
Exploring Synergies between Bottleneck Analysis and

Performance Antipatterns

Catia Trubiani, Antinisca Di Marco,
Vittorio Cortellessa

University of L’Aquila, Italy
{catia.trubiani, antinisca.dimarco,

vittorio.cortellessa}@univaq.it

Nariman Mani, Dorina Petriu
Carleton University, Ottawa, Canada

{nmani, petriu}@sce.carleton.ca

ABSTRACT
The problem of interpreting the results of performance anal-
ysis is quite critical, mostly because the analysis results (i.e.
mean values, variances, and probability distributions) are
hard to transform into feedback for software engineers that
allows to remove performance problems. Approaches aimed
at identifying and removing the causes of poor performance
in software systems commonly fall in two categories: (i)
bottleneck analysis, aimed at identifying overloaded soft-
ware components and/or hardware resources that a↵ect the
whole system performance, and (ii) performance antipat-
terns, aimed at detecting and removing common design mis-
takes that notably induce performance degradation. In this
paper, we look for possible synergies between these two cat-
egories of approaches in order to empower the performance
investigation capabilities. In particular, we aim at showing
that the approach combination allows to provide software
engineers with broader sets of alternative solutions leading
to better performance results. We have explored this re-
search direction in the context of Layered Queueing Net-
work models, and we have considered a case study in the
e-commerce domain. After comparing the results achiev-
able with each approach separately, we quantitatively show
the benefits of merging bottleneck analysis and performance
antipatterns.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Per-
formance Attributes; D.2.8 [Software Engineering]: Met-
rics—performance measures

General Terms
Performance, Design.

Keywords
Software Performance; Model-based Performance Analysis;
Bottleneck Analysis; Performance Antipatterns; Software
Performance Feedback.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE’14, March 22–26, 2014, Dublin, Ireland.

Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.

http://dx.doi.org/10.1145/2568088.2568092.

1. INTRODUCTION
In the software development domain there is a very high

interest in the early validation of performance requirements
because this ability avoids late and expensive fixes to con-
solidated software artifacts.

Model-based approaches, pioneered under the name of
Software Performance Engineering (SPE) by Smith [24, 26,
23], aim at producing performance models early in the de-
velopment cycle and using quantitative results from model
solutions to refactor the architecture and design [17] with
the purpose of meeting performance requirements [27].

Advanced Model-Driven Engineering (MDE) techniques
have successfully been used in the last few years to introduce
automation in software performance modeling and analysis
[5, 13, 7]. Nevertheless, the problem of interpreting the per-
formance analysis results is still quite critical. A large gap
exists between the representation of performance analysis re-
sults and the feedback expected by software architects. For
instance, the results contain numbers (e.g., mean response
time, throughput, utilization, variance, etc.), whereas the
feedback should include architectural suggestions, i.e., de-
sign alternatives, useful to overcome performance problems
(e.g., split a software component in two components and
re-deploy one of them).

Figure 1 shows the process we propose for merging bottle-
neck analysis and performance antipatterns in a round-trip
SPE process. Ovals in the figure represent operational steps
whereas square boxes represent input/output data. Ver-
tical lines divide the process in three di↵erent phases: in
the modeling phase, a (annotated1) software model is built;
in the performance analysis phase, a performance model is
obtained through model transformation, and such model is
solved to obtain the performance results of interest; in the
refactoring phase, the performance results are interpreted
and, if necessary, feedback is generated as refactoring ac-
tions on the original software model.

Approaches aimed at identifying and removing the causes
of poor performance in software systems commonly fall in
two categories: (i) bottleneck analysis that allows to identify
cases when the performance of a software system are lim-
ited by a number of overloaded software components and/or
hardware resources [11]; (ii) performance antipatterns that
document common mistakes made during software develop-
ment, as well as their solutions [25, 8].

1Annotations are aimed at specifying system parameters
such as workload, service demands and hardware charac-
teristics.

75

Figure 1: Exploiting bottleneck analysis and performance antipatterns in the round-trip SPE process.

In Figure 1 the (annotated) software model (label 5.a), the
performance model (label 5.b), and the performance results
(label 5.c) are all inputs to the results interpretation & feed-
back generation step that searches problems in the model.
This step has been expanded in the bottommost part of the
figure, where a fourth input has been added, that is the two
analysis techniques (label 5.d) we consider in our approach,
i.e. bottleneck analysis and/or performance antipatterns. In
general, the performance analysis results have to be inter-
preted in order to identify, if any, performance problems.
Once performance flaws have been identified (with a certain
accuracy) somewhere in the software model, it is necessary
to devise solutions in terms of refactoring actions that have
to be applied to remove those flaws. A performance flaw
originates from a set of unfulfilled requirement(s), such as
“the estimated average response time of a service is higher
than the required one”. If all the requirements are satisfied
then the feedback obviously suggests no changes. Both con-
sidered approaches follow the same general process but they
relay on di↵erent instruments.

The goal of this paper is to look for possible synergies
between performance antipatterns and bottleneck analysis,
in order to strengthen the feedback process by providing to
designers a su�ciently large set of alternatives for improving
the system performance.

The remainder of the paper is organized as follows. Sec-
tion 2 presents related work; Section 3 describes our ap-
proach; Section 4 shows the approach at work on a case
study from the e-commerce domain; Section 5 reports the
lessons learned from the experimentation as well as the open
issues raised by the approach; and finally Section 6 concludes
the paper and provides directions for future research.

2. RELATED WORK
The work presented in this paper is related to two main

research areas and builds upon our previous results in these
areas: (i) bottleneck analysis, and (ii) performance antipat-
terns.

Bottleneck analysis. In [29] an approach has been pre-
sented for automated software performance diagnosis, which

identifies performance flaws before the software system im-
plementation. It defines a set of rules for detecting patterns
of interaction between resources. The software architectural
models are translated into a performance model, i.e. Layered
Queueing Networks (LQNs) [21], [28] and then analyzed.
The approach limits the detection to bottlenecks and long
execution paths identified and removed at the level of the
LQN performance model. The overall approach was applied
only to LQN models, so its portability to other notations is
yet to be proven.

In [14] we studied the impact of SOA design patterns on
the performance analysis of Service Oriented Architectures
(SOA), and in [15] we described a technique for automati-
cally refactoring a SOA design model by applying a SOA de-
sign pattern and then propagating the incremental changes
to its LQN performance model.

Performance antipatterns. Enterprise technologies and
EJB performance antipatterns are analyzed in [20]: antipat-
terns are represented as sets of rules loaded into an engine. A
rule-based performance diagnosis tool, named Performance
Antipattern Detection (PAD), is presented. However, it
deals with Component-Based Enterprise Systems, target-
ing only Enterprise Java Bean (EJB) applications, hence its
scope is restricted to such domain, and performance prob-
lems can neither be detected in other technology contexts
nor in the early development stages.

In [4] we have introduced an approach based on a role-
modelling language that allows the refactoring of software
models through removing performance antipatterns, and in
[3] we used model-driven techniques, i.e. model di↵erencing
[6], to automatically refactor software models by applying
performance antipatterns.

In the general context of software model optimization meth-
ods, which aim to automate the search for an optimal design
with respect to a (set of) quality attribute(s), a consider-
able amount of work has been based on strategy techniques
aimed at exploring di↵erent degrees of freedom (e.g., alloca-
tion, sw/hw replication and/or selection, etc.) that influence
the system quality [2].

76

In the area of software design quality improvement, several
search-based refactoring techniques have been proposed. In
[22], a search-based approach for refactoring the class struc-
ture of a software system is proposed, but it is limited to
a restricted set of refactorings. In [12], search-based tech-
niques are used to automatically discover useful refactorings
aimed at improving the quality of software systems. Authors
use the concept of Pareto optimality to search-based refac-
toring, hence multiple fitness functions lead to provide di↵er-
ent Pareto optimal refactorings. In [19], multiple weighted
metrics are combined into a single fitness function that is
based on well-known measures of coupling between program
components. All these search-based approaches share the
same limitation, i.e., the search space may be huge, so the
search process may be time-consuming. In the performance
domain, Koziolek et al. in [16] used meta-heuristic search
techniques for improving performance, reliability, and costs
of component-based software systems. In particular, evolu-
tionary algorithms search the architectural design space for
optimal trade-o↵s by means of Pareto curves.

To summarize, this is the first paper, to the best of our
knowledge, that combines two di↵erent and well-consolidated
analysis techniques for producing feedback to designers on
how to improve the system performance.

3. SYNERGY ANALYSIS PROCESS
In this section we present the process we follow to explore

the synergies between the Bottleneck Analysis (BA) [11] and
the Performance Antipatterns (PA)[8].

Bottleneck Analysis Performance Antipatterns

Id
en

tif
yi

ng
Pr

ob
le

m
s

Pe
rfo

m
an

ce
Fl

aw
s

D
ev

is
in

g
So

lu
tio

ns
R

ef
ac

to
rin

g
Ac

tio
ns

Bottlenecks
Identification

Antipatterns
Detection

Bottlenecks
Removal

Antipatterns
Solution

Bottlenecks-based
Sw/Hw refactoring

Antipatterns-based
Sw/Hw refactoring

Sw/Hw Bottlenecks Antipattern
Instances

Figure 2: Customizing the refactoring phase.

Figure 2 specializes the general Results Interpretation &
Feedback Generation process of Figure 1 in case either the
BA or the PA are used to interpret the performance analy-
sis results and to generate feedback on the software model.
We recall that feedback is aimed at improving the software
system performance in order to reach the goal of fulfilling
the performance requirements.

The BA aims to identify and remove the system bot-
tleneck. More specifically, by system bottlenecks we un-
derstand one (or a small number) of software or hardware
resources that are highly utilized and will be the first to
saturate, throttling the system performance. The system
bottleneck indicates an imbalance in the use of resources,
which needs to be resolved in order to fully utilize all the

resources in the system. Hence in the BA, problem identi-
fication corresponds to Bottlenecks Identification which de-
termines the Sw/Hw bottleneck present in the system by
looking at the performance utilization of software compo-
nents and hardware platforms. The devising solution step
corresponds to Bottleneck Removal that returns the list of
Bottlenecks-based Sw/Hw refactoring actions to be applied
to the initial system model in order to improve the perfor-
mance. Examples of such refactoring actions are setting the
multi-threading configuration for software components and
the multi-processor configuration for hardware platforms, or
re-allocating the work among the system resources [29].

The PA, instead, aims to detect and remove performance
antipatterns introduced in the software system during the
design. A performance antipattern [25] identifies a prob-
lem, i.e. a bad design practice that negatively a↵ects the
software performance, and a solution, i.e. a set of refac-
toring actions that should be applied to remove it. Hence
in the PA, problems identification corresponds to Antipat-
terns Detection step that, looking at the software models
and the performance indices, identifies a list of Antipattern
Instances. The Antipatterns Solution step suggests a set of
Antipatterns-based Sw/Hw refactoring actions to obtain a
new software system with improved performance. In PA,
refactoring actions span from redesign software components
in terms of internal behavior or their external communica-
tion, set multi-treading configuration for software compo-
nents, to redeployment strategies. Note that the solution of
one or more antipatterns does not a priori guarantee per-
formance improvements, because the entire process is based
on heuristic evaluations [9]. However, an antipattern-based
refactoring action is basically a correctness-preserving trans-
formation that aims at improving the quality of the software.

In this paper, we introduce an analysis process to explore
possible synergies between PA and BA. Such process in-
cludes the following options:

1. Execute BA and PA separately. We compare their out-
put results in terms of what are the refactoring actions
the two techniques propose and the performance im-
provements we get by applying such actions. In this
way it is possible to provide evidence of the relative
strengths and weaknesses of the two methods.

2. Execute BA and PA alternatively. We merge the two
techniques: (i) if BA is executed first, the system bot-
tleneck will be alleviated, reaching a system configura-
tion where there is no obvious imbalance in the usage of
resources; however it is possible that the performance
requirements are still not fulfilled, hence PA may be
useful to further improve the output of BA; (ii) if PA
is executed first, there are no bad design practices in
the software system, however it may happen that it
still includes sw/hw bottlenecks that throttle the sys-
tem performance, hence BA may be useful to further
improve the output of PA.

3. Reduce the PA solution space by means of BA. We
use the output of BA bottleneck identification step to
reduce the PA solution space by pruning the graph of
design alternatives (i.e., solve the antipatterns that in-
volve bottlenecks exclusively) thus to quickly converge
towards a refactored software model that, even if it
is not the optimal one, shows better performance and
possibly satisfies the stated requirements.

77

The goal of our synergy analysis process is to strengthen
the Results Interpretation & Feedback Generation step (see
Figure 1) by increasing the performance improvement capa-
bilities. In particular, the combination of BA and PA o↵ers
a powerful support to software engineers, since it provides a
broader sets of design alternatives that may include specific
solutions leading to better performance results.

4. CASE STUDY
The proposed approach is illustrated by means of a case

study from the e-commerce domain, which has been modeled
using UML [1]. Figure 3 shows the Use Case Diagram of the
E-Commerce System (ECS). It is a web-based system that
manages business data related to books and movies: guest
users can browse catalogues and, at the same time, customer
users can make selections of items that need to be purchased.

Software model annotations have been defined to support
the performance analysis. Figure 3 uses MARTE [18] an-
notations to specify the system workload. In particular: (i)
a closed workload has been defined for the BrowseCatalog
service, for which the number of users is set to 98 with an
average thinking time of 3 seconds; (ii) a closed workload
has been defined for the MakePurchase service, with a pop-
ulation of 2 users with an average thinking time of 5 seconds.

Figure 3: ECS- Use Case Diagram.

Figure 5: ECS- Deployment Diagram.

The UML Component Diagram shown in Figure 4 de-
scribes the software components and their dependencies.
guestApp and customerApp components are connected to
the webServer component that forwards users’ requests to
the dispatcher component. This latter component forwards
the requests related to the browseCatalog service towards the
libraryController whereas requests related to the makePur-
chase service are handled by the saleController component.

bookLibrary and movieLibrary components manage books
and movies, respectively, by invoking the catalogEngine com-
ponent that retrieves information from the dbProducts com-
ponent. The purchases are in charge of the productController
that communicates with dbCustomers and dbProducts to re-
trieve the information to successfully accomplish the pur-
chase. The UML Deployment Diagram depicted in Figure 5
shows the deployment of software artifacts onto hardware
devices (i.e., webServerNode, dispatcherNode, libraryNode,
and DatabaseNode) communicating through a Local Area
Network (LAN).

Note that we consider as starting ECS configuration for
the analysis (called base case in the rest of the paper) the
ECS case with single-threaded hardware and multi-threaded
software (30 threads for the WebServer software component,
and 20 threads for all the other software components, except
the dispatcher). This configuration comes from the BA eval-
uation of ECS and it represents a necessary premise to the
following analysis since it provides an appropriate concur-
rency level thus to avoid undesirable situations of software
bottleneck, where all hardware resources are under-utilized.
We considered that a more realistic operating point of the
system would allow for full utilization of at least one hard-
ware resource. Please refer to Section 4.1 for more details
on the BA evaluation.

The performance requirements imposed on the Browse-
Catalog and MakePurchase services are: (ii) the average re-
sponse time of the BrowseCatalog service must not exceed
4 seconds. (ii) the average response time of the MakePur-
chase service must not exceed 8 seconds. Both requirements
need to be fulfilled under the closed workloads defined for
the guest and customer users, respectively.

The performance analysis has been conducted by trans-
forming the software model into a Layered Queueing Net-
work (LQN) model [28], shown in Figure 6, and solving it
with the LQN Solver tool [10].

Requirement Required Value Predicted Value

RT(BrowseCatalog) 4 sec 7.73 sec

RT(MakePurchase) 8 sec 91.99 sec

Table 1: Response time of the ECS software model.

Table 1 reports the response times of the ECS base case
model. First column reports the required index, second col-
umn the required value, and third column the predicted
value (obtained from the LQN analysis). As it can be no-
ticed, both services have response times exceeding the re-
quired ones, hence a deep analysis must be conducted to
identify performance flaws and to devise solutions improv-
ing such indices. In the following we first apply the bot-
tleneck (see Section 4.1) and the performance antipatterns
(see Section 4.2) analysis techniques, then we combine these
techniques in Section 4.3 to explore their synergies.

4.1 Bottleneck Analysis
The performance analysis results of the ECS system for

the default configuration of single-threaded software compo-
nents and hardware platforms shows a strong case of soft-
ware bottleneck under the defined closed workload. An un-
desirable e↵ect of software bottleneck is that none of the
hardware resources gets to be utilized at full capacity, thus
wasting costly system resources. Software bottleneck can be
resolved by increasing the number of threads of the sw com-
ponents, which raises the concurrency level in the software

78

Figure 4: ECS- Component Diagram.

and pushes more workload to the hardware. A first set of ex-
periments showed that a system configuration of 30-thread
instances for the webServer component and 20-thread the
remaining software components (with the exception of the
dispatcher, which is single-threaded) moves the system bot-
tleneck from software to hardware. The response time for
the two classes of users (with 98 and 2 users, respectively)
are 7.73 sec for browseCatalog and 91.98 sec for makePur-
chase. Since multi-threading the software to avoid wasting
the hardware resources is often used in practice, we consider
the ECS configuration with multi-threaded software compo-
nents (with 30 and 20 threads, as described above) running
on single-instance hardware processors as the base case for
applying the BA and PA analysis.

The next BA experiments aim to remove the hardware
bottleneck from the base case. LQN results show that the
libraryNode and databaseNode hardware platforms are both
saturated (i.e., with utilizations of 0.98 and 0.92 respec-
tively).

A commonly adopted solution for removing this type of
hardware bottleneck is to increase the number of instances
for the saturated processors. Therefore, we repeat the exper-
iment by increasing the instances of those processors from 1
to 4 and observe their utilization. Figure 7 reports the uti-
lization of the processors under study, which decreases when
the number of processor instances increases. Such refactor-
ing actions imply faster response time for both services as
shown in Figure 8. Figure 7 reports the utilization of li-
braryNode and databaseNode processors, which is decreas-
ing when the number of processor instances increases. Such
refactoring actions have as e↵ect a faster response time for
both services as shown in Figure 8. In particular, for the case
of 4 processor instances, the response times of the two classes
has improved from 7.73 to 3.76 sec. for BrowseCatolog ser-
vice, and from 91.99 to 30.37 sec. for MakePurchase service.
Actually, the hardware bottleneck has been removed already
with 3 processor instances, but since 4-core processors are
very common, we select 4 as the suggested solution.

4.2 Performance Antipatterns
Table 2 reports the output of the antipatterns detection

[8]: six instances of di↵erent antipatterns have been found,
i.e., Circuitous Treasure Hunt (CTH), Concurrent Process-
ing Systems (CPS), Blob, Extensive Processing (EP), Empty
Semi Trucks (EST). For example, the CTH antipattern oc-
curs since the saleController component needs to invoke the
dbCustomers database component several times before pro-
viding the user Login service.

Antipattern Problem

CTH The saleController component needs to invoke

the dbCustomers database component several

times before providing the user Login service.

CPS
x

The databaseNode hardware platform is much

more utilized than dispatcherNode.

BLOB The libraryController component performs most

of the work and an excessive number of messages

are exchanged with bookLibrary and movieLi-

brary components.

EP The catalogEngine component requires extensive

processing to manageCatalogs in comparison to

manageBookCatalog and manageMovieCatalog

separately.

EST The saleController component needs to invoke

the productController component several times

before providing the checkProductQuality ser-

vice.

CPS
y

The libraryNode hardware platform is much more

utilized than dispatcherNode.

Table 2: ECS - detection of antipatterns.

Table 3 reports the refactoring actions we applied to solve
the detected performance antipatterns. For example, the
CTH antipattern is solved by refactoring the communication
between saleController and dbCustomers thus to avoid an
excessive number of messages.

Note that the detected antipatterns a↵ect di↵erent soft-
ware model entities hence their solution can be incremen-
tally combined without incurring in conflicting and diver-
gent refactorings.

79

Users1 {98}

users1
[3]

(1) (1)

Users2 {2}

users2
[5]

(1) (1)

Net1 {inf}

Entrynet1
[0.02]

WebServer {$threads1}

Browse
[0.03]

(0.4) (0.2) (0.4)

(1)

MakePurchase
[0.01]

(1) (1) (1)

Net2 {inf}

Entrynet2
[0.02]

Dispatcher

Dispatch
[0.01]

SaleController {$threads2}

CheckProd
[0.01]

(1) (8)

UserLogin
[0.01]

(15)

(10) (5)

LibController {$threads2}

BookLib
[0.05]

(0.25) (0.25)

BothLib
[0.08]

(1)

MovieLib
[0.05]

(0.25) (0.25)

ProdAvai
[0.01]

(0.95) (0.95) (0.95) (0.95)

ProductController {$threads2}

ProdQual
[0.01]

(1.6) (0.8) (1.6) (4)

DBcustomers {$threads2}

DBcred
[0.03]

(1)

DBprom
[0.03]

(0.5)

BookLibrary {$threads2}

GetBookAvai
[0.01]

(0.5)

GetBookStat
[0.01]

(0.5)

SetBookAvai
[0.02]

(1)

SetBookStat
[0.02]

(1)

MovieLibrary {$threads2}

GetMovieAvai
[0.01]

(0.5)

GetMovieStat
[0.01]

(0.5)

SetMovieAvai
[0.02]

(1)

SetMovieStat
[0.02]

(1)

CatEngine {$threads2}

BookCat
[0.01]

(0.5) (0.5)

BothCat
[0.08]

(2) (2)

MovieCat
[0.01]

(0.5) (0.5)

LibraryP
{$mp}

DBproducts {$threads2}

DBbook
[0.03]

(0.6)

DBboth
[0.06]

(0.8)

DBmovie
[0.03]

(0.6)

Net3 {inf}

Entrynet3
[0.002]

DBdisk {$threads2}

accessP
[0.1]

DatabaseP
{$mdp}

Figure 6: ECS- performance model.

Figure 7: ECS- Utilization of hardware platforms

while increasing the number of processor instances.

Figure 8: ECS- Response time of software services

while increasing the number of processor instances.

Several iterations can be conducted to find the software
model that best fits the performance requirements, since sev-
eral antipatterns have been detected in the software model.
At each iteration, the refactoring actions suggested by one
antipattern produce a new software system design that re-
places the analyzed one. Then, the detection and solution
approach can be iteratively applied to all newly generated
candidates to further improve the system.

Figure 9 reports the output of the antipatterns-based ap-
proach [9]. It is a graph where each node represents a de-
sign alternative and each arc is labeled with the name of
the antipattern that has been applied to refactor the soft-
ware model (see more details in Table 3). The ECS base
case is labeled 0 and represents the root of the graph. The
remaining nodes are labeled by means of digits representing
the removed antipatterns, following the antipattern-to-digit
mapping indicated by the legend in the bottom of Figure
9. For example, the node labeled 2.3.5 represents the ECS
system where CPS

x

(i.e., 2), BLOB (i.e., 3) and EST (i.e.,
5) antipatterns have been solved. We recall that the solu-
tion order of antipatterns is invariant since the detected an-
tipatterns a↵ect di↵erent software model entities, hence the
node 2.3.5 is equivalent to all nodes represented by other
permutations of the three digits (e.g., node 2.5.3) that we
intentionally hide in Figure 9.

Each node reports the response time of BrowseCatalog
andMakePurchase services that for sake of figure readability
we name rBC and rMP, respectively. Note that the solution
of one or more antipatterns does not guarantee performance
improvements in advance: the entire process is based on

80

Antipattern Solution

CTH The communication between saleController and

dbCustomers has been refactored to avoid an ex-

cessive number of messages.

CPS
x

The dbCustomers component has been deployed

from databaseNode to dispatcherNode in order to

optimize the usage of available hardware resources.

BLOB The communication between libraryController and

bookLibrary movieLibrary components has been

refactored by delegating some work to these latter

components.

EP The extensive processing has been delegated to a

mirrored component of catalogEngine, called cata-

logEngineMirror, whereas the processing of man-

ageBookCatalog and manageMovieCatalog com-

ponents is still handled by the catalogEngine.

EST The communication between saleController and

productController has been refactored to avoid an

excessive number of messages.

CPS
y

The saleController component has been deployed

from libraryNode to dispatcherNode in order to op-

timize the usage of available hardware resources.

Table 3: ECS - solution of antipatterns.

heuristics evaluations. For example, if we compare the node
labeled 1.2 with the node labeled 1.2.3 we can notice that
this latter node improves the first index (i.e. the response
time of the BrowseCatalog service varies from 7.75 to 6.54
seconds) but it makes worse the other index (i.e. the re-
sponse time of the MakePurchase service varies from 68.39
to 80.63 seconds).

To compare di↵erent design alternatives and to identify
the best one, we weight them using the metrics:

rBC ⇤ p1 + rMP ⇤ p2 (1)

where p1 and p2 represents the priority of rBC and rMP
requirements respectively.

In our case study they are equally weighted to 0.5, and the
best design alternative corresponds to the lowest weight that
is achieved with the node labeled 1.2.3.5.6 where RT(Browse-
Catalog)= 6.4 sec and RT(MakePurchase)= 19.58 sec.

The node labeled 1.2.3.5.6 corresponds to a design alter-
native where CTH (i.e., 1), CPS

x

(i.e., 2), BLOB (i.e., 3),
EST (i.e., 5), and CPS

y

(i.e., 6) antipatterns have been
solved. PA gives as output a refactored software model that
includes the following refactoring actions:

1. the communication between saleController and dbCus-
tomers has been refactored by avoiding an excessive
exchange of messages and moving the computation
from saleController to dbCustomers. In particular, the
Login service was performed by invoking 10+5 times
the dbCustomers component. In the refactoring the
computation is moved to the dbCustomers component,
hence the Login service is performed by invoking the
dbCustomers once to check users credentials (whose
demand increases from 0.03 to 0.09) and once to verify
customer promotions (whose demand increases from
0.03 to 0.06);

2. the dbCustomers component has been redeployed from
databaseNode to dispatcherNode;

3. the communication between libraryController and book-
Library movieLibrary components has been refactored.
In particular, the BrowseCatalog service was performed
by concentrating the business logic in the libraryCon-
troller and invoking the get and set operations only
of bookLibrary and movieLibrary. In the refactoring
these latter components have been redesigned and the

computation is moved from libraryController (whose
demand decreases from 0.05 to 0.02) to bookLibrary
and movieLibrary (whose demands increase from 0.03
to 0.045);

4. the communication between saleController and pro-
ductController has been refactored, as shown in Fig-
ure 10. In particular, the checkProductQuality service
was performed by invoking 8 times the productCon-
troller component. In the refactoring the computation
is moved to this latter component, hence the service is
performed by invoking once such component to check
the quality of products (whose demand increases from
0.01 to 0.03);

5. the saleController component has been redeployed from
libraryNode to dispatcherNode.

All these refactoring actions have been applied on the
ECS initial system. Figure 11 reports the LQN performance
model corresponding to the refactored software model, where
all the performance parameters (i.e., tasks and processors
information as well as the frequency of calling entries) have
been visualized.

4.3 Identifying synergies between BA and PA
In this Section, we first analyze the results of BA and

PA executed separately on ECS in order to point out the
strengthens and weakness of both techniques (see Section
4.3.1). Then, being guided by the ECS experimentation,
we discuss the synergies between BA and PA, that try to
overcome the identified limits. In particular, we envisage
two types of synergies: (i) combination of the two techniques,
i.e., one technique is executed on the results obtained by the
other one (see Section 4.3.2); (ii) pruning the PA graph via
BA, i.e., the results of BA are used to reduce the PA solution
space to quickly converge to a design alternative with better
performance (see Section 4.3.3).

4.3.1 Execute BA and PA separately

BA provides a software model candidate that greatly im-
proves the response time of the BrowseCatalog service (from
7.73 sec to 3.76 sec satisfying the corresponding require-
ment) but it does not fully benefit the response time of the
MakePurchase service (from 91.99 sec to 30.37 sec). PA pro-
vides a software model candidate that slightly improves the
response time of the BrowseCatalog service (from 7.73 sec
to 6.4 sec) but it provides more benefit for the response time
of the MakePurchase service (from 91.99 sec to 19.58 sec).

BA gives as output a refactored software model where
the instances of libraryNode and databaseNode have been
increased from 1 to 4. Such refactoring action suggests to
potentiate two processors whose cost is a↵ordable today.

PA gives as output a refactored software model where
two main refactoring actions have been performed: (i) rede-
ployment of software components, in fact the dbCustomers
component has been redeployed from databaseNode to dis-
patcherNode, and the saleController component has been re-
deployed from libraryNode to dispatcherNode; (ii) software
components and communication redesign to reduce commu-
nication latency between saleController and dbCustomers,
between libraryController and bookLibrary andmovieLibrary,
between saleController and productController. While the
cost of the first type of refactoring is quite low, the sec-
ond one could be very expensive since it involves human
work. Of course, the amount of these expenses depend on

81

0
rBC=7.73 sec

rMP=91.99 sec

1
rBC=7.74

rMP=69.87

CTH

CPSx

1.4
rBC= 7.71

rMP= 69.31

1.5
rBC= 7.82

rMP= 25.16

1.6
rBC= 7.75

rMP= 66.39

1.2
 rBC=7.75
rMP=68.39

EST

EP

CPSy

BLOB1.3
rBC=6.54

rMP=83.57

1.2.3
rBC=6.54

rMP=80.63

1.2.4
rBC= 7.71

rMP= 67.85

1.2.5
rBC= 7.82

rMP= 24.09

1.2.6
 rBC=7.75
rMP=64.84

1.3.4
rBC=6.46

rMP= 85.67

1.3.5
rBC=6.41

rMP=23.05

1.3.6
 rBC=6.55
rMP=82.43

1.4.5
rBC=7.78

rMP=25.07

1.4.6
 rBC=7.71
rMP=65.79

1.5.6
 rBC=7.83
rMP=22.86

1.2.3.4
rBC=6.45

rMP=82.68

1.2.3.5
rBC=6.39

rMP=20.13

1.2.3.6
 rBC=6.55
rMP=79.49

1.2.4.5
rBC=7.78

rMP=24.02

1.2.4.6
 rBC=7.71
rMP=64.27

1.2.5.6
 rBC=7.82
rMP=21.73

1.3.4.5
rBC=6.35

rMP=23.13

1.3.4.6
rBC=6.46

rMP=84.82

1.3.5.6
rBC=6.43
rMP=22.5

1.4.5.6
rBC=7.78

rMP=27.92

1.2.3.4.5
rBC=6.32

rMP=20.16

1.2.3.4.6
rBC=6.46

rMP=81.83

1.3.4.5.6
rBC=6.36

rMP=22.61

1.2.3.5.6
rBC=6.4

rMP=19.58

1.2.4.5.6
rBC=7.78

rMP=21.67

1.2.3.4.5.6
rBC=6.33

rMP=19.65

2
rBC=7.74

rMP=81.78

3
rBC=6.53

rMP=115.35

4
rBC=7.68

rMP=91.18

5
rBC=7.77

rMP=46.15

6
rBC=7.74

rMP=83.24

2.3
rBC=6.61

rMP=93.53

3.6
rBC=6.55

rMP=112.62

3.4
rBC=6.47

rMP=118.01

3.5
rBC=6.47

rMP=55.05

2.4
rBC= 7.7

rMP= 81.16

2.5
rBC= 7.81

rMP= 36.53

2.6
 rBC=7.77
rMP=72.82

2.3.4
rBC=6.53

rMP=95.95

2.3.5
rBC=6.66

rMP=32.88

2.3.6
 rBC=6.63
rMP=91

2.4.6
rBC=7.72

rMP=71.12

2.4.5
rBC=7.76

rMP=36.39

2.5.6
rBC=7.85

rMP= 28.08

3.4.5
rBC=6.4

rMP=55.78

3.4.6
rBC=6.47

rMP=115.63

3.5.6
rBC=6.49

rMP=52.88

4.5
rBC=7.73

rMP=45.88

4.6
rBC=7.7

rMP=82.38

5.6
rBC=7.8

rMP=38.41

4.5.6
rBC=7.76
rMP=38.1

2.3.4.5
rBC=6.58
rMP=33.2

2.3.4.6
rBC=6.54

rMP=93.69

2.3.5.6
rBC=6.71
rMP=31

2.4.5.6
rBC=7.8

rMP=27.92

2.3.4.5.6
rBC=6.63

rMP=31.31

3.4.5.6
rBC=6.42
rMP=53.7

BLOB

EP

EP

EP

EP

EP

BLOB

BLOB

CPSx

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

EST

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

CPSy

EP

EP

1- CTH 2- CPSx 3-BLOB 4- EP 5- EST 6- CPSy

Pruning
Via BA

Legend

Figure 9: ECS - reduce the PA solution space by means of BA.

82

(a) An excerpt of ECS software model.

(b) An excerpt of ECS refactored software model.

Figure 10: ECS- solving the EST performance an-

tipattern.

Users1 {98}

users1
[3]

(1) (1)

Users2 {2}

users2
[5]

(1) (1)

Net1 {inf}

Entrynet1
[0.02]

WebServer {$threads1}

Browse
[0.03]

(0.4) (0.2) (0.4)

(1)

MakePurchase
[0.01]

(1) (1) (1)

Net2 {inf}

Entrynet2
[0.02]

Dispatcher

Dispatch
[0.01]

SaleController {$threads2}

CheckProd
[0.01]

(1) (1)

(1)

UserLogin
[0.01]

(2)

(1) (1)

LibController {$threads2}

BookLib
[0.02]

(0.25)

BothLib
[0.08]

(1)

MovieLib
[0.02]

(0.25)

ProdAvai
[0.01]

(0.95) (0.95)

ProductController {$threads2}

ProdQual
[0.03]

(0.8) (1.6) (1.6) (4)

DBcustomers {$threads2}

DBcred
[0.09]

(1)

(1)

DBprom
[0.06]

(0.5)

(0.5)

BookLibrary {$threads2}

ReadBinfo
[0.015]

(0.5)

UpdateBinfo
[0.03]

(1)

MovieLibrary {$threads2}

ReadMinfo
[0.015]

(0.5)

UpdateMinfo
[0.03]

(1)

DispatchP

CatEngine {$threads2}

BothCat
[0.08]

(2) (2)

BookCat
[0.01]

(0.5) (0.5)

MovieCat
[0.01]

(0.5) (0.5)

LibraryP
DBproducts {$threads2}

DBboth
[0.06]

(0.8)

DBbook
[0.03]

(0.6)

DBmovie
[0.03]

(0.6)

Net3 {inf}

Entrynet3
[0.002]

DBdisk {$threads2}

accessP
[0.1]

DatabaseP

Figure 11: ECS - refactored performance model.

83

the complexity of the software system, on the complexity of
the changes and on impact of them on the whole system.

To compare the goodness of the PA and BA suggested de-
sign alternatives, we weight the design alternatives by using
the metrics (1) introduced in Section 4.2, where p1 and p2
are equally set to 0.5. Thus, the ECS base case is weighted
49.86, whereas the ECS after BA is weighted 17.06 and ECS
after PA is weighted 12.99. The benefit of these techniques
w.r.t. performance improvements is estimated by compar-
ing the percentage of improvement achieved in this weighted
sum, hence BA brings a benefit of 65.77% whereas PA brings
a benefit of 73.95%. Even if BA allows to satisfy one re-
quirement, it performs slightly worse while considering the
combination of both requirements. However, the refactor-
ing actions suggested by BA are less expensive than the
ones supported by PA, since the latter requires the redesign
of several software components that may involve expensive
human re-work.

As final consideration, both techniques in isolation fail to
suggest an alternative satisfying the performance require-
ments.

4.3.2 Execute BA and PA alternatively

Figure 12 reports the results of executing BA and PA
alternatively. In the figure, nodes represent design alterna-
tives with the corresponding response time of both services,
while arcs are labeled by the re-factoring actions executed
to obtain the reaching nodes. The root of the graph is the
ECS base case.

If we first execute BA and then PA (the left-hand path)
we get a software model candidate that greatly improves
the response time of the BrowseCatalog service (from 7.73
sec to 3.83 sec) but it does not fully benefit the response
time of the MakePurchase service (from 91.99 sec to 24.88
sec). The suggested design alternative is the one described in
Section 4.1 where only CPS

y

antipattern has been detected
and solved, redeploying thesaleController component from
libraryNode to dispatcherNode.

On the contrary, if we first execute PA and then BA (the
right-hand path of Figure 12) we get a software model candi-
date that greatly improves the response time of the Browse-
Catalog service (from 7.73 sec to 3.33 sec) and the response
time of the MakePurchase service (from 91.99 sec to 6.56
sec), and that, indeed, fulfills both performance require-
ments (as indicated by the shaded box of Figure 12). The
suggested design alternative is the one described in Section
4.2 where libraryNode and databaseNode are 4-core proces-
sors each.

Similarly to the estimation done to compare BA and PA
separately, ECS after ”BA+PA” is weighted with 14.35, and
ECS after ”PA+BA” is weighted with 4.94. The benefit
of executing these techniques alternatively is estimated by
comparing the percentage of improvement achieved in this
weighted sum, hence BA+PA brings a benefit of 71.21%
whereas PA+BA brings a benefit of 90.08% with respect to
the initial ECS weighted with 49.86.

4.3.3 Reduce the PA solution space by means of BA

Another way to exploit the synergy between BA and PA
is to reduce the PA solution space by means of BA, i.e., by
pruning the graph of design alternatives using the knowledge
coming from BA. The goal is to quickly get a ”good enough”
design alternative without building the whole graph of de-

Figure 12: ECS- performance indices while execut-

ing BA and PA alternatively.

sign alternatives. Of course, the strategy is an heuristics
that might not bring to the best design alternative PA can
identify, but towards an alternative that, even if it is not the
optimal one, shows better performance and possibly satisfies
the stated performance requirements.

The pruning strategy we device suggests to keep all the
nodes (of the alternative designs graph) obtained by remov-
ing antipatterns instances on hardware bottlenecks, and to
discard all the others. In particular, we here consider hard-
ware bottlenecks all the devices showing an utilization higher
than 0.8.

In Figure 9 the result of the pruning strategy on the ECS
case study is shown by indicating with the grey nodes the
design alternatives we keep. The devised strategy allows to
prune 24 nodes over 63 design alternatives the PA process
builds for the ECS system (see Section 4.2 for more details),
reaching the 38.1% percentage of pruning. Note that in our
case study the BA heuristics allows to reach the optimal PA
alternative, however this is not guaranteed in general and
we intend to investigate this issue in the near future.

5. DISCUSSION
In this Section we discuss the lessons learned from the

experimentation as well as the open issues raised by the
approach.
Limitations of bottleneck analysis. BA is a technique
that mitigates the bottleneck and balances the usage of re-
sources. Once this goal is reached, BA cannot further help
to improve performance, then PA should be used to get more
insights on how to further improve the system performance.
In order to better understand the ECS base case charac-
teristics, we conducted a performance analysis without con-
tention. The analysis reports that the lower bound for the
response times of the BrowseCatalog and MakePurchase ser-
vices are 3.20 sec and 12.70 sec, respectively. Again, the
response time of MakePurchase service is far from the per-
formance requirement (i.e. 8 sec), thus demonstrating that
even in case of the best option (i.e., no contention), the sys-
tem fails to satisfy the requirements. In order to improve it
further, we need to change the design, e.g., by introducing
some concurrency in the execution path ofMakePurchase re-
quests. This cannot be done with BA, whereas PA provides

84

more insights on possible refactoring actions that conduct
to a better design. By detecting and removing the perfor-
mance antipatterns we are able to redesign the system and,
in our case study, we experience the best performance when
merging the two analysis techniques. Indeed, only exploiting
together BA and PA we reach an ECS design that satisfies
both response time requirements.
Limitations of performance antipatterns. Our formal-
ization of performance antipatterns [8] is based on a set of
thresholds that, if not properly set, may hide bad design.
Hence, the threshold tuning is a di�cult task that may af-
fect the accuracy of antipattern detection. Moreover, in this
paper context the experimentation demonstrates that, if we
firstly execute the bottleneck analysis and the relative refac-
toring actions, several performance antipatterns are hidden,
as happened in ECS when PA is executed after BA (see Sec-
tion 4.3.2) and only CPS

y

has been detected and solved. In
fact, while the bottleneck analysis is aimed at keeping the
utilization of hardware devices and software tasks under cer-
tain thresholds, high utilization values are fundamental to
detect many performance antipatterns [8]. If we apply PA
detection on the system configuration provided by BA (i.e.,
the one discussed in Section 3), then most of the antipatterns
are not identified, due to their limited sw/hw utilization.
Complexity vs E↵ectiveness. Performance antipatterns
are very complex to detect because they are founded on
di↵erent characteristics of a software system, spanning from
static to behavioral to deployment, and they additionally in-
clude values of performance indices. However, this complex-
ity subsumes a wide variety of refactoring actions to express,
thus making this approach very powerful in the identifica-
tion of performance flaws and system refactoring. Hence,
the complexity is rewarded by expressiveness. As opposed,
bottleneck analysis is a well-assessed technique widely sup-
ported by a solid theory and sophisticated tools. Hence, the
detection of bottlenecks in performance models is not such
a complex task in general. The cost to pay to this reduced
complexity, as outlined above, is the limitation in expres-
siveness of repairing actions. BA is particularly powerful in
case of good system design when the performance problems
come from unbalanced load or under-estimated resources.
On the contrary, it cannot help in case the performance flaw
originates from software system development. PA, instead,
should be applied when performance problems come from
design choices and software system re-design is necessary. In
fact, it gives insight on what happens in the software model
and suggests solutions for modifying it. Our experimenta-
tion demonstrates that there are cases where an unsatisfied
requirement cannot be overcome by only adding hardware
resources, since there is a problem in software design. In
these cases, there is a point beyond which if we add more
hw/sw resources we do not gain better performance, or even
the performance worsen. For example, the ECS base case
with 4 processor instances has no more bottlenecks, but the
response time for MakePurchase is far from satisfying the
requirement. Summing up, it is preferable to execute BA
first and, in case of specific constraints on the resources or
in case of unsatisfactory requirements, to proceed with PA,
while taking into account that BA can hide key performance
antipatterns as happened in our experimentation.
Cost/E↵ort issues. PA costs derive to performance an-
tipattern detection and solution complexity, that is the coun-
terpart of their expressiveness and wide impact on the whole

system design. BA costs are instead more related to the
skills and experience of performance analysts. In our case,
we had to solve about 13 LQN models, while continuously
changing/tuning model parameters, before removing soft-
ware/hardware bottlenecks. Hence, we think that quanti-
fying the e↵ort required to apply BA, PA, or their combi-
nation is very di�cult since both techniques have several
limitations and (complexity, cost) issues cannot be avoided.
Such estimation has to take into account some factors, that
we intend to further investigate, such as: (i) the degree of
automation, (ii) the design/performance skills required to
achieve the design alternatives, (ii) the scalability in terms
of number of analysed performance models together with
their complexity and performance gain.
BA and PA synergies. The experimentations on ECS
show that several synergies can be exploited to improve per-
formance or to reduce the size of PA solution space. One
synergy consists in alternating PA and BA. The combined
usage of both techniques permits to make a step ahead, and
in particular the order PA before BA is the only strategy
that, on the ECS case study, conducts to a system design
that satisfies both performance requirements (see Section
4.3.2). This result cannot be reached either executing sep-
arately the two analysis techniques or BA before PA, and
it is justified by the fact that ECS base case su↵ers of bad
design that throttles its performance. A second synergy has
allowed us to define a heuristics based on BA that prunes the
PA design alternatives graph. In this case, the BA output
suggests, time by time, which antipattern instances have to
be resolved and which ones can be discarded. For example,
in ECS this heuristics has permitted to prune 38.1% of can-
didates (i.e., 39 LQN models have been solved over the 63
generated ones by PA), thus reaching the best design alter-
native of the whole graph by considerably reducing the costs
of the PA detection and solution steps. The reduction of the
PA solution space allows to speed-up the performance anal-
ysis. However, the duration of executing the performance
solvers in the BA and PA may significantly vary on the ba-
sis of other application-dependent parameters (e.g., number
of software and/or hardware resources) that indirectly a↵ect
the two analysis techniques.

6. CONCLUSION
This paper explores the synergies between Bottleneck Anal-

ysis and Performance Antipatterns techniques in the round-
trip Software Performance Engineering (SPE) process. In
order to identify strengths and weaknesses of both tech-
niques, they have been separately applied to a software sys-
tem in the e-commerce domain, and two types of synergies
have been envisaged and experimented. The combination of
these two techniques seems very promising, in fact we found
that executing first the performance antipatterns and then
the bottleneck analysis allowed to identify design alterna-
tives satisfying all the performance requirements.

As future work, we intend to apply our approach to other
case studies, possibly coming from real world systems. This
wider experimentation will allow us to deeply investigate the
e↵ectiveness of BA heuristics that reduce the PA solution
space, thus studying the scalability of our approach.

7. ACKNOWLEDGMENTS
This work was partially supported by the European O�ce

of Aerospace Research and Development (EOARD), Grant

85

Cooperative Agreement (Award no. FA8655-11-1-3055), and
the Natural Sciences and Engineering Research Council of
Canada (NSERC) through its Discovery Grant program.

8. REFERENCES
[1] UML 2.0 Superstructure Specification, OMG

document formal/05-07-04, 2005.
[2] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and

I. Meedeniya. Software architecture optimization
methods: A systematic literature review. IEEE Trans.
Software Eng., 39(5):658–683, 2013.

[3] D. Arcelli, V. Cortellessa, and D. Di Ruscio. Applying
model di↵erences to automate performance-driven
refactoring of software models. In European Workshop
on Computer Performance Engineering (EPEW),
pages 312–324, 2013.

[4] D. Arcelli, V. Cortellessa, and C. Trubiani.
Antipattern-based model refactoring for software
performance improvement. In International ACM
SIGSOFT conference on Quality of Software
Architectures (QoSA), pages 33–42, 2012.

[5] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Trans.
Software Eng., 30(5):295–310, 2004.

[6] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A
metamodel independent approach to di↵erence
representation. Journal of Object Technology,
6(9):165–185, 2007.

[7] V. Cortellessa, A. Di Marco, and P. Inverardi.
Model-Based Software Performance Analysis.
Springer, 2011.

[8] V. Cortellessa, A. Di Marco, and C. Trubiani. An
approach for modeling and detecting software
performance antipatterns based on first-order logics.
Journal of Software and Systems Modeling, 2012. DOI:
10.1007/s10270-012-0246-z.

[9] V. Cortellessa, A. Di Marco, and C. Trubiani.
Software performance antipatterns: Modeling and
analysis. In Formal Methods for Model-Driven
Engineering (SFM), pages 290–335, 2012.

[10] G. Franks, P. Maly, M. Woodside, D. C. Petriu,
A. Hubbard, and M. Mroz. Layered Queueing Network
Solver and Simulator, 2013.
[online]http://www.sce.carleton.ca/rads/lqns/LQNS-
UserMan-jan13.pdf.

[11] G. Franks, D. C. Petriu, C. M. Woodside, J. Xu, and
P. Tregunno. Layered bottlenecks and their mitigation.
In International Conference on the Quantitative
Evaluation of Systems (QEST), pages 103–114, 2006.

[12] M. Harman and L. Tratt. Pareto optimal search based
refactoring at the design level. In Conference on
Genetic and evolutionary computation (GECCO),
pages 1106–1113, 2007.

[13] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Perform. Eval., 67(8):634–658, 2010.

[14] N. Mani, D. C. Petriu, and C. M. Woodside. Studying
the impact of design patterns on the performance
analysis of service oriented architecture. In
EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 12–19, 2011.

[15] N. Mani, D. C. Petriu, and C. M. Woodside.
Propagation of incremental changes to performance
model due to soa design pattern application. In
ACM/SPEC International Conference on
Performance Engineering (ICPE), pages 89–100, 2013.

[16] A. Martens, H. Koziolek, S. Becker, and R. Reussner.
Automatically improve software architecture models
for performance, reliability, and cost using
evolutionary algorithms. In WOSP/SIPEW
International Conference on Performance
Engineering, pages 105–116, 2010.

[17] T. Mens and T. Tourwé. A survey of software
refactoring. IEEE Trans. Software Eng.,
30(2):126–139, 2004.

[18] Object Management Group (OMG). UML Profile for
MARTE, 2009. OMG Document formal/08-06-09.

[19] M. O’Kee↵e and M. ı́ Cinnéide. Search-based
refactoring for software maintenance. J. Syst. Softw.,
81(4):502–516, Apr. 2008.

[20] T. Parsons and J. Murphy. Detecting Performance
Antipatterns in Component Based Enterprise Systems.
Journal of Object Technology, 7(3):55–91, 2008.

[21] D. C. Petriu and H. Shen. Applying the UML
Performance Profile: Graph Grammar-Based
Derivation of LQN Models from UML Specifications.
In Computer Performance Evaluation / TOOLS,
pages 159–177, 2002.

[22] O. Seng, J. Stammel, and D. Burkhart. Search-based
determination of refactorings for improving the class
structure of object-oriented systems. In Conference on
Genetic and evolutionary computation (GECCO),
pages 1909–1916, 2006.

[23] C. U. Smith. Introduction to software performance
engineering: Origins and outstanding problems. In
Formal Methods for Performance Evaluation,
International School on Formal Methods for the
Design of Computer, Communication, and Software
Systems (SFM), pages 395–428, 2007.

[24] C. U. Smith and C. V. Millsap. Software performance
engineering for oracle applications: Measurements and
models. In International Computer Measurement
Group (CMG) Conference, pages 331–342, 2008.

[25] C. U. Smith and L. G. Williams. More new software
antipatterns: Even more ways to shoot yourself in the
foot. In International Computer Measurement Group
(CMG) Conference, pages 717–725, 2003.

[26] L. G. Williams and C. U. Smith. Software
performance engineering: A tutorial introduction. In
International Computer Measurement Group (CMG)
Conference, pages 387–398, 2007.

[27] C. M. Woodside, G. Franks, and D. C. Petriu. The
Future of Software Performance Engineering. In
International Workshop on the Future of Software
Engineering (FOSE), pages 171–187, 2007.

[28] M. Woodside, D. C. Petriu, J. Merseguer, D. B.
Petriu, and M. Alhaj. Transformation challenges: from
software models to performance models. Journal of
Software and Systems Modeling, 2013. accepted.

[29] J. Xu. Rule-based automatic software performance
diagnosis and improvement. Perform. Eval.,
67(8):585–611, 2010.

86

