
Efficient Optimization of Software Performance Models
via Parameter-Space Pruning

Mirco Tribastone
Electronics and Computer Science

University of Southampton, United Kingdom
m.tribastone@soton.ac.uk

ABSTRACT
When performance characteristics are taken into account in
a software design, models can be used to identify optimal
configurations of the system’s parameters. Unfortunately,
for realistic scenarios, the cost of the optimization is typ-
ically high, leading to computational difficulties in the ex-
ploration of large parameter spaces. This paper proposes an
approach to provably exact parameter-space pruning for a
class of models of large-scale software systems analyzed with
fluid techniques, efficient and scalable deterministic approxi-
mations of massively parallel stochastic models. We present
a result of monotonicity of fluid solutions with respect to
the model parameters, and employ it in the context of op-
timization programs with evolutionary algorithms by dis-
carding candidate configurations a priori, i.e., without ever
solving them, whenever they are proven to give lower fit-
ness than other configurations. An extensive numerical val-
idation shows that this approach yields an average twofold
runtime speed-up compared to a baseline optimization algo-
rithm that does not exploit monotonicity. Furthermore, we
find that the optimal configuration is within a few percent
from the true one obtained by stochastic simulation, whose
solution is however orders of magnitude more expensive.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies; D.2.8 [Software Engineering]:
Metrics—Performance measures

Keywords
Software performance engineering; capacity planning; fluid
approximations; queueing networks; monotone systems

1. INTRODUCTION
The evaluation of nonfunctional properties of software sys-

tems can be assisted by models. This is especially useful in
early stages of the development process, when executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2568088.2568090.

artifacts are not available but the designer wishes to ob-
tain estimates about the behavior of the system in order to
make more informed decisions about the architecture and
the implementation [15]. Motivated by the ever increasing
popularity of service-level agreements that concerns aspects
such as performance, reliability, and availability, much re-
search has gone into the integration of model-based software
performance engineering practices with traditional develop-
ment processes [9]. In this context, it is possible to identify
at least three main challenges:

i) Developing mechanisms to shield the software engineer
from the technical details of the underlying mathemat-
ical machinery used for the analysis.

ii) Guaranteeing that the model is a faithful representa-
tion of the real system throughout all the stages of the
development process.

iii) Providing accurate and efficient evaluation techniques
that scale well with increasing system sizes.

Challenge i) seems to be relatively well understood, owing to
the large body of research concerned with enriching software
models with suitable annotations for nonfunctional proper-
ties, the most notable case being the SPT/MARTE profiles
for the UML [27]. In this paper, we assume that ii) has been
also tackled—for instance by using techniques that continu-
ously learn the model parameters as done in [35]—and study
iii), with emphasis on models for software performance.

In a typical scenario, a performance model can be used
for capacity planning, i.e., for estimating the amount of re-
sources to be allocated in order to satisfy some required
quality of service, or, more in generally, for what-if analysis,
i.e., evaluating the impact of certain changes on the overall
system’s behavior. This introduces two orthogonal issues
about the scalability of such analyses.

The first issue is related to the effectiveness with which
a given instance is evaluated. Most models of software per-
formance are based on Markov chains, which are however
prone to the infamous problem of state-space explosion for
increasing populations of system components. To tackle this
problem, many approaches are available that consider exact
aggregations (e.g., [19]) or approximate analysis (e.g., [16])
in order to reduce the computational cost. In this paper
we make use of fluid techniques for the analysis. These are
based on ordinary differential equations (ODEs) as deter-
ministic approximations to the average path of a continuous-
time Markov chain (CTMC) that models a population pro-
cess. In such CTMC, the state descriptor gives the popu-
lations of entities that are in a particular local state. For

63



instance, in stochastic Petri nets the state lists the number
of tokens in each place of the net (e.g., [4]). In queueing
networks, the state may give the number of clients at each
station (e.g., [5, 13]). In stochastic process algebra, each
element of the state descriptor gives the copies of the com-
ponents that exhibit a distinct sequential behavior [33]. In
all cases, the crucial advantage of fluid techniques is that
the size of the ODE system is independent from the actual
population sizes, but is only dependent on the size of the
state descriptor.

A fluid model is computationally much more advantageous
than its stochastic CTMC counterpart, especially for large
populations. However, as with CTMC analysis, the solu-
tion is generally not available in a closed form and thus
it must be evaluated numerically. This implies that the re-
sults of a model with a given parameter configuration cannot
be reused for solving the same model with a different one.
Therefore, when fluid models are used for parameter-space
explorations each point must be evaluated anew. This is,
in essence, our second scalability issue: The analysis is in
general not scalable with the size of the parameter space.

This paper presents a result of foundational nature that
serves as the basis for tackling this very issue. Our purpose
is to exploit a property of monotonicity of certain perfor-
mance indices with respect to the model parameters. Given
two vectors of parameters ~v1 and ~v2, we study under which
conditions it is possible to prove that, for some partial order
“≤”, ~v1 ≤ ~v2 implies that φ(~v1) ≤ φ(~v2), where φ(·) is the
evaluation of the performance index for a given parametriza-
tion. This result can be readily applied. For example, when
exploring the parameter space for minimizing φ, if ~v1 ≤ ~v2
holds, φ(~v2) needs not be computed because it yields a prov-
ably larger index. Importantly, checking for the inequality
~v1 ≤ ~v2 comes at a negligible cost because it only compares
model parameters, whereas the evaluation of φ requires solv-
ing the model, which, as discussed, may become expensive.

We study monotonicity for fluid models of closed queue-
ing networks with arbitrary topologies, where stations serve
with a generalized processor sharing (GPS) discipline. The
reason for this choice is that GPS has been successfully pro-
posed to model the dynamics of complex software systems
in shared data centers and virtualized environments [14, 5,
6]. Thus, our approach is already usable for applications
of practical interest. In addition, as will be discussed in
more detail in Section 7, the fluid dynamics of GPS queueing
networks are structurally close to those of, e.g., stochastic
process algebra, stochastic Petri nets, and layered queueing
networks. Thus, the approach can be easily generalizable to
those techniques as well. The main theoretical contribution
of this paper is to prove that the solution of the fluid model
is monotone with respect to the client populations.

Armed with this result, we use it to improve the efficiency
of the exploration of large parameter spaces for optimiza-
tion purposes. We consider the problem of finding the best
tradeoff between performance (i.e., throughput) and cost for
a two-class GPS queueing network which is representative
of a canonical three-layered software architecture. Similarly
to [6], the network consists of a service station for each layer,
and a delay station that models the user workload. The
objective is to find the best workload mix using a genetic
algorithm (GA). This represents one of the possible con-
straint optimization techniques, which was chosen because
of its popularity in model-based software performance en-

gineering (e.g., [20, 2]). Our approach, however, can also
be used in conjunction with other search strategies such as
hill-climbing and simulated annealing, where frequent com-
parisons are made between points in the parameter space.

We show the effectiveness of our a-priori parameter-space
pruning by comparing the runtimes of a baseline GA where
monotonicity is not exploited against that of a tuned version
where genomes with provably worse fitness are immediately
discarded. The numerical results show an average twofold
speed-up. Furthermore, a comparison against the true opti-
mal configurations returned by evaluating GA with stochas-
tic simulation shows excellent accuracy across a wide range
of operating conditions for our example network.

Paper outline. We review related work in Section 2. In
an effort to make the paper self-contained, Section 3 gives
a concise account of the fluid technique used in this paper
and its relation with the CTMC that it approximates. Sec-
tion 4 defines the fluid model of a closed queueing network
with GPS service. Section 5 defines the optimization prob-
lem and introduces the notion of monotone ODE systems. It
then proves that our fluid GPS model does enjoy monotonic-
ity, and shows how to apply this result to the optimization.
Section 6 presents the numerical results for our case study of
a three-layered software system. Finally, Section 7 ends with
a discussion on the methodology presented in this paper and
outlines lines of future work.

2. RELATED WORK
There has been a considerable amount of research con-

cerned with the application of optimization techniques to
models of software systems. Whilst we refer to [3] for an ex-
haustive and up-to-date survey, in this section we focus on
approaches that are most closely related to the techniques
presented in this paper. In particular, we consider the liter-
ature that deals with the optimization of the parameters of
a model to trade-off between performance and cost. Much
effort has been devoted to the studying optimal selection of
components in service-based systems. In [12] this is stud-
ied by means of linear optimization. While the resulting
problem can be efficiently analyzed, the underlying model
is based on the crucial assumption of the absence queueing
delays, which is instead the main focus of this paper. Simi-
lar assumptions hold in frameworks that deal with optimal
service compositions, e.g., [34, 7].

The approach taken in [11] uses instead Markov chains
and probabilistic logics for formal specification of the quality
of service. Although it is possible to account for queueing
effects, the resulting problem would suffer from the curse of
dimensionality with increasing numbers of components.

More scalability for the analysis is offered by layered queue-
ing networks, solved by means of approximate mean value
analysis [16]. These models are featured in Litoiu et al., who
consider optimization for deployment in service-oriented sys-
tems, in [23], studying the optimization of the concurrency
levels in a distributed system, and in [22], for cloud environ-
ments. A similar analytic model is presented in [26], which
uses Menascé’s two-layered extended queueing network for
an optimization algorithm for service-oriented architectures.
While the use of extended queues is computationally ad-
vantageous with respect to other stochastic models for the
evaluation of a point in the parameter space, no results are

64



provided regarding a-priori pruning of entire regions with
provably lower cost, as is done in this paper.

Further reduction of the computational cost of the analy-
sis is achievable by considering simpler mathematical mod-
els. Marzolla and Mirandola identify a class of BPEL work-
flows for web-service compositions that can be modeled as a
single-class queueing network, for which they propose rapid
evaluation based on bounds on steady-state performance for
bottleneck identification [25]; however, an explicit optimiza-
tion problem is not formulated. In [10] a performance model
is presented for load balancing in service oriented architec-
tures based on an open queueing network with M/M/1 sta-
tions. While this allows for closed-form expressions of the
response time, the approach cannot be generalized to other
situations, in particular, when multiple classes of services are
to be considered. Instead, a multi-class queueing network for
a similar brokering scenario is presented in [8], where the
solution is based on operational analysis. However, unlike
our approach, the model cannot be generalized to arbitrary
topologies.

In conclusion to this section, our use of fluid techniques
offers a compromise between cost and model expressiveness,
since such techniques are able to incorporate queueing effects
due to contention in a scalable manner. In addition, for the
objective functions herein proposed, a-priori pruning of the
parameter space may be obtained, thereby further reducing
the computational burden of the solution of optimization
problems. From a theoretical viewpoint, the paper makes
a contribution to monotonicity properties of performance
models. Although these have been long understood in the
stochastic setting under certain conditions (see, e.g., [29]),
and assumed to hold in other cases (e.g., [23]), here they are
proven for fluid multi-class models.

3. PRELIMINARIES
The purpose of this section is to provide the necessary

background to fluid techniques. This will be assisted by a
trivial small example of a pure-delay two-station queueing
network, which will only be used to build intuition and to
illustrate all the notions introduced. The general model pre-
sented in Section 4, instead, will feature multiple classes of
clients, arbitrary topology, and contention for the processing
capacity of the servers.

Before proceeding, we fix some notation. As usual, N is
the set of natural numbers, including 0; Z is the set of inte-
gers whereas R denotes the set of real numbers. Scalars
are lowercase Roman letters, vectors have an arrow over
the symbol, whereas matrices are uppercase Roman letters.
When written in matrix notation, a system of ODEs is de-
noted by d

dt
~x(t) = G(~x(t)); alternatively, to ease layout,

when it is written in components the explicit dependence
on t is dropped (all our ODE systems are autonomous) and
Newton’s dot notation is used instead, therefore we write
ẋi = Gi(x1, . . . , xn), where x1, . . . , xn are scalars.

We begin by formally defining a population model.

Definition 1. A population model is defined by the fol-
lowing elements:

• A vector of n variables, denoted by ~x = (xi)1≤i≤n;

• A set of m interaction functions fj : Rn → R and

associated jump vectors ~lj ∈ Zn , for all 1 ≤ j ≤ m;

µ2µ1

Figure 1: A pure-delay two-station queueing net-
work.

• An initial condition ~x0 ∈ Nn.

Intuitively, ~x represents the system’s state whereas fj de-
scribe the system dynamics, i.e., fj(~x) describe the rate at
which the state changes due to the j-th function, which may
be interpreted as a force or interaction acting on the sys-
tem. The impact of the interaction on each state variable is
given by the jump vector. A negative (resp., positive) entry
indicates a decrease (resp., increase) of the corresponding
variable. Finally, ~x0 gives the initial state of the system.
Requiring a vector of natural numbers gives the intuition
behind the kinds of models considered in this paper, which
are population-based, i.e., each state variable describes the
evolution of a population of individuals of the same type,
as discussed. The non-negativity of ~x0 therefore amounts to
enforcing meaningfulness from a physical viewpoint.

Example 1 (Pure-delay network). Figure 1 shows
a simple tandem two-delay queueing network where a single
class of clients visits two stations in sequence, with rates µ1

and µ2, where µ1, µ2 > 0. The model consists of the state
vector ~x = (x1, x2), denoting the number of clients at each
station (the queue length), by the interaction functions f1
and f2, and by the jump vectors ~l1 and ~l2 defined as

f1(x1, x2) = µ1x1, ~l1 = (−1,+1),

f2(x1, x2) = µ2x2, ~l2 = (−1,+1).

The functions give the total rate of service at both stations,
which simply grows linearly with the queue length. The jumps
indicate that each transition moves one client from one queue
to another, cyclically. The model is completed by letting
~x0 = (N1, N2) be the initial population of clients.

A model of this kind can be used to describe a continuous-
time Markov chain (CTMC), which is typically called a
Markov population process to stress the fact that the state
descriptor denotes counts of individuals.

Definition 2 (Population process). For a popula-
tion model we define a CTMC {X(t), t ∈ R}, with state space
S and transition rates denoted by q(~r,~s), for all ~r,~s ∈ S and
~r 6= ~s, as follows.

1. Let X(0) = ~x0 and ~x0 ∈ S.

2. Then S is defined to be the smallest set such that if

~x ∈ S and fj(~x) > 0 then ~x+~lj ∈ S and

q(~x, ~x+~lj) =

m∑
j′=1,~lj′=

~lj

fj′(~x), 1 ≤ j ≤ m.

In our example, we have that ~x0 = (N1, N2) ∈ S; thus
~x′ = (N1 − 1, N2 + 1) ∈ S with q(~x0, ~x

′) = µ1N1 and

65



~x′′ = (N1 + 1, N2 − 1) ∈ S with q(~x0, ~x
′′) = µ2N2, and

so on. While in this simple case the cardinality of S is equal
to N1 +N2, in general it is known to depend on the norm of
~x0 exponentially at worst—this is an instance of the state-
space explosion problem. To tackle this, one can consider
the following deterministic approximation, the fluid approx-
imation (or fluid model).

Definition 3 (Fluid approximation). The fluid ap-
proximation of a population model is an initial value problem
with the following ODE system

d

dt
~x(t) = G(~x(t)), G(~x) =

n∑
j=1

~ljfj(~x),

and with initial condition ~x(0) = ~x0.

In components, the fluid approximation of our example is

d

dt
x1(t) = −µ1x1(t) + µ2x2(t),

d

dt
x2(t) = +µ1x1(t)− µ2x2(t),

with x1(0) = N1 and x2(0) = N2. This shows the scalability
of the fluid approximation: The ODE system size is inde-
pendent from the actual populations (which only affect the
initial conditions), and is only dependent on the length of
the state descriptor (which in turn only depends on the net-
work topology). In the remainder, we consider systems for
which the fluid approximation enjoys existence and unique-
ness of the ODE solution over some time interval [0, T ]. All
the examples herein proposed satisfy this property.

The ODE system can be interpreted as an estimate of the
average CTMC behavior because, by a suitable approxima-
tion, it can be shown that (e.g., [28])

d

dt
E[X(t)] ≈ G(E[X(t)]),

where E[·] denotes the expectation operator. For a class of
models, the relationship is mathematically stronger in that
the solution to the ODE is shown to be the asymptotic be-
havior of a suitable sequence of the associated population
processes [21]. For the purposes of the present paper, how-
ever, we need not be concerned with the distinction between
these two interpretations. Here it suffices to say that in gen-
eral, the larger the population sizes (hence, the larger the
CTMCs) the more accurate the approximation, with average
errors of only a few percent (e.g., [31, 32, 33]).

In the example, every initial condition will give rise to
ODE solutions that are nonnegative. This is what one would
expect from any model where populations are physically rel-
evant entities. We now provide a sufficient condition for
non-negativity of the ODE solution that can be checked by
inspection of the vector field of the fluid approximation.

Lemma 1 (Nonnegative fluid approximation). For
a population model, suppose that Gi(x) ≥ 0 for every 1 ≤
i ≤ n and for every x such that xi = 0 and xi′ 6=i ≥ 0. Then
it holds that

xi(t) ≥ 0 ,

for every i and any t > 0 where the solution is defined.

Proof. Suppose toward a contradiction that there exists
at least an i and a time t > 0 such that xi(t) < 0. By con-
tinuity, together with the non negativity of the initial con-
ditions, this would imply the existence of a time ti1 ∈ (0, t)
such that xi(t

i
1) = 0, xi(t) ≥ 0 for t < ti1 and ẋi(t

i
1) < 0. Let

tm , mini t
i
1, then xm(tm) = 0, ẋm(tm) < 0 and xi(t) ≥ 0

for any i and t ≤ tm, which contradicts the assumption
Gm(x) ≥ 0 for any x with xm = 0 and xi6=m ≥ 0.

4. GENERAL MODEL
We now consider a population model of a closed queueing

network with M + 1 stations, labelled by 0, 1, . . . , M , and
K classes, labelled by 1, . . . , K. Without loss of generality,
we shall assume that only station 0 is a delay station, where
clients do not contend for service. (An extension with an
arbitrary number of delay stations is straightforward.) This
is used to model the residence of clients outside the system
before successive arrivals. Let µk > 0 be the service rate
for the k-th class at the delay station. The remaining M
stations, instead, all serve with GPS discipline with total
capacity Di, 1 ≤ i ≤ M . Let wki > 0 be the weight (or
priority) for class k, i.e., how much of the total capacity
is proportionally assigned to each class requiring service at
station i; let λki > 0 be the service rate, respectively, for
class k at station i > 0. The routing of clients across the
network is described, as usual, by K matrices, denoted by
P k = (pkij)1≤i,j≤M such that pkij ≥ 0 and

∑
j p

k
ij = 1 for

all i. This implies that every client never leaves the system.
The state variables describe the queue length at station i for
each class k, and are denoted by xki , with 0 ≤ i ≤ M and
1 ≤ k ≤ K. The interaction functions are defined as follows:

fk0 (~x) = pk0jµkx
k
0 , ~lk0 = −1xk0 + 1xkj

,

fki (~x) = pkij
λkiw

k
i x

k
iDi∑K

l=1 w
l
ix
l
i

, ~lki = −1xki + 1xkj
, (1)

for all 1 ≤ k ≤ K and 1 ≤ i ≤ M , 0 ≤ j ≤ M , where 1xki
represents the vector of length ‖~x‖ of all zeros except at the
position for variable xki , where it is equal to 1.

The fluid approximation for a GPS queueing network is
given by

ẋk0 = −(1− pk00)µkx
k
0 +

M∑
j=1

pkj0
λkjw

k
j x

k
jDj∑K

l=1 w
l
jx
l
j

,

ẋki = −λ
k
iw

k
i x

k
iDi∑K

l=1 w
l
ix
l
i

+ pk0iµkx
k
0 +

M∑
j=1

pkji
λkjw

k
j x

k
jDj∑K

l=1 w
l
jx
l
j

,

(2)

for all 1 ≤ k ≤ K and 1 ≤ i ≤M .

Example 2. Let us consider a model with K = 2 classes
and, similarly to Example 1, a tandem queueing network,
i.e., M = 1, pk01 = pk10 = 1 for k = 1, 2. In this case, the

66



fluid approximation is given by:

ẋ10 = +
λ1
1w

1
1x

1
1D1

w1
1x

1
1 + w2

1x
2
1

− µ1x
1
0,

ẋ11 = − λ1
1w

1
1x

1
1D1

w1
1x

1
1 + w2

1x
2
1

+ µ1x
1
0,

ẋ20 = +
λ2
1w

2
1x

2
1D1

w1
1x

1
1 + w2

1x
2
1

− µ2x
2
0,

ẋ21 = − λ2
1w

2
1x

2
1D1

w1
1x

1
1 + w2

1x
2
1

+ µ2x
2
0.

With this representation, it is evident that the assumption
on closed workloads translates into a conservation-of-mass
property given by the fact that

d

dt
x10(t) +

d

dt
x11(t) = 0

and, similarly,

d

dt
x20(t) +

d

dt
x21(t) = 0.

This implies that

x10(t) + x11(t) = x10(0) + x11(0)

and

x20(t) + x21(t) = x20(0) + x21(0),

for all t for which the solution of the fluid approximation is
defined. In other words, the population of clients of each
class is constant with time, and is equal to the total initial
population. In general, the following proposition holds, by
inspection of (2).

Proposition 1. Any GPS queuing network model satis-
fies the following properties:

i) The fluid approximation is nonnegative.

ii) Let Nk > 0 denote the initial population of class k-

clients at time t = 0, i.e., Nk =
∑M
i=0 x

k
i (0). Then it

holds that

xkj (t) = Nk −
M∑
i=0
i6=j

xki (t), for all t. (3)

5. OPTIMIZATION
This section presents the main result of this paper. The

aim is to show that, when the parameters of a fluid model are
to be optimized, then it is possible to prune certain regions
of the parameter space which yield a provably higher cost.
This can be done a priori, without ever analyzing the model
in those regions. We show the applicability of this result to
an optimization problem solved with GA, which is formu-
lated in Section 5.1. Then, Section 5.2 discusses the result
of monotonicity, which is the fundamental property that is
exploited in our parameter-pruning approach. Finally, the
implications on the optimization problem are discussed in
Section 5.3.

5.1 Problem Formulation
We study the GPS model (1) with an optimization case

study that aims at maximizing throughput and minimizing

some operating cost. Whilst we focus on this problem in the
remainder of this paper, let us remark that other scenarios
are also possible. For instance, an analogous situation—by
virtue of the duality between system throughput and re-
sponse time by means of Little’s law [24]— may consider
response-time minimization and some revenue maximiza-
tion.

Following [32], throughput may be estimated as a reward
measure over the ODE solution. As an estimate of steady-
state throughput, in particular, we consider a sufficiently
large time point T where the solution is numerically close to
equilibrium; this can be done by verifying that the norm of
the ODE derivative at time T is less than a threshold.

The per-class throughput at equilibrium is given by

µk(1− pk00)xk0(T ),

which is the total rate at which clients move from station 0
to some other station i 6= 0 (since this is a delay station,
its throughput is proportional to the number of clients).
Operating costs, instead, are assumed to be a function of
the number of users (see [1] for a real case), denoted by
C(N1, . . . , NK). This leads to the the following objective
function to be minimized:

φ(~x) = −
K∑
k=1

µk(1− pk00)xk0(T ) + C(N1, . . . , NK) (4)

subject to the constraints

0 < Nk ≤ Uk, for all 1 ≤ k ≤ K. (5)

Therefore, this optimization program has client populations
as the decision variables, with upper bounds given by con-
stants Uk. This set-up may correspond to a practical situ-
ation where the modeler has no choice with respect to the
server capacity (for instance, when a third-party server farm
or cloud environment are used) and when the client demands
are known. Under these conditions, the modeler may be in-
terested in finding the workload mix, given by the per-class
client populations, that optimizes the system’s behavior.

5.2 Monotone Systems
At the basis of this technique is the notion of monotone

ODE systems, which is briefly overviewed in this subsection
in order to make the paper self-contained. The reader may
find a detailed treatment in [30] and references therein.

First, we define O to be an orthant of Rn, i.e., O = {~x ∈
Rn : (−1)eixi ≥ 0}, for ei ∈ {0, 1}. For any ~x, ~y ∈ Rn, we
write ~x ≤O ~y if and only if ~y − ~x ∈ O. Now, let us con-
sider an autonomous ODE system d

dt
~x(t) = G(~x(t)) defined

in R × X, with X ⊆ Rn an open and convex set and G a
differentiable function in X. We call such a system mono-
tone if, for any two initial conditions ~x(0) ≤O ~y(0), it holds
that the corresponding solutions, denoted by ~x(t) and ~y(t),
preserve the ordering, i.e., ~x(t) ≤O ~y(t), for all t for which
both solutions are defined. We will be concerned with the
case where O is the positive orthant of Rn, i.e., ei = 0 for
all 1 ≤ i ≤ n. Thus ~x(0) ≤O ~y(0) means xi(0) ≤ yi(0) for
all 1 ≤ i ≤ n. In the remainder of this paper, a comparison
between two vector shall always be intended in this sense.

The following result characterizes monotonicity with re-
spect to the Jacobian of G, denoted by DG(~x).

Proposition 2 (See Lemma 2.1 in [30]). Let G be a
function defined on an open and convex set of Rn where it

67



D1 D2 D3

p20

Figure 2: Queueing network model for the numerical
validation of Section 6.

is differentiable. The ODE system d
dt
~x = G(~x(t)) is said

to be monotone in the orthant O if and only if the matrix
PDG(~x)P has nonnegative off-diagonal elements for every
~x ∈ X, where P = diag((−1)e1 , . . . , (−1)en).

We are now ready to state the crucial proposition of this
paper.

Proposition 3 (Monotone GPS network). Let the
vector field of (2) be defined in the open and convex set such
that xki > 0 for all 1 ≤ k ≤ K and 0 ≤ i ≤ M . Then, it
holds that the ODE system (2) is monotone in the positive
orthant.

Proof. See Appendix.

5.3 Parameter-Space Pruning
Let ~x(0) and ~y(0) be two initial conditions for the fluid

approximation (2) in the feasible region determined by con-
straints (5), with ~x(0) ≤ ~y(0). Let ~x(t) and ~y(t) represent

the respective ODE solutions. Finally, let Nk
x =

∑M
i=0 x

k
i (0),

i.e., the total number of class-k clients in the system with
initial conditions ~x(0). (Nk

y is defined analogously.) The
above proposition yields that if ~x(0) ≤ ~y(0) then ~x(t) ≤ ~y(t)
for all t.

We now exploit this fact to reduce the computational cost
of the optimization program presented in Section 5.1. Let
us consider the objective function (4) and write

φ(~x)− φ(~y) = C(N1
x , . . . , N

K
x )− C(N1

y , . . . , N
K
y )

+ (1− pk00)

K∑
k=1

µky
k
0 (T )− µkxk0(T ).

Now, the second line of the equation is nonnegative because
the system is monotone. Thus, whenever the first summa-
tion is nonnegative, it holds that φ(~x) ≥ φ(~y). Crucially,
the sign of the first summation can be established a-priori,
i.e., without having to solve the ODE systems, because all
its terms are known parameters, i.e., the initial populations
and the given cost function.

To further clarify this relation, let us consider the special
case which involves setting C ≡ 0; this corresponds to a situ-
ation where there is no cost associated with the client popu-
lations. By inspection of the first line of the above equation,
it is clear that φ(~x) ≤ φ(~y): The maximum throughput is
attained at the point of the feasible region with the largest
populations, consistently with intuition. Hence, no compu-
tational cost for the optimization is required whatsoever.

6. NUMERICAL EXAMPLES
The purpose of this section is to study the computational

advantages obtained by exploiting the results presented in

the previous section. To this aim, we consider an opti-
mization scenario based on a model of a three-tier software
system modeled as a queueing network with three distinct
GPS service centers (e.g., front-end, business logic, and a
database-managent system) and a delay station, as illus-
trated in Fig. 2. In addition to being a reasonable high-level
performance model of a complex distributed software sys-
tem (for instance, it can be seen as a closed-workload vari-
ant of the model in [6]), the network is simple enough to
keep stochastic simulation feasible, as this will be used as
a baseline to assess the quality of the approximation intro-
duced by the fluid approximation. On the other hand, the
model is complicated enough to be exercised, with appro-
priate choice of parameters, under different operating con-
ditions (e.g., performance bottlenecks at different stations).

The problem is solved by genetic algorithm with two ap-
proaches: a black-box approach (BB), which finds an opti-
mal configuration without adopting parameter-space prun-
ing; and a grey-box approach (GB) which does do parameter-
space pruning in the following manner: Given a parameter
vector ~y(0), of the initial populations of clients, if there ex-
ists another parameter vector ~x(0) with provably superior
cost, then an infinite fitness value is assigned to it.

To show soundness of the approach, we compared the dis-
tance between the minima returned by both methods. As
an index of effectiveness, we compared the runtimes of BB
and GB. Finally, in order to show the overall accuracy of op-
timization via fluid techniques, we compared the estimated
optima against those obtained by optimization via stochas-
tic simulation of the associated CTMC, which is taken to
represent the true behavior of the system. With this (expen-
sive) study, we assess the absolute quality of fluid optimum,
and we numerically evaluate the computational advantages
gained by fluid analysis.

Parametrization. All tests were performed using Matlab
7.9.0, with the genetic algorithm implementation available
in the Genetic Algorithm and Direct Search toolbox. In or-
der to remove degrees of freedom in the set-up, unless other-
wise stated the genetic algorithm was used with its default
settings for both BB and GB. We considered a population of
30 individuals at each generation, and a maximum number
of 20 generations.

For the evaluation of the fitness function (4) via fluid anal-
ysis we employed Matlab’s ode15s routine by setting an ab-
solute tolerance of 10−4 and a relative tolerance of 10−5;
all other parameters for the ODE solver were set as the de-
fault ones. The use of this solver was preferred in order to
deal with potentially stiff problems, due to the randomness
in the parametrization of the model, ensuring more robust-
ness across the whole parameter space. This comes at the
cost of longer execution times by ode15s in non-stiff mod-
els, which could be more efficiently solved by other meth-
ods, such as the well known Runge-Kutta scheme as imple-
mented in ode45. However, the relative difference between
these two methods is negligible compared to the difference
between ODE analysis and stochastic simulation. We fixed
T = 5000.0 for the evaluation of (4) and successfully verified
that in all cases the derivatives at time T were less than 10−6

in norm, to ensure numerical convergence to an equilibrium.
For the evaluation of the fitness function via stochastic

analysis we used Monte Carlo simulation based on Gille-
spie’s direct method [18], which was preferred over the nu-

68



FError SError Runtimes Confidence intervals

pk20 φSIM
min BB GB BB GB GB BB (speed-up) Sim (speed-up) GB BB

0.85 -1.63 0.63% 0.58% 2.50% 1.65% 28.43 s 63.35 s (2.23) 37961 s (1335) 4.28% 2.97%
0.86 -2.12 0.03% 0.09% 1.18% 1.97% 28.87 s 64.52 s (2.23) 41244 s (1428) 4.97% 4.78%
0.87 -2.68 0.60% 0.51% 2.02% 1.63% 28.97 s 65.10 s (2.24) 45324 s (1564) 4.09% 4.34%
0.88 -3.28 0.75% 0.79% 2.56% 0.71% 28.46 s 63.30 s (2.22) 53240 s (1871) 4.77% 4.40%
0.89 -4.00 1.74% 1.81% 2.27% 2.04% 29.12 s 65.28 s (2.24) 53867 s (1849) 4.26% 4.20%
0.90 -5.00 0.38% 0.37% 1.62% 0.94% 31.47 s 66.05 s (2.09) 70762 s (2248) 4.60% 4.50%
0.91 -6.07 0.30% 0.27% 1.59% 1.07% 30.13 s 65.32 s (2.17) 76590 s (2541) 4.79% 4.23%
0.92 -7.42 0.80% 0.79% 1.24% 1.90% 31.21 s 65.13 s (2.09) 95300 s (3053) 4.76% 4.93%
0.93 -9.29 0.24% 0.26% 0.70% 1.00% 32.44 s 65.40 s (2.01) 125410 s (3865) 4.96% 4.96%

Table 1: Comparison between fluid optimization using a black-box approach (BB) and our approach (grey-
box, GB) with parameter-space pruning.

merical CTMC solution because of the large state space sizes
involved. The method of batch means was employed; the
simulation was stopped when the largest confidence inter-
val across all means at 95% confidence level was within 5%,
with a maximum 8 batches of simulation, where the first was
discarded for transient removal. Each batch was of length
5000.0; this choice was motivated by the fact that, as dis-
cussed, at that time interval all ODE solutions estimated
numerical convergence to the equilibrium.

In all cases, we kept fixed the following parameters of
the queueing network: D1 = 30.0, D2 = 20.0, D3 = 10.0,
µ1 = µ2 = 1.5, λ1

1 = λ2
1 = λ1

2 = λ2
2 = 1.0, λ1

3 = λ2
3 = 0.1,

and w1
i = 2.0, w2

i = 1.0, for i = 1, 2, 3 (thus corresponding
to a situation of two classes of clients with the same demands
but different priorities/shares). The routing matrices were
kept equal for both classes:

P k =


0 1 0 0
0 0 1 0
pk20 0 0 1− pk20
1 0 0 0

 , k = 1, 2,

where we experimented with different values of pk20 in order
to test our approach for different operating conditions, since
increasing pk20 leads to less frequent visits to station 3 (which
has the lowest capacity in the network). The initial condi-
tions were set in such a way that the clients were evenly
distributed across all stations.

The set-up of the optimization program was as follows.
The constraints Uk were set to 2000, for k = 1, 2. The cost
function was chosen in the form

C(N1, N2) = α+
(N1 +N2 − β)γ

δ
,

where α is interpreted as a fixed cost, β is a break-even total
client population, γ gives the shape of the dependence of the
cost from the client populations, and δ is a normalization fac-
tor that makes C(N1, N2) comparable to the throughput, in
order to exercise the model under conditions where changes
in the parameters do affect cost sensibly. Notice that this
normalization can always be done without loss of general-
ity of this approach—for example, it could be interpreted
as a change of monetary unit. In these experiments we set
α = 5.0, β = 1000.0, γ = 2, and δ = 2E05.

Data analysis. The numerical tests were executed on ma-
chines equipped with an 8-way Opteron 2.6 GHz dual-core

with 32 GB RAM. For each value of pk20, chosen between
0.85 and 0.93 at 0.01 steps, we ran three independent repli-
cas. All the measurement reported in the following are the
averages computed across these replicas.

As an index of effectiveness, we define the notion of per-
centage relative error of the optimization program as follows.
Let φBB

min (resp., φBB
min) be the minimum fitness value returned

by the GA with the black-box (resp., grey-box) approach us-
ing fluid analysis; similarly, let φSIM

min be the true minimum as
returned by GA where each individual is analyzed through
stochastic simulation. Then, the errors for BB and GB, de-
noted as FError, are defined as

FErrorBB =
|φBB

min − φSIM
min |

φSIM
min

× 100,

FErrorGB =
|φGB

min − φSIM
min |

φSIM
min

× 100.

(6)

This notion alone, however, is not sufficient to fully un-
derstand the behavior of the approximation. The reason is
that the evaluation of φBB

min and φGB
min, in general, incurs two

kinds of error which are due to the approximations of the
stochastic process via the fluid model and of the stochastic
reward (in this case, throughput) with its fluid counterpart.
Thus, for instance, a relatively large FError may in fact still
yield excellent accuracy when the individual with the min-
imum fitness obtained by fluid approximation is evaluated
using stochastic simulation; that is, when one computes the
true fitness of the best individual returned by the fluid GA.
Using similar arguments, a small FError may turn out to
be associated with a fittest individual which is away from
the true optimum. In order to understand the nature of the
optimal solutions returned by both BB and GB, we define
the notion of SError as the error between φSIM

min and the cost
function evaluated by simulation for the fittest individual
of BB and GB, which is denoted by φSIM(N1

BB, N
2
BB) and

φSIM(N1
GB, N

2
GB), respectively:

SErrorBB =
|φSIM(N1

BB, N
2
BB)− φSIM

min |
φSIM
min

× 100,

SErrorGB =
|φSIM(N1

GB, N
2
GB)− φSIM

min |
φSIM
min

× 100.

(7)

The computational advantage provided by our GB method
is measured in terms of speed-up with respect to BB. Since
both methods were applied to the same total number of indi-
viduals, the speed-up is only due to the fact that in GB some

69



individuals may be discarded a-priori because they yield
provably worse fitness. As a general indication of the perfor-
mance of fluid optimization, we also measured the speed-up
with respect to stochastic simulation.

Results. The results of our experimental campaign are col-
lectively reported in Table 1. Column labelled with φSIM

min

gives the minimum value of the fitness function returned by
running the GA with stochastic simulation, to demonstrate
that the chosen values of pk20 do exercise the network under
different steady-state conditions. Indeed, the fitness func-
tion is not explicitly dependent on pk20, hence the changes
must be attributed to the different workload mixes that op-
timize the system’s behaviour. Columns labelled with FEr-
ror and SError show the accuracy indices as defined in (6)
and (7), respectively. The runtime results are given as the
average wall-clock execution time (in seconds) of the overall
optimization program when using GB, BB, and simulation;
for convenience, the speed-ups with respect to GB are also
reported between brackets. Overall, the analyses required a
total of 237 hours of computation time, of which 99.9% was
devoted to the stochastic simulations. While the cost ODE
analysis did not vary significantly across all tests, a signif-
icant increase of the simulation runtimes can be noticed as
a function of pk20. This is due to the fact that the optimal
configurations for larger pk20 lead to increasingly saturated
networks, which are notoriously more difficult to simulate.
Using selected configurations that yield near-saturation con-
ditions for p20 > 0.93, we estimated that the simulation run-
times to achieve confidence intervals within 5% would have
been at least 32 times longer than for the case p20 = 0.85.
This made the analysis of such models unfeasible under our
given computational constraints, since the whole optimiza-
tion problem might be aborted as a result of the expiration
of the total time limit for a single job (i.e., 48 h) in the com-
puter cluster where the experiments were conducted.

An analysis of the confidence intervals across all tests
showed that, using the stopping criteria mentioned above,
82% of the simulations returned confidence intervals within
the desired 5% level. Instead, for the other 18% of simula-
tions (which were stopped because the maximum number of
8 batches had been reached), the median confidence interval
was 6%. However, a manual analysis of the models with the
highest confidence intervals showed that those were related
to genomes with a significantly poor fitness. Indeed, in a
typical case this was due to the exploration of regions of
the parameter space with very low populations (recall that
the constraints have a lower bound of 1) where the system
dynamics are slower due to less frequent service requests. In-
stead, the average optimal workload mixes across all values
of pk20 were 159 and 189 class-1 and class-2 clients, respec-
tively. For the same reason of computational feasibility as
discussed above (time expiration), we could not adjust the
stopping criteria for simulation in order to decrease the pro-
portion of results with confidence intervals greater than 5%.
However, to improve the precision of the optimal configura-
tion returned by stochastic simulation, we ran longer simula-
tions for φSIM(N1

GB, N
2
GB) and φSIM(N1

BB, N
2
BB) by doubling

the batch length to 10000.0 time units. The last columns
show the confidence intervals for the simulations under these
modified stopping criteria.

Overall, this validation demonstrates that provable a-priori
pruning of the parameter space can significantly reduce the

cost of the exploration (by at least a factor of 2 across all
the experiments), whilst returning estimates that differ less
than 2% from those returned by the baseline GA imple-
mentation. We also confirm the suitability of fluid models
for optimization purposes: The estimated optima are in all
cases at most 3% away from the real optima computed by
simulation. However the computational cost of simulation
is excessively high, even for a small network with relatively
few clients, and consistently separated from ODE-based op-
timization by three orders of magnitude.

7. CONCLUSION

Summary of findings. Many analysis techniques are avail-
able that can efficiently evaluate a model of software perfor-
mance. However, in general, from the solution of a model
with a given parametrization it is not possible to infer the
behavior of the same model with a different parametrization.
This paper has provided a contribution in this direction in
the context of software performance models with fluid tech-
niques. We have shown a general result of monotonicity
whereby fluid solutions preserve the ordering of their param-
eters. As an application, here we discussed a case study of
minimization via genetic algorithms, whereby some genomes
can be shown to yield a provably superior fitness value a pri-
ori, i.e., without evaluating the fitness function, by virtue of
monotonicity. Suitably equipping the genetic algorithm to
exploit this property has shown a speed-up factor of over 2
on average with respect to a baseline version of the algorithm
that does not implement a-priori pruning. Furthermore, the
fluid approximation consistently yielded excellent accuracy
with respect to the true optimal configurations returned by
evaluating the fitness function with simulation.

Although we focused on optimization via evolutionary al-
gorithms in this paper, we wish to stress that monotonicity
can be exploited in a much broader context, i.e., whenever
the modeler wishes to analyze different configurations, and
use the evaluation of one configuration in order to infer the
behavioral trend of others.

Scope of validity and generalization. There are two main
issues that may hinder a wider applicability of this tech-
nique. The first one is that monotonicity does not hold
for every parameter of the model under consideration. For
instance, it was not possible to prove it for the server capac-
ities Di. Let us notice that Proposition 2 gives a sufficient
condition, therefore, in principle, it could be established via
other routes also for Di. This will be the subject of future
work. Nevertheless, we argue that the scope of applicabil-
ity made available in this paper is rather significant, as it
covers monotonicity with respect to initial populations (i.e.,
the system’s concurrency levels) which can be directly re-
lated to throughput—hence response time—as discussed in
Section 5.

The second limitation might be the focus on queueing
networks with GPS service discipline. Keeping in mind
that these models can already be used in virtualized and
cloud environments, as discussed in Section 1, here we also
wish to stress that an analogous result of monotonicity may
be proven for other models of software performance, using
the same arguments presented in this paper. For example,
the GPS interaction functions (2) are surprisingly similar to

70



those used for the stochastic process algebra PEPA [33]. In-
deed, in a typical situation, PEPA-like interaction functions
can be written in the form

fi(~x) = µi
xi∑
i′∈I xi′

min

{∑
i′∈I

xi′ , xj

}
, (8)

where I is an index set such that i ∈ I and j 6∈ I. Now,
depending on the behavior of the minimum function, the
ODE can be rewritten in terms of piece-wise differentiable
functions. The case where min

{∑
i′∈I xi′ , xj

}
=
∑
i′∈I xi′

becomes trivial because the function reduces to a delay-type
interaction µixi. Instead, the case min

{∑
i′∈I xi′ , xj

}
= xj

can be handled in the same way as the GPS service case.
Since (8) is essentially used in the PEPA encoding of lay-
ered queueing networks [31] and of stochastic Petri nets [17],
monotonicity can be extended to the fluid approximations
of these two other modeling techniques. A precise formal-
ization of this extension is however beyond the scope of this
paper and will be presented in future reports.

Acknowledgement
This work is supported by the EU project QUANTICOL,
600708, and by the DFG SPP-1593 project DAPS. The au-
thor wishes to thank Max Tschaikowski for discussions, and
LRZ Munich for helpful support for the computing facilities.

8. REFERENCES
[1] The biggest cost of Facebook’s growth.

http://www.technologyreview.com/news/427941/

the-biggest-cost-of-facebooks-growth/.

[2] A. Aleti, S. Björnander, L. Grunske, and
I. Meedeniya. ArcheOpterix: An extendable tool for
architecture optimization of AADL models. In
MOMPES, pages 61–71, 2009.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and
I. Meedeniya. Software architecture optimization
methods: A systematic literature review. IEEE Trans.
Softw. Eng., 39(5):658–683, 2013.

[4] H. Alla and R. David. Continuous and Hybrid Petri
Nets. Journal of Circuits, Systems, and Computers,
8(1):159–188, 1998.

[5] J. Anselmi and I. Verloop. Energy-aware capacity
scaling in virtualized environments with performance
guarantees. Perf. Eval., 68(11):1207–1221, 2011.

[6] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang.
Energy-aware autonomic resource allocation in
multitier virtualized environments. IEEE Trans. Serv.
Comput., 5(1):2–19, Jan. 2012.

[7] D. Ardagna and B. Pernici. Adaptive service
composition in flexible processes. IEEE Trans. Softw.
Eng., 33(6):369–384, june 2007.

[8] E. Badidi, L. Esmahi, and M. A. Serhani. A queuing
model for service selection of multi-classes QoS-aware
web services. In ECOWS, pages 204–213, 2005.

[9] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Trans. Softw.
Eng., 30(5):295–310, 2004.

[10] B. Boone, S. V. Hoecke, G. V. Seghbroeck,
N. Joncheere, V. Jonckers, F. D. Turck, C. Develder,
and B. Dhoedt. SALSA: QoS-aware load balancing for

autonomous service brokering. Journal of Systems and
Software, 83(3):446–456, 2010.

[11] R. Calinescu, L. Grunske, M. Kwiatkowska,
R. Mirandola, and G. Tamburrelli. Dynamic QoS
management and optimization in service-based
systems. IEEE Trans. Softw. Eng., 37(3):387–409,
2011.

[12] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti,
and R. Mirandola. QoS-driven runtime adaptation of
service oriented architectures. In ESEC/FSE, pages
131–140. ACM, 2009.

[13] G. Casale and M. Tribastone. Fluid analysis of
queueing in two-stage random environments. In
QEST, pages 21–30, Aachen, Germany, September
2011. IEEE Computer Society Press.

[14] A. Chandra, W. Gong, and P. Shenoy. Dynamic
resource allocation for shared data centers using online
measurements. SIGMETRICS Perform. Eval. Rev.,
31(1):300–301, June 2003.

[15] V. Cortellessa, A. Di Marco, and P. Inverardi.
Model-Based Software Performance Analysis.
Springer, 2011.

[16] G. Franks, T. Al-Omari, M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of
layered queueing networks. IEEE Trans. Softw. Eng.,
35(2):148–161, 2009.

[17] V. Galpin. Continuous approximation of PEPA models
and Petri nets. International Journal of Computer
Aided Engineering and Technology, 2:324–339, 2010.

[18] D. Gillespie. Exact stochastic simulation of coupled
chemical reactions. Journal of Physical Chemistry,
81(25):2340–2361, December 1977.

[19] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient
algorithm for aggregating PEPA models. IEEE Trans.
Softw. Eng., 27(5):449–464, 2001.

[20] A. Koziolek, H. Koziolek, and R. Reussner.
Peropteryx: automated application of tactics in
multi-objective software architecture optimization. In
QoSA/ISARCS, pages 33–42, 2011.

[21] T. G. Kurtz. Solutions of ordinary differential
equations as limits of pure Markov processes. J. Appl.
Prob., 7(1):49–58, April 1970.

[22] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and
G. Iszlai. Performance model driven QoS guarantees
and optimization in clouds. In Proceedings of the
Workshop on Software Engineering Challenges of
Cloud Computing, pages 15–22, 2009.

[23] M. Litoiu, J. Rolia, and G. Serazzi. Designing process
replication and activation: A quantitative approach.
IEEE Trans. Softw. Eng., 26(12):1168–1178, 2000.

[24] J. Little. A Proof of the Queuing Formula: L = λW .
Operations Research, 9(3):383–387, 1961.

[25] M. Marzolla and R. Mirandola. Performance
prediction of web service workflows. In Software
Architectures, Components, and Applications, volume
4880 of Lecture Notes in Computer Science, pages
127–144. Springer, 2007.

[26] D. Menasce and V. Dubey. Utility-based QoS
brokering in service oriented architectures. In IEEE
International Conference on Web Services, pages
422–430, 2007.

71



[27] Object Management Group. UML Profile for Modeling
and Analysis of Real-Time and Embedded Systems
(MARTE). Beta 1. OMG, 2007. OMG document
number ptc/07-08-04.

[28] P. Pollett, A. Dooley, and J. Ross. Modelling
population processes with random initial conditions.
Mathematical Biosciences, 223(2):142–150, 2010.

[29] J. G. Shanthikumar and D. D. Yao. Stochastic
monotonicity in general queueing networks. Journal of
Applied Probability, 26(2):413–417, 1989.

[30] H. L. Smith. Systems of Ordinary Differential
Equations Which Generate an Order Preserving Flow.
A Survey of Results. SIAM Review, 30(1):87–113,
1988.

[31] M. Tribastone. A fluid model for layered queueing
networks. IEEE Trans. Softw. Eng., 39(6):744–756,
2013.

[32] M. Tribastone, J. Ding, S. Gilmore, and J. Hillston.
Fluid rewards for a stochastic process algebra. IEEE
Trans. Softw. Eng., 38:861–874, 2012.

[33] M. Tribastone, S. Gilmore, and J. Hillston. Scalable
differential analysis of process algebra models. IEEE
Trans. Softw. Eng., 38(1):205–219, 2012.

[34] L. Zeng, B. Benatallah, A. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware
for web services composition. IEEE Trans. Softw.
Eng., 30(5):311–327, 2004.

[35] T. Zheng, C. M. Woodside, and M. Litoiu.
Performance model estimation and tracking using
optimal filters. IEEE Trans. Software Eng.,
34(3):391–406, 2008.

APPENDIX
Here we give the proof of Proposition 3.

Proof. First, let us consider the ODE system

ẋk0 = −(1− pk00)µkx
k
0 +

M∑
j=1

pkj0
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

) ,
ẋki = −λ

k
iw

k
i x

k
iDi∑K

l=1 w
l
ix
l
i

+ pk0iµkx
k
0 + (9)

+

M∑
j=1

pkji
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

) ,
Ṅk = 0,

for all 1 ≤ k ≤ K and 1 ≤ i ≤ I. This ODE system
arises from (2) by replacing each xlj with N l−

∑
j′ 6=j x

l
j′ , and

by adding slack variables Nk as trivial ODEs that yield a
constant solution with respect to time t. Due to the property
ii) of conservation of mass, each solution to the original ODE
system (2) is also a solution to (9), whenever the initial
conditions Nk(0) for the slack variables are set as

Nk(0) =

M∑
i=0

xki (0).

Thus, monotonicity may be equivalently proven on the
modified ODE system (9). Its Jacobian DG(~x) can be writ-

ten as





∂g10
∂x10

· · · ∂g10
∂x1

M
· · · ∂g10

∂xK
M

∂g10
∂N1 · · · ∂g10

∂NK

...
. . .

...
...

. . .
...

∂gKM
∂x10

· · · ∂gKM
∂xK

M

∂gKM
∂N1 · · · ∂gKM

∂NK

∂N1

∂x10
· · · ∂N1

∂xM
K

∂N1

∂N1 · · · ∂N1

∂NK

...
. . .

...
...

. . .
...

∂NK

∂x10
· · · ∂NK

∂xM
K

∂NK

∂N1 · · · ∂NK

∂NK

where gki denotes the component of the vector field for the
variable xki , for all 0 ≤ i ≤ M and 1 ≤ k ≤ K. With this
block structure, it is possible to show monotonicity of the
system by using Proposition 2 and Remark 1 in [30], whereby
a sufficient condition is that: i) the off-diagonal elements of
the top-left and bottom-right blocks be non-negative; and
ii) the elements of the top-right and bottom-left blocks be
non-positive.

In order to show this, we proceed by case distinction, re-
calling that the GPS queueing network fluid model is non-
negative, all rates λki , weights wki , and server capacities Di
are positive reals, and that the routing probabilities pkij are
nonnegative reals. First, we observe that the bottom blocks
of the Jacobian are all trivially zero, thus we focus on the
top blocks only.

For the top-left block:

i) Case
∂gk0
∂xki

, with i 6= 0:

∂gk0
∂xki

=
∂

∂xki

{
M∑
j=1

pkj0
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

)}

=
∂

∂xki

{∑
j 6=i

pkj0
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

)+

= + pki0
λkiw

k
i x

k
iDi∑K

l=1 w
l
i

(
N l −

∑
j′ 6=i x

l
j′

)}

= −
∑
j 6=i

pkj0λ
k
jw

k
j x

k
jDj

∂

∂xki

{
K∑
l=1

wlj

(
N l −

∑
j′ 6=j

xlj′
)}

+ pki0
λkiw

k
iDi∑K

l=1 w
l
i

(
N l −

∑
j′ 6=i x

l
j′

)
=
∑
j 6=i

pkj0λ
k
jw

k
j x

k
jDjw

l
i+

+ pki0
λkiw

k
iDi∑K

l=1 w
l
i

(
N l −

∑
j′ 6=i x

l
j′

) ≥ 0.

72



ii) Case
∂gk0

∂xl̂0
, with l̂ 6= k:

∂gk0

∂xl̂0
=

M∑
j=1

pkj0
∂

∂xl̂0

{
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

)}

= −
M∑
j=1

pkj0λ
k
jw

k
j x

k
jDj

∂

∂xl̂0

{
K∑
l=1

wlj

N l −
∑
j′ 6=j

xlj′

}

=

M∑
j=1

pkj0λ
k
jw

k
j x

k
jDjw

l̂
j ≥ 0.

iii) Case
∂gk0

∂xl̂i
, with i > 0 and l̂ 6= k: similarly to ii),

∂gk0

∂xl̂i
= −

M∑
j=1

pkj0λ
k
jw

k
j x

k
jDj

∂

∂xl̂i

{
K∑
l=1

wlj

N l −
∑
j′ 6=j

xlj′

}

=

M∑
j=1

pkj0λ
k
jw

k
j x

k
jDjw

l̂
j ≥ 0.

iv) Case
∂gki
∂xk0

, with i 6= 0:

∂gki
∂xk0

= −
M∑
j=1

pkjiλ
k
jw

k
j x

k
jDj

∂

∂xk0

{
K∑
l=1

wlj

N l −
∑
j′ 6=j

xlj′

}
+ pk0iµk

=

M∑
j=1

pkjiλ
k
jw

k
j x

k
jDjw

k
j + pk0iµk ≥ 0.

v) Case
∂gki

∂xl̂0
, with l̂ 6= k: similarly to ii),

∂gki

∂xl̂0
=

M∑
j=1

pkjiλ
k
jw

k
j x

k
jDjw

l̂
j ≥ 0

vi) Case
∂gki
∂xk

ĵ

, with ĵ 6= i, and i, ĵ > 0: similarly to i),

∂gki
∂xk

ĵ

=
∂

∂xk
ĵ

{
M∑
j=1

pkji
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

)}

=
∂

∂xk
ĵ

{∑
j 6=ĵ

pkji
λkjw

k
j x

k
jDj∑K

l=1 w
l
j

(
N l −

∑
j′ 6=j x

l
j′

)+

+ pkĵi
λk
ĵ
wk
ĵ
xk
ĵ
Dĵ∑K

l=1 w
l
ĵ

(
N l −

∑
j′ 6=ĵ x

l
j′

)}

=
∑
j 6=ĵ

pkjiλ
k
jw

k
j x

k
jDjw

k
ĵ+

+ pkĵi
λk
ĵ
wk
ĵ
Dĵ∑K

l=1 w
l
ĵ

(
N l −

∑
j′ 6=ĵ x

l
j′

) ≥ 0.

vii) Case
∂gki

∂xl̂
ĵ

, with i, ĵ > 0 and k 6= l̂:

∂gki

∂xl̂
ĵ

=
∑
j 6=ĵ

pkjiλ
k
jw

k
j x

k
jDjw

l̂
j ≥ 0.

For the top-right block:

i) Case
∂gki

∂N l̂
, with 0 ≤ l̂ ≤ K, 0 ≤ i ≤M :

∂gki

∂N l̂
= −

M∑
j=1

pkjiλ
k
jw

k
j x

k
jDjw

l̂
j ≤ 0.

73




