section is traditionally used for the offline verifi-
cation of non-functional system properties. To extend its

88

applicability to continual verification, the DTMC model it
relies upon must be updated permanently, so that it is main-
tained in sync with the changing behaviour of the contin-
ually verified system. Typically, this model updating in-
volves monitoring the evolving system, and using the obser-
vations obtained in this way to learn about any changes in
the DTMC transition probabilities P from (1).

A basic Bayesian on-line learning method that can be used
for this purpose was proposed in [12], and extended by our
work-in-progress results from [5]. This section summarises
the extended on-line learning method from [5], which is used
as a basis for the adaptive learning method proposed in this
paper and described in detail in Section 3.

The algorithm we introduced in [5] learns the transition
probabilities pij of a DTMC model M with the form in (1),
starting from a priori estimates p0

ij and the observations of
the last k ≥ 1 system transitions from state si to states
sj ∈ S . Assuming that the l-th observation of a transition
from state si , 1 ≤ l ≤ k , is a transition to state sjl ∈ S , we
define

x l
ij =

{
1 if jl = j ,

0 otherwise
, (4)

and we calculate the estimate probability of a state transi-
tion from si to sj after the k -th observation as

pk
ij =

c0
i

c0
i + k

p0
ij +

k

c0
i + k

∑k
l=1 w l

i x l
ij∑k

l=1 w l
i

, (5)

where c0
i > 0 is a smoothing parameter that quantifies the

confidence in the accuracy of p0
ij , and w l

i ∈ (0, 1] is a weight
that reflects the age of the l-th observation. We showed in
[5] that an effective choice of weights is

w l
i = α

−(tk−tl)
i , (6)

where tl , 1 ≤ l ≤ k , represents the timestamps of the l-
th observation, and αi ≥ 1 is an ageing parameter. As we
showed in [5], the learning algorithm (5)–(6) has two key ad-
vantages over other learning techniques. First, the weights
w l

i decrease the impact of old observations on the estimates
pk
ij , significantly speeding up the detection of sudden changes

in actual transition probabilities (e.g., due to failures of sys-
tem components), in particular when such changes occur
after long periods of relatively constant behaviour. Second,
reorganising the terms in (5) allows pk

ij to be calculated from

pk−1
ij in O(1) time and using O(1) memory, a key advantage

for an on-line learning algorithm.

3. ADAPTIVE DTMC MODEL LEARNING
Our experiments from [5] show that the effectiveness of the

transition-probability learning algorithm (5)–(6) depends on
the choice of the parameters c0

i and αi , and that no com-
bination of values for these parameters is suitable for all
scenarios. To address this limitation, we extend the learn-
ing algorithm with the ability to select suitable parameters
c0
i and αi at runtime. The dynamic selection of these pa-

rameters adapts the learning algorithm to the frequency of
the observations, and is based on the following theoretical
results.

Proposition 1. Let x1, x2, . . . , xk be an independent
trials process with expected value E(xl) = µ and variance
V (xl) = σ2, for l = 1, 2, . . . , k. Let w1,w2, . . . ,wk > 0 be a

set of weights, and Ak =
∑k

l=1 wlxl∑k
l=1

wl
be the weighted average

of x1, x2 . . . , xk . Then

E(Ak) = µ and V (Ak) =

∑k
l=1(wl)

2(∑k
l=1 wl

)2 σ2. (7)

Proof: The expected value E(Ak) can be calculated as

E
(∑k

l=1 wlxl∑k
l=1

wl

)
=

E(
∑k

l=1 wlxl)∑k
l=1

wl
=

(since
∑k

l=1 wl is a constant [19, Theorem 6.2])

=
∑k

l=1 E(wlxl)∑k
l=1

wl
=

(since w1x1, w2x2, . . . , wkxk are random variables
with finite expected values [19, Theorem 6.2])

=
∑k

l=1 wlE(xl)∑k
l=1

wl
=

∑k
l=1 wl µ∑k
l=1

wl
= µ

(since wl is a constant [19, Theorem 6.2]).

In a similar way, the variance V (Ak) is given by

V
(∑k

l=1 wlxl∑k
l=1

wl

)
=

V (
∑k

l=1 wlxl)
(
∑k

l=1
wl)

2 =

(since
∑k

l=1 wl is a constant [19, Theorem 6.7])

=
∑k

l=1 V (wlxl)

(
∑k

l=1
wl)

2 =

(since w1x1, w2x2, . . . , wkxk are independent
random variables [19, Theorem 6.8])

=
∑k

l=1(wl)
2V (xl)

(
∑k

l=1
wl)

2 =
∑k

l=1(wl)
2σ2

(
∑k

l=1
wl)

2 =
∑k

l=1(wl)
2

(
∑k

l=1
wl)

2 σ
2

(since wl is a constant [19, Theorem 6.7]).

Corollary 1. Consider again the independent trials pro-
cess x1, x2, . . . , xk from Proposition 1, and let ε > 0. Then

P

(∣∣∣∣∣
∑k

l=1 wlxl∑k
l=1 wl

− µ

∣∣∣∣∣ ≥ ε
)
≤

∑k
l=1(wl)

2(∑k
l=1 wl

)2
ε2
σ2. (8)

Proof: The result is a direct application of Chebyshev’s In-
equality (e.g., [19, Theorem 8.1]) to the discrete random
variable Ak with the expected value and variance from (7).

Proposition 2. Consider the transition-probability learn-
ing algorithm (5)–(6), and let ε > 0. Then

P

(∣∣∣∣∣
∑k

l=1 w l
i x l

ij∑k
l=1 w l

i

− pij

∣∣∣∣∣ ≥ ε
)
≤

∑k
l=1(wl)

2

4
(∑k

l=1 wl

)2
ε2
, (9)

where pij represents the actual transition probability between
states si and sj of the model M from (1).

Proof: Since the actual transition probability between states
si and sj is pij , x l

ij ∈ {0, 1}, 1 ≤ l ≤ k , are discrete ran-
dom variables with (a) distribution function P(1) = pij and
P(0) = 1−pij ; (b) expected value µ = E(x l

ij) = 1×pij +0×
(1− pij) = pij ; and (c) variance σ2 = V (x l

ij) = E
((

x l
ij

)2)−(
E(x l

ij)
)2

=
(
12 × pij + 02 × (1− pij)

)
−(pij)

2 = pij−(pij)
2.

The inequality (9) is now easy to obtain by replacing these
µ and σ2 values in (8), and noting that σ2 = pij − (pij)

2 ≤ 1
4

for all possible values of pij .

89

Dynamic selection of learning algorithm parameters.
To take advantage of the result from Proposition 2, we

consider a time interval during which the mean distance be-
tween successive observations is t > 0. Accordingly, w l

i =

α
−(tk−tl)
i ≈ α

−(k−l)t
i and, after straightforward algebraic

manipulations,

∑k
l=1(wl)

2

(
∑k

l=1
wl)

2 ≈
∑k

l=1 α
−2(k−l)t
i(∑k

l=1
α
−(k−l)t
i

)2 =
(αkt

i +1)(αt
i−1)

(αkt
i −1)(αt

i+1)
≈ αt

i−1

αt
i+1

,

if αkt � 1. Replacing this result in (9) we obtain:

P

(∣∣∣∣∣
∑k

l=1 w l
i x l

ij∑k
l=1 w l

i

− pij

∣∣∣∣∣ ≥ ε
)
≤ 1

4ε2
αt
i − 1

αt
i + 1

, if αkt
i � 1.

(10)
Our adaptive transition-probability learning algorithm uses

the result in (10) to adjust the smoothing parameter c0
i and

the ageing parameter αi from (5)–(6) dynamically, based on
the mean distance between recent observations t as follows:

1. Given a small ε , we select αi such that the probability
from (10) is below a small value pmax , i.e.,

1

4ε2
αt
i − 1

αt
i + 1

≤ pmax ⇒ αi ≤
(

1 + 4ε2pmax

1− 4ε2pmax

) 1
t

. (11)

2. Having selected the αi , c0
i is chosen such that α

c0i t
i �

1. Since the first term of (5) dominates the calculation
of pk

ij until the number of observations k is larger than
c0
i , this ensures that the k observations play a major

role in the pk
ij estimate only once αkt

i � 1 as well. In

practice, we use α
c0i t
i = 10, or

c0
i =

1

t log10 α
. (12)

Complexity Analysis.
Our adaptive learning method requires the calculation of

the ageing parameter αi from (11), smoothing parameter
c0
i from (12), weights w l

i from (6) and probability estimates
pk
ij from (5) after each observation. As we showed in [5],

algebraic manipulation can be used to rearrange 5)–(6) so
that the last two calculations can be performed in O(1) time
and using constant, O(1) space. Calculating the mean dis-
tance t between recent observations—used to compute αi

in (11)—requires the algorithm to store the timestamps of
all observations within a sliding time window of fixed du-
ration. The number of such timestamps is proportional to
the frequency f of observations, so the space complexity of
this calculation is O(f). The actual calculation of t , how-
ever, can be carried out in O(1) time using a running sum,
and computing αi and c0

i also takes constant time. Accord-
ingly, the overall space complexity of the adaptive learning
algorithm is O(f), and its time complexity is O(1).

Evaluation.
To evaluate the effectiveness of the adaptive learning method,

we carried out a broad range of experiments in which we
compared its results with those produced by existing learn-
ing methods. The existing methods selected for this compar-
ison were the basic Bayesian learning method from [12], and
the fixed-parameter, ageing-enabled learning method from

Table 1: Learning methods compared in the evalu-
ation experiments

Method Description
Method 1 basic Bayesian learning from [12], obtained by

setting w l
i = 1 in (5) for all 1≤ l≤k , and using

the smoothing parameter c0i = 500.
Method 2 fixed-parameter, ageing-enabled learning algo-

rithm from [5], obtained by setting c0i = 500
and α = 1.001 in (5)–(6).

Method 3 fixed-parameter, ageing-enabled learning algo-
rithm from [5], obtained by setting c0i = 500
and α = 1.01 in (5)–(6).

Method 4 our new adaptive learning algorithm with
smoothing parameter c0 and ageing parame-
ter α given by (11)–(12) for pmax = ε = 0.05.

our previous work in [5]. The concrete methods compared
in these experiments and their parameters are summarised
in Table 1.

Figures 1–2 depict the experimental results of two typical
scenarios in which we assessed the effectivenes of the adap-
tive learning method. The two scenarios involved learning
the probability p of tossing heads with a biased coin from ob-
servations of coin tosses, when p changes over time between
a “normal” value of p = 0.96 and a lower value. The aim
of these scenarios was to simulate a degradation in the re-
liability with which a system component completed a given
task within a predefined amount of time, and to test the
ability of the four learning methods to identify this degra-
dation. The two scenarios considered different types of re-
liability degradation—a longer (i.e., 8000-second) and more
significant (i.e., down to p = 0.87) one in Scenario 1, and a
shorter (1200-second) and less significant (down to p = 0.9)
one in Scenario 2. Finally, learning each type of reliabil-
ity degradation was attempted for two different observation
frequencies. Thus, observation “inter-arrival” time was ex-
ponentially distributed, with a mean of 100ms (or a mean
frequency of 10s−1) during the first half of the experiments,
and a mean of 500ms (i.e., a mean frequency of 2s−1) during
the second half of the experiments. A qualitative analysis of
the experimental results in Figures 1–2 shows that the adap-
tive learning algorithm (Method 4) outperforms the existing
learning algorithms (Methods 1–3) as follows:

• At the beginning of the experiment, the pk estimate
probability for the adaptive algorithm approaches p
faster than for the basic algorithm in Method 1 and the
two combinations of fixed-parameter ageing-enabled
algorithms in Methods 2–3.

• During the “high frequency” half of the experiments,
the adaptive algorithm is as good at detecting the de-
crease in the value of p as the “high α” algorithm in
Method 3 (but with a pk estimate that oscillates less
around the actual p), and far better than the “low
α” algorithm in Method 2 and the basic algorithm in
Method 1;

• During the “low frequency” half of the experiments,
the adaptive algorithm produces estimates that are
as accurate and as smooth as the “low α” algorithm
(Method 2), and much smoother than the “high α” al-
gorithm (Method 3).

90

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key: p p k Method 1

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key: p p k Method 2

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key: p p k Method 3

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

Key: p p k Method 4

tra
ns

itio
n

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0
2
4
6
8

10

fre
qu

en
cy

 [s

]
-1

Figure 1: Experimental results—scenario 1

Although some of the estimates produced by the “high al-
pha” algorithm in Method 3 during the decrease in the value
of p in the second half of the experiment are closer to p than
the estimates produced by the adaptive algorithm, this is
achieved at the expense of significant oscillation. Such oscil-
lation is likely to trigger false alarms in a real-world scenario.
If this is not a problem, then the adaptive algorithm can be
configured to provide similar estimates by adjusting its con-
fidence interval through increasing ε and/or pmax .

For a quantitative evaluation of the effectiveness of our
adaptive learning method, consider a situation in which an
alarm is triggered if the estimate probability pk (represent-
ing the reliability of a system component, as explained above)
drops below a threshold value prequired = 0.95. This thresh-
old value is shown as a dotted line in all graphs in Figures 1–
2. Assuming that the learning methods are used to detect
such violations of a reliability threshold, we measured the
following three non-functional properties of the learnt pk

values from Scenarios 1 and 2:

• The time tdown elapsed between the drop in the value
of p and the moment when the estimate pk becomes
smaller than prequired .

• The time tup elapsed between the moment when p re-
gains its “normal” value (i.e., p = 0.96) after a period
of degraded reliability, and the moment when the es-
timate pk becomes at least prequired .

• The number of false positives n+, i.e., instances when
pk drops below prequired although p has its normal
value.

Table 2 shows the value of these properties, separately for
the periods of high-frequency and low-frequency observa-
tions from the experiments. These results indicate that
Method 1 is suited for identifying only the first change in

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

 k Key: p p Method 1tra
ns

iti
on

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

 k Key: p p Method 2tra
ns

iti
on

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

 k Key: p p Method 3tra
ns

iti
on

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.84
0.88
0.92
0.96

 k Key: p p Method 4tra
ns

iti
on

pr
ob

ab
ilit

y

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0
2
4
6
8

10

fre
qu

en
cy

 [s

]
-1

Figure 2: Experimental results—scenario 2

Table 2: Quantitative analysis of the experiments
in Scenarios 1–2

Scenario high-frequency low-frequency
& Method observations observations
(Sx My) tdown [s] tup [s] n+ tdown [s] tup [s] n+

S1 M1 570 — 0 — — —
S1 M2 95 2110 0 76 2149 0
S1 M3 6 217 54 33 239 38
S1 M4 26 405 0 128 2100 0

S2 M1 150 — 0 — — —
S2 M2 162 1350 0 46 1156 0
S2 M3 2 195 65 0 113 134
S2 M4 13 303 0 131 1120 0

the probability p, whereas the other methods yield pk prob-
ability estimates that follow the changes in p with more or
less accuracy. The adaptive learning algorithm (Method 4)
detects the changes in the value of p faster than Method 2 in
the high-frequency observation area, and, like this method,
produces no false positives. In the low-frequency observa-
tion area, the two methods are comparable, while Method 3
achieves slightly lower tdown and tup but has the significant
disadvantage of generating tens of false positives. As men-
tioned before, if these false positives are deemed acceptable,
then Method 4 can achieve similar results by choosing larger
pmax and ε values than those in Table 1.

The last set of experiments described in the paper was
carried out for the scenario illustrated in Figure 3. In this
scenario, we assume that p represents the probability that
a system will perform an operation or task over another (or
over remaining idle), and we suppose that p varies over a
10-hour time period (e.g., between 8am and 6pm during a
working day) as shown by the thick dashed line. Our ex-
periments assessed to what extend the estimate probability
pk provided by each of the four learning remained with the
interval [p − ε, p + ε] while the observation frequency was

91

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

tra
ns

iti
on

 p
ro

ba
bi

lit
y

 k Key: p p

Method 1

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

tra
ns

iti
on

 p
ro

ba
bi

lit
y

 k Key: p p

Method 2

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

tra
ns

iti
on

 p
ro

ba
bi

lit
y

 k Key: p p

Method 3

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

tra
ns

iti
on

 p
ro

ba
bi

lit
y

 k Key: p p

Method 4

0 5000 10000 15000 20000 25000 30000 35000
time [s]

0
2
4
6
8

10

fre
qu

en
cy

 [s

]
-1

Figure 3: Experimental results—scenario 3

decreased linearly from 10s−1 to 2s−1. The value ε = 0.05
was chosen, in order to match the value of ε used by the
adaptive learning algorithm (cf. Table 1). The typical ex-
perimental results in Figure 3 show that Method 1 cannot
handle this degreee of variability, while Method 2 yields
pk estimates within the desired interval around p most of
the time. In contrast, Methods 3–4 produce estimates that
remain within this interval throughout the 10-hour simu-
lated time period. The main difference between these two
methods is that Method 4 (the adaptive learning algorithm)
achieves this objective with much less oscillation around the
actual value p.

In order to measure the accuracy of the estimates quan-
titatively, we performed 100 experiments simular to those
from Figure 3, for each of the four learning methods. For
each experiment, we measured the cumulated time toutside
during which the estimate probability pk resided outside the
interval [p − ε, p + ε]. Table 3 reports these times, aver-
aged over the 100 experiments carried out for each learning
method, confirming that the adaptive learning methods out-
performs the other three methods according to this criterion.

4. IMPLEMENTATION
To ease the adoption of the theoretical results from Sec-

tion 3 in quality-of-service engineering practice, we imple-

Table 3: Cumulated times when the estimate prob-
ability pk is outside the interval [p−ε, p +ε], averaged
over 100 36,000-second experiments

Method toutside [s]
Method 1 31390.64
Method 2 4791.11
Method 3 60.91
Method 4 15.17

mented a software engineering tool and reusable middle-
ware that allow practitioners to exploit our adaptive learn-
ing method in the development of self-adaptive service-based
systems (SBSs) with the architecture from Fig. 4. This ar-
chitecture comprises n > 1 operations performed by remote
third-party services, and our new software engineering tool
generates automatically the n intelligent proxies used to in-
terface the SBS workflow with sets of remote service such
that the i-th SBS operation can be carried out by mi > 1
functionally equivalent services.

The role of the intelligent proxies is to ensure that each
execution of an SBS operation is carried out through the
invocation of a concrete service selected such that the non-
functional requirements of the system are satisfied. When-
ever an instance of the i-th proxy is created, it is initialised
with a sequence of“promised”service-level agreements slaij =
(p0

ij , cij), 1 6 j 6 mi , where p0
ij ∈ [0, 1] and ci,j > 0 represent

the provider-supplied probability of success and the cost for
an invocation of service s j

i , respectively. The n proxies are
also responsible for announcing each service invocation and
its outcome to a model updater, which we implemented as
reusable middleware, and we integrated with our COntinual
VErification (COVE) framework from [6]. The model up-
dater uses the adaptive learning algorithm from Section 3 to
adjust the transition probabilities of an initial DTMC model
of the SBS workflow in line with these proxy notifications.

Finally, the up-to-date DTMC model maintained by the
model updater is used by an existing COVE autonomic man-
ager, which performs continual non-functional property veri-
fication to select the service combination used by the n prox-
ies so that it satisfies the SBS requirements with minimal
cost at all times. Accordingly, the proxies, model updater
and autonomic manager with its quantitative verification
engine implement a monitor-analyse-plan-execute (MAPE)
autonomic computing loop [23].

The new software engineering tool is implemented as a
Java web application, generates each intelligent proxy as a
Java ARchive (JAR) component, and is freely available:

• Pre-installed as a web application on the public Amazon
Machine Image with AMI ID ami-db7020b2 and AMI
Name WB-IPGenTool-2013 from the us-east-1 Amazon
EC2 region (Figure 5). Starting an Amazon EC2 (http:
//aws.amazon.com/ec2/) virtual machine that uses this
AMI has the significant advantage that multiple devel-
opers can then instantly access and use the tool from a
web browser running on their local machines, with no
installation or configuration effort.

• As an open-source application for deployment on a local
development machine, at http://www-users.cs.york.

ac.uk/~raduc/COVE.

The model updater and the components of the COVE frame-
work it was integrated with are implemented as an open-
source Java library, which is also freely available from http:

//www-users.cs.york.ac.uk/~raduc/COVE.

92

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www-users.cs.york.ac.uk/~raduc/COVE
http://www-users.cs.york.ac.uk/~raduc/COVE
http://www-users.cs.york.ac.uk/~raduc/COVE
http://www-users.cs.york.ac.uk/~raduc/COVE

s21

sm1
1

s22

sm2
2

s2n

smn
n

s12

s1n

proxy 1
Intelligent

s11

proxy 2
Intelligent

proxy n
Intelligent

SBS workflow

Generated
components

SLAs

SLAs

SLAs

Self-adaptive
service-based system

requirements

Generated
artefacts

Model updater
Autonomic
manager

Reusable components

update
manage

initial
DTMC model

SBS

Quantitative
verification engine

Figure 4: Self-adaptive service-based system that
uses continual non-functional property verification,
originally proposed in [4] and extended in [3].

Figure 5: Public Amazon Machine Image pre-
installed with the intelligent proxy generator tool

SBS Development Process.
The development of a self-adaptive SBS using the new

proxy generator and middleware comprises three stages:

1. The developer selects mi ≥ 1 functionally equivalent
services that implement the i-th SBS operation, 1 ≤
i ≤ n, and uses the new proxy generator to synthesise
the i-th intelligent proxy as a Java package, starting
from the mi web service WSDL definitions. The mi

services may be associated with different levels of reli-
ability and different costs. In addition, our proxy gen-
erator can accommodate differences in the parameter
and return types of the mi web methods that imple-
ment the SBS operation, by allowing the developer to

analyseVitalParams

request

result

no (0.999)

?

new prescription
needed (0.3)

assistance
needed (0.004)

patient data
analysis (0.9)

patient-requested

alarm (0.1)

changeDrug

?

?

sendAlarm

yes (0.001)

stop

patient
is fine (0.696)

P ≤ 0.08; true; sendAlarmFail |
analyseVitalParamsFail |changeDrugFail

P ≤ 0.0002; analyseVitalParams; sendAlarmFail

P ≤ 0.05; true; sendAlarmFail

Figure 7: UML activity diagram of a telehealth SBS.
Estimate a priori probabilities are associated with
the edges that originate in a decision node, and com-
ments specifying the SBS requirements are associ-
ated with relevant nodes.

specify conversions between these parameters and re-
turn types and those of the SBS operation. This is a
key advantage of our proxy generator, since in practice
it is difficult to find equivalent services whose methods
also have identical signatures (Figure 6).

2. The developer uses existing COVE tools [6] to generate
the initial DTMC model used to set up the model up-
dater and to formalise the SBS requirements in PCTL,
starting from an annotated SBS activity diagram in
the XMI format generated by the Eclipse-based Pa-
pyrus graphical editing tool for UML 2 (http://www.
eclipse.org/papyrus/). The process is presented in
detail in [6].

3. The developer integrates the n intelligent proxies with
the code that implements the SBS workflow, in a simi-
lar manner to using standard web service proxies. Ad-
ditionally, an instance of the model updater and an in-
stance of the COVE autonomic manager from [6] are
created and initialised with the initial DTMC model
and the array of PCTL requirements from the previous
stage, respectively.

5. CASE STUDY
We used the adaptive model learning method from Sec-

tion 3 and the tools and development process described in
Section 4 to implement a self-adaptive version of a telehealth
service-based system taken from [3, 4, 12]. In this SBS, the
vital parameters of a patient are periodically measured by
a wearable device and analysed by third-party medical ser-
vices. The result of the analysis may trigger the invocation
of an alarm service (that determines, for instance, the dis-
patch of an ambulance), may lead to the invocation of a
pharmacy service to deliver new medication to the patient,
or may confirm that the patient is fine. In addition, the
patient can initiate an alarm by using a panic button on
the wearable device. The workflow of the telehealth SBS is

93

http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/

Figure 6: Instance of the intelligent proxy generator, running as a web application on an Amazon virtual
machine, and used from a web browser. Parameter/return type conversions are supported between “abstract”
SBS operations and “concrete” services.

Table 4: Service prior success probabilities and costs

prior success
service probability (p0

i,j) cost (ci,j)

sendAlarm1 0.968 0.02
sendAlarm2 0.968 0.01
changeDrug1 0.96 0.3
changeDrug2 0.95 0.1
analyseVitalParams1 0.965 5.0
analyseVitalParams2 0.95 4.0
analyseVitalParams3 0.96 3.0

shown in Fig. 7, and the three non-functional requirements
used in the case study are:

R1: The probability that one execution of the workflow
ends in a service failure is at most pR1 = 0.08.

R2: The probability that an alarm failure occurs within
N = 10 executions of the workflow is at most pR2 =
0.05.

R3: The probability that an invocation of the analysis ser-
vice is followed by an alarm failure is at most pR3 =
0.0002.

The self-adaptive version of the telehealth SBS used m1 =
2 sendAlarm services, m2 = 2 changeDrug services, and
m3 = 3 analyseVitalParams services. These seven services
were simulated using real Java web services deployed on
Amazon EC2 “small instance” virtual machines. Individ-
ual configuration files were used to specify the variation of
the actual probability of successful invocation for each web
service, pi,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ mi , over the duration of
each experiment. The a priori success probabilities p0

i,j and
the costs ci,j for an invocation of each of these services are
shown in Table 4. A Java implementation of the telehealth

SBS workflow from Fig. 7 was integrated with intelligent
proxies for its three operations, and was run on a standard
2.66 GHz Intel Core 2 Duo Macbook Pro computer.

Fig. 8 shows a typical experiment in which the self-adaptive
SBS selects the service combinations for its telehealth work-
flow dynamically, over a 1.5-hour wall-clock time period.
Low-cost combinations of services are preferred when their
combined probabilities of successful completion satisfy all
SBS relibility requirements, and are discarded in favour of
higher-cost service combinations when their joint reliability
violates one or more of these SBS requirements. These deci-
sions are taken based on the estimate probabilities of success
pk
ij calculated by our adaptive learning algorithm (initialised

with ε = pmax = 0.05), and on the continual verification of
the updated SBS model:

• At the beginning of the experiment, the lowest-cost
service combination is selected, as the high a priori
success probabilities p0

i,j of all services make all service
combinations seem suitable. This is the expected be-
haviour, since a service whose provider-specified SLA
does not satisfy the SBS requirements should not be
included in the system.

• When the SBS learns that analysisVitalParams3 is un-
derperforming in the area labelled ‘A’ in the diagram,
it starts using the higher-cost analysisVitalParams2
service.

• While a higher-cost service is used for an SBS opera-
tion, the adaptive learning algorithm “rebuilds trust”
in the temporarily discarded lower cost service (area
labelled ‘B’ in the diagram). This is due to the fact
that the observations of frequent failures from area ’A’
are associated with weights that decrease over time,
so the estimate pk

3,3 slowly approaches the prior value

94

se
n
d
A
la
rm

co
st

ch
an

ge
D
ru
g
co
st

an
al
ys
eV

it
al
P
ar
am

s
co
st

pk i,
j

p i
,j

p0 i,
j

to
ta
l

co
st

selected
service

no selected
serviceKEY:

A B

C

D

E F

G

H

H’

I

J

Figure 8: Automated service selection for the telehealth service-based system; the circular areas labelled ‘A’,
‘B’, etc. are analysed in Section 5

p0
3,3. The learning algorithm was configured to assume

that a service returned to its prior success probability
when the autonomic manager resumes using it, which
explains why pk

3,3 grows suddenly to p0
3,3 when the

analysisVitalParams3 is selected again in area B.

• In area C, a slight variation in the estimate success
probability of the sendAlarm2 service triggers a po-
tentially unnecessary transition to the more expensive
service sendAlarm1. Choosing strict intervals of confi-
dence (i.e., smaller ε and/or pmax parameters) for the
adaptive learning could reduce such “false positives”,
although eliminating them altogether is not possible
(cf. Proposition 2).

• In area D, the SBS resumes using analysisVitalParams3,
which has now recovered.

• In area E, the system learns that even the high-cost
alarm service sendAlarm2 is unreliable, to the extent
that the SBS requirements are no longer satisfied. Un-
der the configuration used in the experiment, no ser-
vice was selected in this scenario, and an error message
was generated instead to alert the system operator.

• In area F, the system retries to use the alarm service
that experienced a low success rate first, and learns
that this services has not yet recovered.

• Area G shows that some services have little impact
on the overall SBS compliance with its requirements:
given that only requirement R1 depends on a suc-
cessful completion of the changeDrug SBS operation
(and only marginally), a decrease in the reliability of
changeDrug2 does not determine the SBS to abandon
this service.

• Nevertheless, the SBS does switch to the more expen-
sive changeDrug1 service in area H–H’, at a moment
when changeDrug2 is actually more reliable than it was

in area G. The decision is motivated by the decrease
in the reliability of dataAnalysis3, which the system
compensates for by choosing a slightly more expensive
drug service (the cost difference between changeDrug2

and changeDrug1 is only 0.2) instead of switching to a
significantly more expensive analysis service (ceasing
to use analyseVitalParams3 would have amounted to
a cost increase of at least 1.0 for this operation).

• The strategy adopted in area H–H’ is unsuccessful, so
the most expensive analysis service is eventually se-
lected in area I.

• Finally, in area J all services have recovered and oper-
ated close to their advertised SLAs, so the self-adaptive
SBS returns to using the lowest-cost service combina-
tion for the telehealth service-based system.

A key capability of our adaptive learning method is its
ability to learn not only changes in the reliability of indi-
vidual services, but also changes in the rates with which the
SBS operations are performed. To evaluate this function-
ality, we considered the effect of changes in the probability
prequest sendAlarm that a request handled by the telehealth
SBS is a patient-initiated alarm. A temporary increase in
this probability may be caused, for instance, by a flu out-
break. Fig. 9 depicts the analysis of requirement R1 from
our case study, for a range of service combinations and for
prequest sendAlarm values between 0.05 and 0.15. This analysis
shows that even a small change in the probability of alarm
requests is sufficient to render unacceptable a service combi-
nation that was previously compliant with requirement R1.
This confirms the importance of updating the SBS model
in line with any fluctuations in the probabilities with which
the SBS operations are executed.

Scalability.
To evaluate the scalability and generality of our approach,

we carried out a number of experiments that assessed the ap-

95

p R
1

p1

p2 = p3 = 0.94

pR1=0.08

A service combination with
(p1, p2, p3) = (0.875, 0.94, 0.94)
complies with requirement R1 if
prequest sendAlarm=0.05, but violates
R1 if prequest sendAlarm ≥ 0.075.

(a)

(b)

Figure 9: (a) The effect of changes in the probability
of alarm requests; and (b) learning this probability

plicability and overheads of executing the runtime adaptive
learning and model analysis in multiple scenarios. We se-
lected the following workflows used by a number of projects
in this area:

1. the healthcare case study described in this paper, and
previously used in [4, 3, 12];

2. the e-commerce workflow obtained from [15];

3. the travel assistant workflow derived from the state-
chart representation presented in [32].

These workflows comprise invocations to three, four and five
abstract operations, respectively.

For each of the workflows we devised a parameterised
DTMC and defined four PCTL requirements, including one
PCTL property to determine the expected cost of a single
invocation of the workflow. The size of the models ranged
between 11 and 17 states. As we envisage that practical
self-adaptive service-based systems will rarely use more than
two or three concrete services for each abstract operation,
we then ran experiments that considered between two and
six concrete services for each of the abstract operations. Due
to space constraints, we could not include the DTMC mod-
els and properties for the e-commerce and travel-assistant
workflows in this paper. However, these DTMC models and
properties, and detailed descriptions of each of these exper-
iments are available at http://www-users.cs.york.ac.uk/
~raduc/COVE.

Each experiment measured the time taken to initialise
the system and select the optimal concrete service config-
uration in the worst-case scenario whereby all combinations
of concrete services satisfied the SBS requirements. Note
that this is the worst-case scenarios because the autonomic

Figure 10: Scalability results for 2–5 “concrete” ser-
vices per SBS operation

manager stops verifying the suitability of a service combi-
nation as soon as it learns that the combination violates
one of the requirements. Fig. 10 summarises the results of
our experiments, averaged over multiple runs. According to
these results, up to three services per SBS operation can
be analysed within two seconds for each of the considered
workflows, which confirms the feasibility of the approach for
typical SBSs of practical importance from the domains ex-
plored in our experiments. Increase the number of services
to four services leads to verification times of up to 5s, which
is likely to be acceptable for many practical applications.
This is particularly true when large numbers of false posi-
tives and false negatives in the associated learning process
need to be avoided, so longer time is already needed to iden-
tify the changes on which the autonomic manager must act.

The growth in analysis time shown in Fig. 10 makes the
current implementation of the approach suitable for systems
comprising small to medium numbers of operations, and us-
ing between two and four services per SBS operation. While
the second constraint is, in our opinion, not significant, the
former implies that SBSs comprising large numbers of op-
erations cannot yet benefit from this approach. However,
recent work by several research groups and ourselves has led
to significant advances in the use of incremental and compo-
sitional techniques to reduce quantitative verification times,
often by multiple orders of magnitude [7, 14, 21, 25]. We
envisage that integrating these techniques into the approach
will significantly enhance its ability to support the develop-
ment and operation of much larger service-based systems.

6. RELATED WORK
Significant research has focused on monitoring the perfor-

mance and reliability properties of technical systems, and
on modelling and analysing these properties formally. The
spread of evolving critical systems [2] led to a growing need
for combining techniques from the two research areas in a
runtime context, in order to achieve a continual verification
of the non-functional properties of these systems [3].

The projects addressing the challenges of continual veri-
fication have so far focused primarily on reducing the over-
heads of runtime analysis of formal models [7, 13, 14, 16,
21], with relatively little effort dedicated to ensuring that the
analysed formal models are updated in line with the changes
in the analysed system. The work presented in [12] pro-
poses the on-line learning algorithm referred to as “Method
1” in the evaluation part from Section 3, where we show
that our adaptive learning is better suited for all scenarios
in which the learnt DTMC transition probabilities undergo
multiple changes over time. The approach introduced in
[34, 35] uses Kalman filter estimators to update the param-
eters of queueing-network performance models. Our results
complement this approach, as they target DTMC reliability

96

http://www-users.cs.york.ac.uk/~raduc/COVE
http://www-users.cs.york.ac.uk/~raduc/COVE

models. Finally, our new adaptive learning approach is a
significant improvement over the on-line learning approach
from our previous work in [5]. This was shown in the eval-
uation part from Section 3, where representative instances
of the learning approach from [5] (labelled “Method 2” and
“Method 3”) were compared to the new adaptive learning.

The management and optimisation of SBS non-functional
properties through dynamic service selection has been the
focus of significant research over the past decade. The so-
lutions proposed by this research include approaches that
use intelligent control loops (e.g., [1, 9, 28]) and approaches
that emulate the cooperative behaviour of biological sys-
tems (e.g., [17, 29]). The approach supported by our new
intelligent proxy generator and middleware belongs to the
first category, so the rest of this section focuses on compar-
ing our work with results from this area, and in particular
with solutions that employ formal models that can repre-
sent SBSs accurately and in a realistic way. The approaches
proposed in [18, 28, 27, 30] use UML activity diagrams
or directed acyclic graphs to synthesise simple performance
models based on queuing networks [28, 27] or, like our ap-
proach, Markovian reliability models [18, 30]. These models
are then used to establish the quality-of-service (QoS) prop-
erties of the analysed SBS systems. However, unlike these
approaches, our solution also uses an adaptive learning tech-
nique to update the initial model based on observations of
the system behaviour. The QoS-driven selection of services
in self-adaptive service-based systems is addressed in [1, 9,
10, 33]. All these approaches lack adaptive learning capa-
bilities, and propose theoretical solutions that are hard to
replicate in practical SBSs. In addition, approaches such as
[1, 9, 26, 33] involve the optimisation of the service selection
on a per request basis. These approaches require perfect
knowledge of the QoS capabilities of the available services,
which renders them ineffective in the scenarios targeted by
our work, where the characteristics of services need to be
learnt from observations of their behaviour.

The work presented in this paper also differs from our
previous results in [4], as it introduces an adaptive learn-
ing method that is underpinned by new theoretical results
and used to estimate not only changes in the reliability of
individual services, but also variations in the probabilities
with which the operations of an evolving system are invoked.
Furthermore, we describe a new proxy generation tool and
model updater that are missing from our previous work.

7. CONCLUSION
We introduced a new on-line learning method for main-

taining discrete-time Markov reliability models of evolving
critical systems in sync with the systems they represent. Un-
like existing approaches to updating such models, our new
method adapts its parameters dynamically, to suit the fre-
quency of the observations it relies upon and the developer-
specified confidence intervals for its estimates. This adapta-
tion is based on a rigorous theoretical foundation, also intro-
duced in the paper, and we showed that our model learning
method outperforms existing approaches in a range of sce-
narios of practical relevance.

Our adaptive model learning method is a key component
for the continual verification of the non-functional properties
of evolving systems. To make the new method available to
practitioners interested in continual verification, we imple-
mented a software engineering tool and middleware that en-

able its adoption by developers of self-adaptive service-based
systems. This development tool is pre-installed on a publicly
available Amazon EC2 machine image, so developers can use
the tool without having to first install and configure it and
the third-party libraries it uses. The effectiveness of the tool
and its integration with our existing continual verification
framework from [6] was demonstrated in a case study from
the telehealth application domain, and the scalability of the
approach was evaluated for three service-based systems used
by projects in this area. The results of this evaluation in-
dicate that the approach is applicable to SBS workflows of
practical significance. Extending the applicability of the ap-
proach to large service-based systems requires its integration
with recently emerged incremental and compositional verifi-
cation techniques [7, 14, 21, 25]. Achieving this integration
represents an area of ongoing work for our project. The main
target of this work is the incremental verification technique
we proposed in [21], which we deem particularly suitable for
our purpose due to its ability to produce system-level veri-
fication results by re-analysing only the parts of the system
that were affected by a change.

Another area of ongoing work for our project is the exten-
sion of the adaptive model learning method with the ability
to handle models supporting the analysis of different cate-
gories of non-functional requirements (e.g., performance and
energy related), along the lines of our previous work in [4].

Acknowledgment
This work was partly supported by the UK Engineering and
Physical Sciences Research Council grant EP/H042644/1.

8. REFERENCES
[1] D. Ardagna and B. Pernici. Adaptive service

composition in flexible processes. IEEE Trans. Softw.
Eng., 33(6):369–384, 2007.

[2] R. Calinescu. Emerging techniques for the engineering
of self-adaptive high-integrity software. In J. Camara
et al., editors, Assurances for Self-Adaptive Systems,
volume 7740 of LNCS, pages 297–310. Springer, 2013.

[3] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and
R. Mirandola. Self-adaptive software needs
quantitative verification at runtime. Communications
of the ACM, 55(9):69–77, September 2012.

[4] R. Calinescu, L. Grunske, M. Kwiatkowska,
R. Mirandola, and G. Tamburrelli. Dynamic QoS
management and optimization in service-based
systems. IEEE Trans. Softw. Eng., 37:387–409, 2011.

[5] R. Calinescu, K. Johnson, and Y. Rafiq. Using
observation ageing to improve Markovian model
learning in QoS engineering. In 2nd ACM/SPEC Intl.
Conf. on Performance Engineering, pages 505–510,
2011.

[6] R. Calinescu, K. Johnson, and Y. Rafiq. Developing
self-verifying service-based systems. In 28th Intl.
IEEE/ACM Conference on Automated software
Engineering, 2013. To appear.

[7] R. Calinescu, S. Kikuchi, and K. Johnson.
Compositional reverification of probabilistic safety
properties for large-scale complex IT systems. In
Large-Scale Complex IT Systems, volume 7539 of
LNCS, pages 303–329. Springer, 2012.

97

[8] R. Calinescu and M. Z. Kwiatkowska. Using
quantitative analysis to implement autonomic IT
systems. In Proceedings of the 31st International
Conference on Software Engineering, ICSE 2009,
pages 100–110. IEEE Computer Society, 2009.

[9] G. Canfora, M. D. Penta, R. Esposito, and M. L.
Villani. A framework for QoS-aware binding and
re-binding of composite web services. Journal of
Systems and Software, 81(10):1754–1769, 2008.

[10] V. Cardellini, E. Casalicchio, V. Grassi, and F. L.
Presti. Scalable service selection for web service
composition supporting differentiated qos classes.
Technical Report Technical Report RR-07.59, Dip. di
Informatica, Sistemi e Produzione, Universita di
Roma Tor Vergata, 2007.

[11] F. Ciesinski and M. Größer. On probabilistic
computation tree logic. In C. Baier et al., editors,
Validation of Stochastic Systems - A Guide to Current
Research, volume 2925 of LNCS, pages 147–188.
Springer, 2004.

[12] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model evolution by run-time
adaptation. In Proc. 31st Intl. Conf. Software
Engineering (ICSE’09), pages 111–121, 2009.

[13] A. Filieri and C. Ghezzi. Further steps towards
efficient runtime verification: Handling probabilistic
cost models. In Software Engineering: Rigorous and
Agile Approaches (FormSERA), 2012 Formal Methods
in, pages 2–8, 2012.

[14] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time
efficient probabilistic model checking. In Proc. 33rd
International Conference on Software Engineering,
pages 341–350. IEEE Computer Society, 2011.

[15] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal
approach to adaptive software: continuous assurance
of non-functional requirements. Formal Aspects of
Computing, 24(2):163–186, 2012.

[16] V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, and
M. Ujma. Incremental runtime verification of
probabilistic systems. In S. Qadeer and S. Tasiran,
editors, Runtime Verification, volume 7687 of Lecture
Notes in Computer Science, pages 314–319. Springer
Berlin Heidelberg, 2013.

[17] R. Frei, G. D. M. Serugendo, and J. Barata. Designing
self-organization for evolvable assembly systems. In
Second IEEE Intern. Conf. on Self-Adaptive and
Self-Organizing Systems, SASO 2008, pages 97–106,
2008.

[18] S. Gallotti, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Quality prediction of service
compositions through probabilistic model checking. In
S. Becker, F. Plasil, and R. Reussner, editors, Proc.
4th International Conference on the Quality of
Software-Architectures, QoSA 2008, volume 5281 of
LNCS, pages 119–134. Springer, 2008.

[19] C. M. Grinstead and J. L. Snell. Introduction to
Probability. American Mathematical Society, 1997.

[20] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. Formal Aspects of
Computing, 6(5):512–535, 1994.

[21] K. Johnson, R. Calinescu, and S. Kikuchi. An
incremental verification framework for

component-based software systems. In Proc. 16th Intl.
ACM Sigsoft Symposium on Component-Based
Software Engineering, pages 33–42, 2013.

[22] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A
Markov reward model checker. In Quantitative
Evaluation of Systems, pages 243–244, Los Alamitos,
2005. IEEE Computer Society.

[23] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. IEEE Computer Journal,
36(1):41–50, January 2003.

[24] M. Kwiatkowska, G. Norman, and D. Parker. PRISM
4.0: Verification of probabilistic real-time systems. In
CAV’11, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

[25] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu.
Assume-guarantee verification for probabilistic
systems. In TACAS’10, pages 23–37. Springer, 2010.

[26] Q. Liang, X. Wu, and H. C. Lau. Optimizing service
systems based on application-level QoS. IEEE Trans.
Service Computing, 2:108–121, 2009.

[27] M. Marzolla and R. Mirandola. Performance
prediction of web service workflows. In International
Conference on Quality of Software Architectures,
QoSA 2007, volume 4880 of LNCS, pages 127–144.
Springer, 2007.

[28] D. Menascé, H. Ruan, and H. Gomaa. QoS
management in service-oriented architectures.
Perform. Eval., 64(7):646–663, 2007.

[29] F. Saffre, R. Tateson, J. Halloy, M. Shackleton, and
J.-L. Deneubourg. Aggregation dynamics in overlay
networks and their implications for self-organized
distributed applications. The Computer Journal, 2008.

[30] N. Sato and K. S. Trivedi. Stochastic modeling of
composite web services for closed-form analysis of their
performance and reliability bottlenecks. In ICSOC,
volume 4749 of LNCS, pages 107–118. Springer, 2007.

[31] H. L. S. Younes. Ymer: A statistical model checker. In
K. Etessami et al., editors, Computer Aided
Verification, volume 3576 of LNCS, pages 429–433.
Springer, 2005.

[32] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. Qos-aware middleware
for web services composition. IEEE Trans. Softw.
Eng., 30(5):311–327, May 2004.

[33] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware
for web services composition. IEEE Trans. Software
Eng, 30(5):311–327, 2004.

[34] T. Zheng, M. Woodside, and M. Litoiu. Performance
model estimation and tracking using optimal filters.
IEEE Transactions on Software Engineering,
34(3):391–406, 2008.

[35] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and
G. Iszlai. Tracking time-varying parameters in
software systems with extended Kalman filters. In
Proceedings of the 2005 conference of the Centre for
Advanced Studies on Collaborative research, CASCON
’05, pages 334–345. IBM Press, 2005.

98

	Introduction
	Background
	Quantitative Verification of Discrete-Time Markov Chains
	On-line Learning of DTMC Transition Probabilities

	Adaptive DTMC Model Learning
	Implementation
	Case Study
	Related Work
	Conclusion
	References

