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ABSTRACT 
In cloud environments, IT solutions are delivered to users via 
shared infrastructure. One consequence of this model is that large 
cloud data centres consume large amounts of energy and produce 
significant carbon footprints. A key objective of cloud providers 
is thus to develop resource provisioning and management 
solutions at minimum energy consumption while still 
guaranteeing Service Level Agreements (SLAs). However, a 
thorough understanding of both system performance and energy 
consumption patterns in complex cloud systems is imperative to 
achieve a balance of energy efficiency and acceptable 
performance. In this paper, we present StressCloud, a 
performance and energy consumption analysis tool for cloud 
systems. StressCloud can automatically generate load tests and 
profile system performance and energy consumption data. Using 
StressCloud, we have conducted extensive experiments to profile 
and analyse system performance and energy consumption with 
different types and mixes of runtime tasks. We collected fine-
grained energy consumption and performance data with different 
resource allocation strategies, system configurations and 
workloads. The experimental results show the correlation 
coefficients of energy consumption, system resource allocation 
strategies and workload, as well as the performance of the cloud 
applications. Our results can be used to guide the design and 
deployment of cloud applications to balance energy and 
performance requirements.  

Categories and Subject Descriptors 
C.4 [Computer System Organization]: Performance of Systems; 
K.4.1 [Public Policy Issues]: Use/abuse of power; [Software 
Engineering] D.2: Tools; B.8.2 [Performance Analysis and 
Design Aids] 

General Terms 
Measurement, Performance, Experimentation 

Keywords 
Cloud computing; green cloud; energy consumption; performance 
analysis; automation. 

1. INTRODUCTION 
Cloud Computing is a new and promising computing paradigm 
which delivers computing infrastructure as a utility [1]. It 
provides rented services for computation, application software, 
and data storage via the Internet. Key advantages for consumers 
include flexible scaling on demand to their computing and data 
storage needs without the traditional large upfront investment and 
continuing maintenance costs of computing infrastructure. Over 
the last few years many large-scale data centres have been built to 
meet the massive growth in demand for high performance cloud 
data and computational services.  

As cloud computing becomes more widespread, increasing data 
storage and computation needs significantly raise the energy 
consumption of large cloud infrastructures. Most modern data 
centres are considered as mega data centres [2, 3] because they 
house over tens of thousands of servers that consume tens of 
mega-watts of energy per hour at peak times. High energy 
consumption directly contributes to data centres’ operational 
costs, especially as the energy unit cost continues to rise 
significantly. Power consumption currently contributes up to 42% 
of a data centre’s monthly expenses [4]. In addition, the huge 
amount of power consumption of data centers potentially 
accelerates global climate change. According to a New York 
Times study, data centres use about 30 billion watts of electricity 
per hour worldwide, equivalent to the output of about 30 nuclear 
power plants [5]. Therefore, for both financial and environmental 
reasons, energy consumption has become a critical concern in 
designing modern cloud-based systems.  

Many efforts have been made to improve energy efficiency in 
cloud environments. Some simple techniques provide basic 
energy management for servers in cloud environments, including 
turning on and off servers, putting them to sleep or using 
Dynamic Voltage/Frequency Scaling (DVFS) [6] to adjust 
servers’ power states. DVFS adjusts the CPU power, and as a 
result the performance level, according to the workload. However 
the scope of DVFS optimisation is limited to CPUs. Another 
approach for improving energy efficiency is to adopt 
virtualisation techniques to get better resource isolation and 
reduce infrastructure energy consumption through resource 
consolidation and live migration [7]. Using virtualisation 
techniques, several energy-aware resource allocation policies and 
scheduling algorithms have been proposed to optimise the total 
energy consumption in cloud environments [8]. However, the 
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system performance and energy consumption of cloud systems 
vary greatly with different system configurations and allocation 
strategies, as well as the workload and the types of running tasks 
in cloud environments[9].  

One of the important requirements for a cloud system is to 
provide reliable Quality of Service (QoS). Ideally, the 
performance of a cloud system must not be jeopardised by the 
energy consumption minimisation. Therefore, a thorough 
understanding of the performance and energy consumption 
patterns in complex cloud systems is imperative. We need to learn 
how energy consumption and cloud system performance are 
affected by different workloads and system configurations, 
including cloud application structuring and deployment. In our 
earlier work, we proposed an energy consumption model for 
calculating the energy consumption of specific types of tasks in 
cloud systems [10]. In our model, runtime cloud tasks are divided 
into three types: computation-intensive, data-intensive and 
communication-intensive. We conducted experiments to collect 
fine-grained system performance and energy consumption data 
with varying system configurations and workloads based on 
individual types of tasks [11]. However, profiling and analysing 
system performance and energy consumption in cloud systems is 
time consuming. Extensive experiments with different parameters, 
metrics and workloads need to be conducted. Manual generation 
of load test plans, change of system configurations and 
application of load tests are very tedious and error-prone. In 
addition, most of existing cloud system performance and energy 
profiling approaches limit the types of tasks running in the 
profiling process to only discrete individual types [11, 12]. In real 
cloud environments, users send mixes of computation-intensive, 
data-intensive and communication-intensive tasks to cloud 
systems simultaneously. The way different types of runtime tasks 
are composed and deployed will impact the performance and 
energy consumption of the cloud application [3].  Therefore, it is 
essential to investigate how different task and resource allocation 
strategies impact performance and energy consumption.  

In order to address these issues, we have developed StressCloud, a 
performance and energy consumption profiling and analysis tool 
for cloud systems. StressCloud can effectively and accurately 
collect the performance and energy consumption data of cloud 
systems. We adopt stochastic form charts [13] to model realistic 
cloud user behaviour load. A stochastic form chart is extended 
from the basic form chart model which is a technology-
independent bipartite state diagram used to simulate user 
behaviour of submit/response systems. From these stochastic from 
charts we automatically generate load tests and profile the 
performance and energy consumption data of a cloud system 
under test. Using StressCloud, we have conducted extensive 
experiments to empirically analyse the performance and energy 
consumption of cloud systems. Our experimental results 
demonstrate the relationship between the performance and energy 
consumption of cloud systems with different resource allocation 
strategies and workloads. Our analytical results can be used as 
guidelines for resource provisioning and task scheduling in cloud 
systems to maximise performance and minimize energy usage.  

Section 2 briefly summarises the state-of-the-art of energy-saving 
policies, performance and energy consumption profiling and 
analysis approaches. Section 3 describes the architecture of 
StressCloud and the profiling framework of performance and 
energy consumption. The performance and energy consumption 
profiling setup and methods are described in Section 4. Section 5 

presents a range of profiling results and detailed analysis. The 
observations derived from the experiments are discussed in 
Section 6. Finally, we summarise our key findings and discuss 
directions for future research in Section 7.  

2. RELATED WORK 
Energy-saving policies of cloud systems have been an active 
research topic in the past few years. VirtualPower [14] is 
proposed to exploit power management decisions of guest VMs 
on virtual power states. The virtual power states of guest VMs are 
considered as preconditions to run local and global energy 
management policies across the computation. Verma et al. [15] 
use the characteristics of VMs, such as cache footprint and the set 
of applications running on the VMs, to drive power-aware 
placement of VMs. Liu et al. [16] describe a new cloud 
infrastructure which can dynamically consolidate Virtual 
Machines (VMs) based on CPU utilisation of servers to identify 
idle physical servers. Idle physical servers can be turned off to 
save energy. However these energy saving policies do not take 
into consideration the workload in cloud systems and hence are 
very coarse-grained. 

Research efforts have also focused on profiling and analysing the 
energy consumption of cloud systems. Most existing profiling 
efforts have been conducted using energy benchmarks or closely 
monitoring the energy profiles of individual system components 
at runtime, such as CPU, cache, hard disk and memory. Chen et al. 
[17] develop a linear power model that presents the behaviour and 
power consumption of individual hardware components of a 
single physical server. A framework is proposed by Stoess et al. 
[18] for energy optimisation and the development of energy-
aware operation systems based on the availability of energy 
models for each hardware component. Joulemeter, a power meter 
for VMs [19], makes use of software components to monitor the 
resource usage of VMs and then converts the resource usage into 
energy consumption based on the power model of each individual 
hardware component. Although some of the profiling and analysis 
are conducted based on specific applications in cloud systems, the 
evaluation only includes an individual type of cloud applications. 
For instance, Lefèvre and Orgerie [20] evaluate the energy 
efficiency of cloud systems on a multicore platform. However, 
they focus only on CPU cores and conduct their evaluation of the 
energy consumption during migration of VMs only with 
computation-intensive cloud applications.  

Some existing research has attempted to leverage the relationship 
between the performance and energy consumption of cloud 
systems. Grace et al. [12] investigate the energy efficiency of data 
centres by running benchmark applications on cloud servers. 
However, they focus on a black box to benchmark performance 
and energy consumption of cloud systems without looking into 
the parameters of the application. Yong and Albert analyse energy 
efficient utilisation of resources in cloud computing systems [3]. 
Their results assume that energy consumption scales linearly with 
the processor without considering the impact of associated RAMs. 
In fact, cloud resources include not only physical processors but 
also various RAMs. They conclude that the energy consumption 
can be reduced when two or more tasks are consolidated rather 
than solely assigned to one resource. However, they do not 
consider the performance aspect of such tasks. In our previous 
research [11], we profile and analyse the performance and energy 
consumption of cloud systems based on individual types of tasks. 
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The experimental results show that system configurations and task 
workload highly impact the performance and energy consumption 
in cloud systems. However, the types of tasks running in the 
profiling process are limited to only discrete individual types. 

3. STRESSCLOUD 
To address the abovementioned issues, we have developed 
StressCloud, a new tool for profiling the performance and energy 
consumption of cloud systems. We also conducted extensive and 
comprehensive experiments to using StressCloud. Our 
experimental results demonstrate the impact of system resource 
allocation strategies on system performance and energy 
consumption; the impact of realistic workloads with mixed types 
of tasks on system performance and energy consumption; and the 
relationship between performance and energy consumption. 

Based on the high-level workload model and cloud system 
architecture model specified by the user, StressCloud can 
automatically deploy load test services to a cloud system and 
generate load tests. It can also profile the performance and energy 
consumption of the cloud system automatically. For proposed 
cloud systems or what-if analysis of proposed re-engineering 
changes, we allow the user to generate model cloud application 
services composed of data, compute and communication tasks to 
load test. In this section, we briefly describe the profiling process, 
system architecture and user interface of StressCloud. 

Figure 1 shows how StressCloud is used to perform load tests to 
profile the performance and energy consumption of a cloud 
application. As depicted in Figure 1, the performance engineer 
first defines the cloud application workload model (1). These are 
a set of tasks modelling the target cloud application behaviour. 
Based on the major type of resource consumed by a task, we 
categorise runtime tasks into three types: computation-intensive, 
data-intensive and communication-intensive. In real applications, 
cloud application services are made up of composite tasks that 
may consume multiple types of cloud resources, including CPU, 
RAM, data storage and network devices. Thus, we introduce a 
“composite task” in our workload model to represent such 
composites. This workload model is then modified by the 
performance engineer with transition probabilities and properties 
between different types of tasks to form a workload model. A 
series of cloud services have been developed in order to model the 
target cloud application. These services take the user requests to 
perform tasks defined in the workload model and give 
corresponding responses. In addition, StressCloud can also stress 
a real deployed cloud application. Alternatively, instead of 
specifying a workload model, the performance engineer specifies 
what deployed cloud services to invoke (1). In this case, the 
engineer must specify valid requests and data to send to the real 
deployed application. 

For each task, a stochastic form chart is created to specify the 
detailed user requests and required responses from the cloud 
system. This is a probabilistic model of user and service request 
behaviour that enables us to model a variety of usage scenarios on 
cloud application services, whether initiated by users or by other 
calling services [13]. The performance engineer needs to 
elaborate the form chart model with suitable probabilities on all 
transition links between services in the application.  

A cloud system architecture model is then defined by the 
performance engineer to specify the elements in the target cloud 
system, Figure 1 (2). Our cloud architecture model includes all 
available resources in the target cloud system and their detailed 

configurations. After mapping the tasks defined in the user 
workload model to corresponding resources in the cloud system 
architecture model, workload deployment scripts are generated 
(3). Based on the deployment scripts, load test services are 
uploaded and deployed to the VMs in the target cloud system (4). 
These cloud loading services were developed based on our 
previous research that incorporates CPU, RAM and data-intensive 
tasks, and support service to service communication-intensive 
tasks. Load test scripts are then automatically generated based on 
the workload model (5). 

Next, the load tests specified are performed automatically on the 
target deployed cloud model or application based on the load test 
scripts (6). The performance and energy consumption information 
of the target cloud system are collected (7) and visualised (8). The 
visualised system performance and energy consumption data are 
updated at a user-specified rate, defaulting to 20 seconds. The test 
results are stored for future reference and for comparison to new 
tests run with differing tasks, loads and deployment models. 

Figure 2 shows an example of StressCloud in use modelling an 
exemplar problem - JPetStore1. Figure 2 (a) shows a composite 
model of part of the JPetStore representing data, compute and 
communication tasks, composed together to form a definition of 
this cloud application service. For instance, the “Signin” task is a 
composite task of one communication task and one data task. The 
transition probabilities between different types of tasks have been 
specified to model the chance of users sending a particular task to 
the cloud application. A Client component represents a client-side 
start-up component for load test scripts generation, as all testing 
plans need an entry point. The Quit component is also manually 
added to the generated model to describe the real client behaviour. 
Figure 2(b) shows an example stochastic form chart model 
describing one usage scenario of “GetProductDetail” task, which 
is a communication task. The rectangle “GET” represents the 

                                                                 
1 http://java.sun.com/developer/releases/petstore/ 

Figure 1. StressCloud Performance and Energy Consumption 
Data Profiling Process. 
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detailed user requests and the oval “GETResult” represents 
required responses. Figure 2(c) and Figure 2(d) show part of 
loading scripts generated from a combination of the task models, 
load models and deployment models for our example cloud 
application. 

Figure 2(e) shows an architecture diagram describing a 
deployment specification scenario for the cloud application.  This 
shows the cloud environment contains one cloud server. Two 
VMs have been created on the server and they belong to different 
VM groups. Tasks “GetIndex”, “Signin” and “GetHelp” in the 
workload model have been deployed on VM named “FEI_VM1”.   
Figure 2(f) shows an example script generated from the 
deployment specification model. 

Figure 3(a) shows an example of visualisations of various aspects 
of cloud system performance, including disk, network and CPU 
usage, for a running cloud application. The performance engineer 
can choose and customise the appearance of a range of system 
KPIs. Figure 3(b) shows the energy consumption of the profiled 
cloud system. 

4. EXPERIMENTAL SETUP 
Our new sets of experiments of performance and energy 
consumption profiling and analysis were performed to replicate 
and then extend our previous research results [10, 11]. We aimed 
to collect system performance and energy consumption data for 
the analysis of the correlation coefficients of system performance, 

Figure 2. JPetStore Workload Model (a)(b) and Load Test Scripts (c)(d); Cloud Architecture (e) and Deployment Script (f).

Figure 3. Visualised (a) Performance and (b) Energy Data. 
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energy consumption, workloads and resource allocation 
strategies. The analytical results can be adopted as guidelines for 
the development of energy efficient cloud resource provisioning 
and task consolidation strategies. 

We profiled the performance and energy consumption of a cloud 
system by creating heterogeneous VMs in the cloud system and 
running composite tasks with various workloads and resource 
allocation strategies. This section describes our experimental 
setup.  

Table 1. Specifications of HP Z400 

Basic Specification Notes 

Number of Cores 4  

Number of Threads 2 
Intel Hyper-Threading 

Technology 

CPU Frequency 2.8GHz Fixed CPU Frequency 

Memory 8GB Memory Speed 1333 MHz 

Hard Drive 
1TB 7200 RTM 

SATA 
 

Network Interface Intel e1000 Gb  

4.1 Test-bed 
Our experiments were conducted in SwinCloud, a private cloud 
that provides a common computational infrastructure to 
researchers at Swinburne University of Technology. SwinCloud 
was experimented in the Energy Research Lab (ERL) at 
Swinburne University of Technology. By using the extensive and 
sensitive power monitoring facilities provided by the lab, we 
could precisely monitor the power consumption of the SwinCloud 
servers. The power consumption measurement was realised and 
managed using PowerNode, a power usage profiling equipment 
developed by GreenWave Reality2. It supports measurement of 
both immediate and average power consumption. Collected power 
data were reported to the GreenWave Gateway, which is used to 
create a mesh-based Home Area Network (HAN).  StressCloud 
retrieves power consumption from the GreenWave Gateway once 
every second to guarantee the accuracy of the power consumption 
data.  

Table 2. Type of VM 

Virtual Machine Number of Cores RAM Hard Disk 

Small 1 2GB 80GB 

Medium 2 4GB 80GB 

Large 3 6GB 80GB 

XLarge 4 8GB 80GB 

 

The energy consumption of a cloud system includes the energy 
consumed by the constituent servers and the scheduling overhead 
across the servers. We focused on the energy consumption of 
individual servers as it is the predominant part [21]. In addition, 
the cross-server scheduling and communicational overhead of one 
cloud system can be significantly different from another, 
depending on the scheduling mechanism adopted by the cloud 
systems and the distribution of the constituent servers. In this 
research, we focused on the system performance and energy 
consumption of tasks running on a single discrete server. The 

                                                                 
2 http://www.greenwavereality.com/ 

energy consumption incurred by cross-server scheduling and 
computational overhead is part of our future work.  

The server deployed in SwinCloud is a HP Z400. Table 1 lists the 
specifications of HP Z400. The Virtual Machine Manager (VMM) 
used is VMware ESX 4.1 and the operating systems running on 
the VMs are Windows XP Professional. In the experiments, all 
VMs were assigned with 2GB, 4GB, 6GB or 8GB RAM. The 
number of virtual CPUs (vCPUs) of each VM varied from 1 to 4 
in steps of 1. The number of vCPUs equalled to the number of 
physical cores assigned to the VM. The configuration scales of 
the VMs are shown in Table 2. 

Figure 4 shows the system performance and energy consumption 
profiling framework used in our experiments. A PowerNode 
monitor was connected to the cloud server. StressCloud was 
installed on a client PC. All workloads were modelled and 
generated using StressCloud and sent to the cloud server. A series 
of web services for load tests were deployed on the VMs. These 
are configured by the generated StressCloud scripts from the 
cloud application workload models. The system performance and 
power consumption data were collected by StressCloud for 
analysis. 

Cloud Server

VirtualMachine VirtualMachine

Apache Tomcat

…...Load Test Web Service

MS SQL 
Server 

Apache Tomcat

Load Test Web Service

MS SQL 
Server 

Monitor and Load Generator

StressCloud

PowerNode
GreenWave 
Gateway

Router

 

Figure 4. Performance and Energy Data Profiling Framework 

4.2 Profiling Method 
The define energy consumption for a task as the difference of 
average power consumption between the server with and without 
workload multiplied by the execution time of the task. We firstly 
retrieved the average power consumption measured by 
PowerNode with no workload in the cloud system as our idle state 
benchmark. Then, we used StressCloud to retrieve the real-time 
power consumption measured by PowerNode during the load tests 
every second. After that, we calculated the average power 
consumption and then multiplied the average power consumption 
by the average execution time of a single task to obtain the total 
energy consumption of the task.  

Based on our previous research results [11], system performance 
and energy consumption are highly influenced by the workload 
and system configuration. As such, we took the cloud system 
workloads and system configurations as inputs of our experiments, 
and set energy consumption and system performance as the 
outputs. We selected the throughput of the system as one of the 
key performance indicators (KPI). This is because throughput is 
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often the key performance parameter monitored in cloud systems 
and it has the advantage of reflecting resource usage accurately 
[22]. The other KPI selected is the response time as it is a major 
performance QoS requirement in cloud environments [23]. For 
computation-intensive tasks, the throughput is defined as the total 
number of user interactions requested and completed successfully 
per hour. For data-intensive tasks and communication-intensive 
tasks, the throughput is defined as the total number of user 
interactions requested and completed successfully per second. 
The response time is defined as the interval from the initiation of 
a request to the receipt of the corresponding response. We also 
selected and profiled other KPIs, such as CPU usage, memory 
usage etc.  

4.3 Test Case Design 
The basic types of cloud workload tasks modelled in our 
experiments were computation-intensive, data-intensive and 
communication-intensive, depending on the major resource 
consumed by the task. We designed and conducted five series of 
experiments. The first three series of experiments focused on 
individual types of tasks. We aimed to further investigate the 
impact of workload and resource allocation strategies on system 
performance and energy consumption of single type of tasks, as 
well as validate the correctness and effectiveness of StressCloud. 
We were able to compare these results to our previous results 
obtained by hand-developed workload models and loading scripts. 

The last two series of experiments focused on the mixed type of 
tasks, examining energy and performance for tasks with e.g. a 
75% compute and 25% data intensive mix of workload. The 
objective of the last two series of tests was to model the 
workloads of real cloud applications and investigate the system 
performance and energy consumption with different resource 
allocation strategies e.g. what happens when split data and 
compute load over different VMs vs same VM? Only one aspect 
was changed in each test set to try and isolate the impact factors 
of system performance and energy consumption. The detailed five 
experimental designs are described as follows. 

1. Computation-intensive tasks: The major cloud resources 
consumed by computation-intensive tasks are CPU cores and 
RAM. We can further divide the computation-intensive tasks into 
CPU-intensive tasks and memory-intensive tasks. We deployed a 
web service in StressCloud which calculates a Fibonacci sequence 
as a representative CPU-intensive task. Each invocation of this 
web service was a CPU-intensive task. As the largest number of 
the Fibonacci sequence determined the duration of each 
calculation, we mapped this number to the workload of each 
CPU-intensive task – defined as LN. We deployed another web 
service in StressCloud to process big file using memory. The web 
service consumes as much memory as possible based on the size 
of memory allocated to it. Each invocation of this web service 
was a memory-intensive task. The size of processed file 
determined the workload of the memory-intensive task. We first 
ran CPU-intensive tasks to calculate Fibonacci sequence and 
increased the LN of the tasks gradually with fixed resources 
allocated in test suite I described in Section 5.1.1. Then, we keep 
resources allocated to the tasks and LN constant. In test suite II 
described in Section 5.1.1, we keep the number the tasks and total 
resource allocated constant while changing the resource allocation 
strategy. Another major resource consumed by a computation-
intensive task is the RAM. We also measured the energy 
consumption and system performance by running memory-
intensive tasks in test set I described in Section 5.1.2. We firstly 

fixed the resources allocated to the memory-intensive tasks and 
increased the file size of each task. Then we increased the 
resources allocated to the tasks while keeping the workload of 
each task constant.  

2. Data-intensive tasks: A data-intensive task in a cloud 
environment is usually I/O bound and needs to process large 
volumes of data. It devotes most of its processing time to the 
movement and manipulation of data in databases or files. In order 
to investigate the system performance and energy consumption of 
this type of task, we deployed a web service in StressCloud which 
could query and manipulate data records on a rational database as 
representative of data-intensive tasks. In test suite I described in 
Section 5.2, we profiled the system performance and energy 
consumption of different operation types (query, add, update, 
delete and combinations) and data size to investigate the impact 
of different types of database operations on the energy 
consumption and system performance. The database operations 
included “insert”, “delete”, “select” and “update”, i.e., the most 
common ones. In test suite II presented in Section 5.2, we mixed 
all four types of database operations and kept the ratio of each 
type of operation constant while changing the data size of each 
operation, the total number of the requests and the resource 
allocation strategies.  

3. Communication-intensive tasks: A communication-intensive 
task in a cloud application usually generates a huge amount of 
network transactions between cloud user devices and cloud 
systems. We have identified that the number of user requests and 
the data size of each request can highly impact the system 
performance and energy consumption [11]. In addition, the 
resource allocation strategies also impact the energy consumption 
of communication-intensive tasks [24]. Therefore, we profiled 
and analysed the system performance and energy consumption of 
communication-intensive tasks with different task workloads and 
resource allocation strategies. We deployed a web service in 
StressCloud that took client requests of varying frequency and 
with varying payload size and generated responses of varying size. 
In test suite I described in Section 5.3, we firstly fixed the 
resource allocation while increasing the number of user requests 
and the packet size of each requests. We then fixed the packet size 
of each request while changing the number of user request per 
second and resource allocation in test suite II described in Section 
5.3.  

4. Mixed Computation-intensive and Data-intensive tasks: 
Increasing computation and data processing power allow more 
and more scientific and business applications to be deployed in 
cloud environments. A scientific task is usually a mix of both 
computation-intensive and data-intensive tasks [25]. As a rapidly 
increasing number of scientific tasks have been moved to the 
cloud, it is important to investigate the system performance and 
energy consumption of cloud systems with such types of mixed 
task types. We modelled the client load of some representative 
scientific applications with mixed computation-intensive and 
data-intensive tasks using StressCloud. We then analysed the 
system performance and energy consumption of the target cloud 
system with different workload models and resource allocation 
strategies in test suites I and II described in Section 5.4.  

5. Mixed Computation-intensive, Data-intensive and 
Communication-intensive tasks: As most cloud applications 
require a Web server to handle user requests and a database server 
to process the database queries in response to the user requests. 
Similarly, service-oriented architectures have multiple distributed 

44



compute and data services with significant inter-service 
communication. Therefore, a cloud application typically has 
workload tasks composed of a mixture of communication-
intensive tasks, data-intensive tasks and computation-intensive 
tasks. Different services have different mixes of these workload 
task types. We aimed to investigate the impact of the application 
workloads and the allocated resources on the system performance 
and energy consumption of the cloud system. We selected 
JPetStore as the cloud application to test in our experiment as it 
has been widely used as a representative Web application that 
produces a transactional workload. We modelled the workload of 
JPetStore using StressCloud based on the client load model 
introduced by Cai [26]. We profiled and analysed the system 
performance and energy consumption with different client load 
models and different resource allocation and deployment 
strategies in test suites I and II presented in Section 5.5. 

5. EXPERIMENTAL RESULTS 
We conducted five major sets of tests to analyse the system 
performance and energy consumption incurred by different types 
of cloud tasks in order to analyse the impact of workload and 
resource allocation strategy on system performance and energy 
consumption. We took system workloads and system 
configurations as inputs. The energy consumption of each task, 
the system throughput and the response time were the outputs of 
our experiments. In order to reduce measurement error, each set 
of tests was repeated ten times. We evaluated the correctness of 
StressCloud by comparing the test results of computation-
intensive tasks and communication-intensive tasks conducted by 
StressCloud to our manually obtained previous test results 
presented in [11]. We analysed the correlation coefficients of 
energy consumption, system resource allocation strategies and 
workload, as well as system performance in cloud systems. The 
results can be used as guidelines to improve overall energy 
efficiency of cloud systems. 

5.1 Computation-Intensive Workloads 
A computation-intensive task can be further categorised into 
CPU-intensive and memory-intensive based on the major 
resources it consumes. A CPU-intensive task in cloud systems 
requires a number of isolated processes to perform the 
computation. A memory-intensive task consumes large amount of 
memory to store and manipulate data during task execution.  

We deployed a web service in StressCloud that calculates 
Fibonacci sequences as CPU-intensive task. We mapped the 
largest number of the Fibonacci sequence to the workload of each 
CPU-intensive task – defined as LN (See Section 4.3). We 
deployed another web service in StressCloud to process big file 
using memory. The web service consumes as much memory as 
possible based on the size of memory allocated to it. Each 
invocation of this web service was a memory-intensive task. The 
size of processed file determined the workload of the memory-
intensive task. 

5.1.1 CPU-Intensive Workload 
Test Suite I: Keeping the number of tasks constant, while 
gradually increasing the CPU cores allocated to the task, and 
the workload of the task.  

The total number of tasks was set to 10. This set of tests was 
initially run on a Small VM (see Table 2 for specification details). 
We then gradually increased the number of CPU cores configured 
on the VM in the test. The results of performance and energy 

consumption are presented in Figure 5 (a) and Figure 5(b). In 
order to validate the correctness of StressCloud, we compared the 
results obtained manually, shown in Figure 5(c) and Figure 5(d). 
We draw the same conclusions from both sets of experimental 
results. We observed increasing energy consumption per task 
caused by increasing the LN of the Fibonacci sequence as showed 
in Figure 5 (a). Moreover, the energy consumption of each task 
decreased dramatically as the number of CPU cores allocated to 
the task increased. This is because the execution time of a task 
will decrease as more CPU cores are allocated to the task. 
However, the increase in average energy usage rate caused by an 
extra core is not as much as the execution time of the task. 
Therefore, the energy consumption decreases accordingly. In 
addition, we observed a slight turning point of the energy 
consumption when the number of CPU cores allocated to the task 
reaches three. For instance, when we set the largest number of the 
Fibonacci sequence LN to 54, the energy consumption with a 
Large VM increased 3.6% compared to energy consumption with 
an XLarge VM. This shows that the overhead of scheduling an 
extra core can cancel out the task running time saved and will also 
cause more energy consumption. The system throughput is shown 
in Figure 5(b). As expected, the more resources allocated to the 
task the better the system throughput obtained. This result shows 
that, for CPU-intensive tasks, the system throughput rises with the 
number of allocated cores and the increase of system throughput 
is nonlinear. 
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Figure 5. Energy Consumption (a) and Throughput (b) 
obtained by StressCloud; Energy Consumption (c) and 

Throughput (d) obtained manually. 

Test Suite II: Keeping the number of tasks and resource 
allocated to the tasks constant, while changing the resource 
allocation strategy. The total number of tasks was set to 16. This 
set of tests was run on one XLarge VM, two Large VMs and four 
Small VMs respectively. All workloads were evenly distributed 
on all the VMs. The results of performance and energy 
consumption are presented in Figure 6(a) and Figure 6(b). The 
energy consumption per task and throughput were at the same 
level under different resource allocation strategies. However, the 
energy consumption and throughput increased slightly when we 
changed the resource allocation from one XLarge VM to four 
Small VMs. For instance, when we set the largest number of the 
Fibonacci sequence LN to 46, the energy consumption increased 
1.1% and throughput increased 1.1% with four Small VMs 
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compared to energy consumption and throughput with an XLarge 
VM. As the more VMs configured, the more scheduling overhead 
was introduced. Therefore, energy consumption was higher. On 
the other hand, more VMs configured make all the running tasks 
take full advantage of other resources such as memory. Thus, 
throughput was improved. 
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Figure 6. Energy Consumption (a) and Throughput (b).  

5.1.2 Memory-Intensive Workload 
Test suite I: Keeping the number of tasks constant, while 
gradually increasing the size of RAM allocated to the task, 
and the workload of the task. 

The total number of tasks was set to 10. This set of tests was 
initially run on a Small VM. We then gradually increased the size 
of RAM configured on the VM in the test. With each RAM 
configuration, the size of file processed was set to 10G, 15G, 20G 
and 25G respectively. The server power consumption and average 
memory usage are presented in Figure 7(a) and Figure 7(b). When 
we increased total memory allocated to the tasks from 2GB to 
8GB, the average memory usage of the server increased 
accordingly as showed in Figure 7 (b). However, the power 
consumption of the server remained at the same level as displayed 
in Figure 7(a). Task memory usage has only slight impacted on 
total power consumption. Other research on the power 
consumption of memory reports that the power consumption of 
memory remains constant regardless of the workloads. However, 
power consumption of memory is proportional to the number of 
memory chips [27]. In addition, the execution time of a task will 
increase when we increase the size of file processed by the task. 
Therefore, the energy consumption of each task will increase and 
the system throughput will decrease, as presented in Figure 7(c) 
and Figure 7(d). 
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Figure 7.  Server Power Consumption (a) and Memory Usage 
(b); Task Energy Consumption (c) and Throughput (d). 

5.2 Data-Intensive Workloads 
A data-intensive task in cloud environment usually involves 
processing and manipulating large amounts of data to and from 
storage. We deployed a web service in StressCloud that can query 
and manipulate data records in a rational database to process data-
intensive tasks. We selected mixes of database operations, 
“insert”, “update”, “delete” and “select”. Each invocation of this 
web service was a data-intensive task. The size of data processed 
by the database operations determined the workload of the data-
intensive task.  

Test suite I: Keeping the number of tasks constant, while 
gradually increasing the workload of each task. The total 
number of tasks was set to 1000 and user request rate was set to 
10 per second. This set of test was run on an XLarge VM. SQL 
server 2005 was installed to process all the database requests. The 
result of energy consumption is presented in Figure 8(a). System 
throughput and response time are presented in Figure 8(b) and 
Figure 8(c) respectively. As illustrated in Figure 8(a), energy 
consumption of “insert” and “update” operations increased 
dramatically when we increased the record size of each request. 
However, the energy consumption of “delete” and “select” 
operations only had a slight increase. The “insert” and “update” 
operations both require reading and writing large amount of data 
on the disk compared to “select” and “delete” operations, which 
results in more power consumption of the server. In addition, the 
response time of “insert” and “update” operations were much 
longer than “delete” and “select” operations. Therefore, task 
execution time of “insert” and “update” operations increased, 
which caused high energy consumption and low throughput as 
displayed in Figure 8(b). 
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Figure 8.  Energy Consumption (a), Throughput (b) and 
Response Time (c). 

Test suite II: Keeping the ratio of each type of operation and 
total number of tasks constant while changing record size of 
database requests and user request number per second. A 
research on relational database workload characterisation reports 
that the ratio of “select”, “delete”, “update” and “insert” in 
database workload are 75.86%, 4.69%, 7.75% and 11.69% 
respectively [28]. We adopted the abovementioned ratio of each 
database operation in our tests. The total number of tasks was set 
to 1000. We gradually increased the user request rate from 10 to 
40. In this set of tests, the record size of each database request 
was set to 400KB and 500KB respectively. This set of tests was 
run on an XLarge VM. SQL server 2005 was installed with 
default configurations to process all the database requests. The 
system performance and energy consumption are presented in 
Figure 9. As displayed in Figure 9(b), the throughput decreased 
slightly while increasing the record size from 400KB to 500KB. 
This is because response time increased as the record size 
increased as displayed in Figure 9(c). Therefore, the task 
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execution time increased and throughput decreased accordingly. 
As presented in Figure 9(a), the energy consumption of all the 
tasks increased dramatically as record size increased. Total 
amount of data read and write on hard disk increased as the record 
size increased, which resulted in longer task execution time. In 
addition, the bigger record size introduced more data 
reading/writing scheduling overhead and the power consumption 
of the server increased. Therefore, the energy consumption 
increased.  As presented in Figure 9(a) and Figure 9(b), the 
energy consumption decreased and throughput increased when we 
increased the number of user requests per second. However, there 
was a turning point when the number of user requests per second 
reached 30. For instance, when we set the record size to 500KB 
and user requests per second to 40, the energy consumption 
increased 7.8% and the throughput decreased 3.2%. This is 
because task consolidation will increase the resource utilisation 
which will reduce the total execution time. However, when the 
user requests reach 40 per second, the overhead of scheduling and 
synchronising user requests can cancel out the task running time 
saved and will cause more energy consumption.    
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Figure 9.  Energy Consumption (a), Throughput (b) and 
Response Time (c).  

5.3 Communication-Intensive Workloads 
A communication-intensive task in cloud environments usually 
generates a huge amount of network transactions between cloud 
user devices and cloud systems. Therefore, we deployed a web 
service in StressCloud that handled user requests and generated 
responses upon the receipt of user requests.  
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Figure 10.  Energy Consumption (a) and Throughput (b).  

Test suite I: Keep the resource allocation strategy constant 
while increasing the number of user requests and the packet 
size of each request. This set of test was running on a Small VM. 
We increased the user requests per second from 300 to 1200 in 
steps of 300. The packet size of each user request was increased 
from 1500KB to 2500KB in steps of 500.The results of energy 
consumption and throughput are presented in Figure 10. As 
presented in Figure 10(a), there was an increase in the energy 
consumption of the task when we increased the packet size. For 
instance, when we set the user requests per second to 300, the 
energy increased 36.7% when we increase the packet size from 
1500KB to 2500KB. Furthermore, the throughput decreased as 

the packet size increased. Bigger packet size usually leads to 
more transmission time over the network and more processing 
time in the cloud environment. Accordingly, throughput decreases 
and energy consumption increases for the communication-
intensive task.  

Test suite II: Keep the packet size of each request constant 
while changing the number of user request per second and 
resource allocation strategy. The packet size in this test set was 
set to 2500KB. The results of energy consumption and throughput 
are presented in Figure 11. When we increased the VM allocated 
to the task from Small to XLarge, the energy consumption 
decreased while system throughput increased in general. 
Intuitively, the more resources used the greater the energy 
consumption. However in this case, the smaller the instance the 
higher the disk accesses due to the thrashing of the cache, which 
leads to increase in energy consumption. Noticeably, when the 
size of the VM changed from Large to XLarge, the system 
throughput decreased and the system energy consumption 
increased in general. When we set the type of VM to XLarge, the 
total capacity of the VM reached the full capacity of the physical 
server. The resources left for VM management were less, which 
led to longer processing time of each user request. Therefore, 
deploying the task on a Large VM is the most energy efficient. 
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Figure 11.  Energy Consumption (a) and Throughput (b). 

5.4 Mixed Computation- and Data-Intensive 
Workloads 
Increasing computation and data processing power allow more 
and more scientific and business applications to be deployed in 
cloud environments. A scientific application is both computation-
intensive and data-intensive, where computed and retrieved data 
sets from the cloud data centre are often gigabytes or even 
terabytes. We modelled the client load of a small scale scientific 
application with 50% computation-intensive tasks and 50% data-
intensive tasks. Firstly, a computation-intensive task and a data-
intensive task are executed sequentially. Then the process is 
repeated until all data have been processed. 

Test suite I: Keep the resource allocation strategy and total 
amount of data processed constant, while changing the size of 
each data set. The scientific application was deployed on an 
XLarge VM in this set of test. We set the total amount of data 
processed to 2GB. We increased the data set size of the data-
intensive task from 1000KB to 8000KB. The computation-
intensive task scale LN was increased from 36 to 39. The results 
of energy consumption and system throughput are presented in 
Figure 12. From Figure 12(a), we can see that the application 
energy consumption decreased when we increased the size of the 
data set in a linear manner. As the size of the data set increased, 
less overhead information needed to be processed and stored, 
which led to shorter execution time of the same workload. 
Therefore, system throughput increased, shown in Figure 12(b).   
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Figure 12.  Energy Consumption (a) and Throughput (b).  

Test suite II: Keep the total amount of data processed and size 
of each data set constant, while changing the resource 
allocation strategy. In this set of test, the data set size of the 
data-intensive task was set to 8000KB and the task scale LN of 
computation-intensive task was set to 39. Firstly, we deployed the 
scientific application on one XLarge. Then, we deployed the 
scientific application on two Medium VMs and four Small VMs 
respectively with computation-intensive task and data-intensive 
task deployed on the same VM. We named the deployment 
strategies “2Medium(S)” and “4Small(S)” respectively. The 
workload was evenly distributed on all the VMs. Finally, we 
deployed the scientific application to two Medium VMs and four 
Small VMs respectively with computation-intensive task and 
data-intensive task on different VMs. We named the deployment 
strategies “2Medium(D)” and “4Small(D)” respectively. The 
workload was also evenly distributed on all the VMs. The results 
of application energy consumption and system throughput are 
presented in Figure 13. As displayed in Figure 13(a), the energy 
consumption of the application varied with different deployment 
strategies. When we deployed the application on the VMs with 
the same scale, the energy consumption increased when we 
changed the deployment strategy of the computation-intensive 
task and data-intensive task from the same VM to different VMs.  
In contrary, the system throughput increased as displayed in 
Figure 13(b). For instance, when we change the deployment 
strategy from “2Medium(S)” to “2Medium(D)”, the energy 
consumption increased 33.5% while throughput decreased 40.3%. 
This is because deploying the computation-intensive task and 
data-intensive task on different VMs will introduce more 
communication overhead between VMs, which will result in more 
processing time. In addition, when we increase the number of 
VMs, the energy consumption increased and system throughput 
decreased no matter how the two kinds of tasks were deployed 
(on the same VM or different VMs). For instance, when we 
change the deployment strategy from “2Medium(S)” to 
“4Small(S)”, the energy consumption increased 4.5% and 
throughput decreased 5.8%. This is because more VMs will 
introduce extra operation system scheduling overhead, which will 
cause longer service requests processing time of the cloud 
application. The more VMs are allocated to the cloud application, 
the more concurrent processes are created to process the service 
requests of the cloud application. However, the extra service 
requests processing time introduced by the extra VM operation 
system scheduling overhead cannot be cancelled out by the new 
created concurrent processes. The overall application execution 
time will be longer. Therefore, energy consumption will increase 
and throughput will decrease accordingly. In summary, deploying 
the scientific application on two Medium VMs with all kinds of 
cloud services on the same VM is the most energy efficient while 
achieving the best system performance. 
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Figure 13.  Energy Consumption (a) and Throughput (b). 

5.5 Mixed Computation-, Data- and 
Communication-Intensive Workloads 
Most cloud applications have workload tasks composed of a mix 
of communication-intensive tasks, data-intensive tasks and 
computation-intensive tasks. Different services have different 
mixes of these workload task types. JPetStore was selected as the 
cloud application to test in our experiment as it has been widely 
used as a representative Web application that produces a 
transactional workload. We modelled the workload of JPetStore 
using StressCloud based on the client load model introduced by 
Cai [26] and shown in Section 3. 

Test suite I: Keep the resource allocation strategy constant 
while changing workload. This cloud application was deployed 
on a Large VM in this set of test. The initial number of users was 
set to 10. We increased the concurrent requests number of each 
user from 50 to 200 in steps of 50. The results of energy 
consumption and system throughput are presented in Figure 14. 
As the number of concurrent requests increased, the energy 
consumption increased as displayed in Figure 14(a). The 
throughput decreased accordingly as shown in Figure 14(b). 
Intuitively, more user requests will introduce more scheduling and 
synchronising overhead in the cloud application, which will result 
in increase of the processing time of each user request. 
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Figure 14.  Energy Consumption (a) and Throughput (b). 

Test suite II: Keep the workload constant while changing the 
resource allocation strategy. The initial number of users was set 
to 10 and the concurrent user requests of each user were set to 100 
in this set of tests. We firstly deployed the cloud application on 
one Large VM. Then we deployed the cloud application on three 
Small VMs with computation-intensive tasks, data-intensive tasks 
and communication-intensive tasks on different VMs respectively, 
named “3Small(D)”. Finally, we deployed the cloud application 
on three Small VMs with workload evenly distributed on all three 
VMs, named “3Small(S)”. The energy consumption and system 
throughput are presented in Figure 15. Although the total 
resources such as CPU and RAM allocated were the same, the 
energy consumption decreased when deploying the cloud 
application on multiple VMs compared to deploying the cloud 
application on single VM as shown in Figure 15(a). The system 
throughput increased accordingly as displayed in Figure 15(b). 
When deploying the cloud application on multiple VMs, the 
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service requests of the cloud application were processed in more 
concurrent processes, which reduced the execution time of the 
cloud application. In addition, we observed that the energy 
consumption with deployment strategy “3Small(S)” increased 
0.8% compared to “3Small(D)”. The system throughput of 
“3Small(S)” decreased 2.1% compared to “3Small(D)”.  This is 
because in the client workload we have modelled in this test, the 
majority of all the tasks are communication-intensive. Deploying 
all communication-intensive tasks on one single VM greatly 
reduces the overhead of concurrent processes between different 
VMs. In summary, deploying this cloud application on three 
Small VMs and separating different types of cloud services on 
different VM is most energy efficient while achieving the best 
system performance. 
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Figure 15.  Energy Consumption (a) and Throughput (b). 

6. DISCUSSION 
Based on our experimental results to date, we have derived a set 
of guidelines which can be adopted to achieve energy efficient 
cloud application deployment. Note that performance engineers 
can use StressCloud to model an application workload and its 
cloud platform deployment model in a wide variety of ways. They 
can then generate and run extensive tests and obtain energy and 
performance data for these specific application models. They can 
thus make specific judgements for each application and 
deployment about their best configuration for energy efficiency 
and performance. 

From our results above we see that the organisation of cloud 
application workload does indeed highly impact energy 
consumption and system performance. As seen in Section 5.4, 
when we scaled up each data set processed by the scientific 
application and kept the total amount of data processed constant, 
the system performance increased while energy consumption 
decreased. For some cloud applications, their workload is either 
known or can be empirically determined and is relatively constant. 
However, due to the dynamic nature of many cloud applications 
and the demand of different hosting platforms, the workload of 
different cloud applications can drastically change over time. The 
need to find out the workload patterns for different cloud 
applications, in order to schedule them for optimal performance 
and energy consumption, has emerged. 

The type of cloud application workload impacts energy 
consumption and system performance. For instance, as discussed 
in Section 5.1.1, the energy consumption of CPU-intensive task 
increased dramatically when CPU usage increases. However, as 
presented in Section 5.1.2, the energy consumption of memory-
intensive remained at the same level regardless of the memory 
usage. The elasticity in the pay-as-you-go cloud business model 
requires allocating cloud resources to different cloud applications 
adaptively according to on-demand user requirements. However, 
it is very challenging as resource under-provisioning will 
unavoidably jeopardise system performance and cause SLA 

violations, while resource over-provisioning will result in 
resource idleness and energy waste. Thus, it is important to 
accurately predict the resources needed by the cloud application.  

For a specific cloud application, the resource allocation strategy 
can greatly affect the energy consumption and system 
performance. For instance, deploying the scientific application on 
two Medium VMs with computation-intensive tasks and data-
intensive tasks isolated on two different VMs is the most energy 
efficient. On the contrary, when we deploy the JPetStore to three 
Small VMs with all tasks evenly distributed on all the VMs is the 
most energy efficient. As discussed, both of the abovementioned 
resource allocation strategies result in the reducing 
communication and scheduling overhead inside the deployed 
cloud application. Therefore, it is important to avoid 
communication overhead within the cloud application when 
deciding deployment options.  

7. SUMMARY AND FUTURE WORK  
Understanding performance and energy consumption dynamics is 
important for the design and deployment of cloud applications to 
balance energy and performance requirements. In this paper, we 
presented StressCloud, a new tool for profiling the performance 
and energy consumption of cloud systems. Using StressCloud, we 
conducted extensive experiments to profile and analyse system 
performance and energy consumption with different types and 
mixes of runtime tasks in a controlled, representative cloud 
system. We profiled the performance and energy consumption of 
cloud application models under various task workloads and 
resource allocation strategies. The correlation of system 
performance and energy consumption was analysed based on our 
experimental results. These results provide guidelines for 
developing resource provisioning and management solutions at 
minimum energy consumption while still guaranteeing Service 
Level Agreements (SLAs). 

Currently, we are running further experiments including large 
scale composite workloads on heterogeneous cloud servers. We 
compare the results of performance and energy consumption with 
different resource allocation strategies. We analyse overhead of 
cross-server scheduling and communication overhead of a cloud 
system. In addition, an energy cost rate and an “energy dirtiness 
rate” will be adopted to factor in the costs – monetary and 
environmental - of cloud energy generated by different resources.  
The energy cost will be investigated in order to achieve the best 
energy, cost and performance balance in cloud systems.   
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