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ABSTRACT
The complexity of modern software systems has grown enormously
in the past years with users always demanding for new features
and better quality of service. Besides, software is often embedded
in dynamic contexts, where requirements, environment assump-
tions, and usage profiles continuously change. As an answer to this
need, it has been proposed the usage of self-adaptive systems. Self-
adaptation endows a system with the capability to accommodate its
execution to different contexts in order to achieve continuous satis-
faction of requirements. Often, self-adaptation process also makes
use of runtime model evaluations to decide the changes in the sys-
tem. However, even at runtime, context information that can be
managed by the system is not complete or accurate; i.e, it is still
subject to some uncertainties. This work motivates the need for
the consideration of the concept of uncertainty in the model-based
evaluation as a primary actor, classifies the avowed uncertainties
of self-adaptive systems, and illustrates examples of how different
types of uncertainties are present in the modeling of system char-
acteristics for availability requirement satisfaction.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: [Software/Program Verification];
I.6.4 [Computing Methodologies]: Simulation and Modeling

Keywords
Uncertainty; Self-adaptive software; Models;

1. INTRODUCTION
Today software is increasingly permeating (safety-)critical ar-

eas of daily life, from bank accounting to homeland security, from
transport applications to power plant management and health care
systems. Currently, there is also a huge increment in the demand of
software applications that offer services to their users through mo-
bile devices, which require minimum effort to install, configure and
run. In these domains, non-functional properties like performance
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and availability of software are highly relevant, either to avoid dam-
aging effects that can range from loss of trust on essential services
to loss of human life in the critical system domain, or the loss of
business and competitiveness in the marketplace for the mobile de-
vices domain. Therefore, software should continuously meet its
non-functional requirements.

To allow building software that executes with the appropriate
quality, model-based evaluation methods at design time [3, 9] have
been proposed as a viable solution. However, design-time analysis
cannot always provide accurate results because the information of
the environment where the application will be deployed may not
be completely known when applications are initially architected;
and even worse, such execution environment may change continu-
ously during application lifetime. For example, when developing
an application that can be potentially deployed over several plat-
forms with different characteristics, software engineers have only
a partial and incomplete knowledge of the external environment in
which the application will be deployed. Consider, for example, a
mobile device whose availability and reliability is very affected by
the environment temperature. With the increase of the temperature,
the CPU failure rate grows while the battery life decreases due to
the effect of turning on fans, which consume battery. It is evident
that if an instance of the application is deployed on this device, its
reliability and availability properties will be strictly subject to the
environmental temperature. Device constraints and temperature at
which it will operate are in most cases uncertain at design time,
which entails an uncertainty in the model that is used to evaluate
system properties. This is further exacerbated in software that is
embedded in dynamic contexts, where requirements, environment
assumptions, and usage profiles continuously change. Since these
changes in the context happen in a way that is hard to predict when
systems are initially built, the outcome of the model analysis at
design-time are in these cases subject to even higher uncertainty
because assumptions upon which they rely on are not true.

To study these kind of uncertainties new methods emerged dur-
ing the 1990s. The field of natural science has been a particularly
active arena for methodological advancement, see for example [29,
4], and mathematical methods for quantifying uncertainties (e.g.,
interval analysis, fuzzy methods, probability theory and bayesian
analysis [22]) have been developed in this context, starting from
[18]. In the computer science field the topic of uncertainty has
recently drawn the attention and some discussions and techniques
have been presented in [17, 35, 10, 20, 19, 25, 32].

To deal with the lack of complete information and knowledge at
design-time, in recent years, industry and academia have increas-
ingly addressed the adaptation concern, particularly with the intro-
duction of autonomic and self-adaptive systems. Self-adaptation
endows a system with the capability to adapt itself to the environ-
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ment where it executes. This capability relieves engineers from
taking some decisions at design time. These decisions are delayed
until runtime and made autonomously by the system, when more
information is available, then dealing with the lack of knowledge
about the environment at design time. Moreover, self-adaptive sys-
tems can perform successive adaptations when environment changes.
In this manner, there is a possibility for the system to continuously
achieve its functional and non-functional requirements even in dy-
namic contexts. The structure of the application may change at
runtime; for example in terms of its running components and in-
terconnections in order to improve its behavior, correct flaws, or
reduce its energy needs.

Self-adaptation process entails several activities [24], some of
them requiring planning, analysis and decisions. These activities
can be achieved using formal models as suggested in [6] and with a
seamless integration of design time and runtime verification. How-
ever, even if these models are useful and often the only possible
artifact to reason about adaptations, their definition and usage raise
some challenges because some uncertainties still remain present at
runtime. One of the challenges is that knowledge of the environ-
ment is not complete or accurate even at runtime, which entails that
the information in the models that are used to govern the adaptation
process is subject to uncertainties.

In the literature, there have been proposed methods to deal with
some kind of uncertainties that exist in self-adaptive systems. How-
ever, even though the works in the literature on modeling uncertain-
ties in computing systems provide a useful approach for concrete
types of uncertainty, we have not found a definition or taxonomy
for uncertainty in models that can act as a pillar for building re-
search work over it. These definitions for uncertainties in com-
puting models can draw the big-picture that locates each piece of
research in the field in its corresponding place; and therefore it will
help researches to relate, connect and compare works, merge re-
sults and find similar works, ease the learning from these similar
works, and push forward the research on uncertainties manage-
ment. At present, in computing, the most used definitions of un-
certainty simply distinguish between natural variability of physical
processes (i.e., aleatory or stochastic uncertainty) and the uncer-
tainties in knowledge of these processes (i.e., "epistemic" or state-
of-knowledge uncertainty) [10, 20, 19, 25, 32, 14, 17]. Among
the works in research fields that hold more maturity than computer
science on the study of uncertainties, it is shown that uncertainties
in models can be seen from other perspectives different from epis-
temic and aleatory. Learning from them, we have found that some
of these different perspectives also exist in the modeling of com-
puting systems; but there is not yet a general enough taxonomy for
uncertainties in models in the computing field. A contribution of
this paper is, exploiting the work of [33], to give a taxonomy for
classifying different types of uncertainties that are present in soft-
ware models. We then analyze, with respect to self-adaptive sys-
tems, the sources of uncertainties and the main approaches existing
in the literature to handle them. As a second contribution, we use
a concrete example of a self-adaptive system (concretely a system
that can analyze its availability and adapt to increase it) with the
objective of showing the existence of uncertainties in its managed
models systems and how these uncertainties can be managed.

The remainder of the paper is organized as follows. Section 2 de-
scribes the existing works on uncertainty in the computer science
field. Section 3 discusses the definition of uncertainty and presents
a taxonomy describing different dimensions along which uncertain-
ties can be classified. Existing sources of uncertainty and methods
to deal with them in the context of self-adaptive systems are pre-

sented in Section 4, while examples of their usage are illustrated in
Sections 5, 6 and 7. Section 8 concludes the work.

2. RELATED WORKS
In the computer science field the topic of uncertainty has recently

drawn the attention and some discussions and techniques have been
presented.

For example, works in [11, 14, 12, 13] admit that uncertainties
cannot be eliminated in software systems and they propose tech-
niques to manage the existent uncertainty. Specifically, [11, 14,
13] propose techniques to decide the suitable software architecture
knowing the presence of uncertainty. They aim at minimizing the
impact of uncertainty on architectural decisions. To achieve this
goal, they guide how to rank, compare and choose an architectural
configuration that maximizes the likelihood of satisfying the sys-
tem’s quality preferences. In [12], authors provide a list of sources
of uncertainties that may exist in self-adaptive software systems.
They also extend their method to compare the utility of an archi-
tecture by including how this utility is expected to vary over time
within given constraints. Authors in [34] deal with requirements
specification of self-adaptive systems and present a requirement
definition language that captures the existing uncertainties. Works
in [17, 7] present lists of sources of uncertainties. In particular,
[17] explains the changes that uncertainties should entail in the de-
velopment of software systems and it presents an enumeration of
current research challenges to deal with these uncertainty. In [7]
three sources of uncertainty specific for self-adaptive systems are
identified namely, uncertainty in the identification of a problem in
the system, uncertainty in the selection of strategy to adapt the sys-
tem and solve the problem, and uncertainty in the identification the
success or failure of the strategy. Authors integrate the manage-
ment of these three uncertainties within the Rainbow approach.

A different set of works proposes specific techniques to deal with
parameter uncertainties. Works in [15, 20, 10, 35] cope with pre-
diction of reliability and availability of computer systems in pres-
ence of uncertainties. They share the usage of Markovian chains as
mathematical model for representing software systems and present
formal methods that address the challenge of uncertainties in the
parameters of these mathematical models. In [10] the authors de-
scribe a Monte Carlo based approach and calculate the number of
samples of uncertain parameter values necessary to produce avail-
ability results within a confidence interval. In [19, 20] authors use
the method of moments for evaluating component-based software
reliability under uncertainties. They deal with the presence of un-
certainties in both the components estimated reliability and in the
operational profile of software. Work in [15] estimates confidence
levels of parameters of the software operational profile.

Model-based performance and reliability evaluation of software
architectures in presence of uncertainties are tackled in [32, 26,
25]. Their methods are applied at software design time and aim at
finding software designs or software component compositions that
meet the non-functional requirements. They consider uncertain-
ties in the values of the parameters of their models and propose to
model this uncertainty through probability distribution functions.
They extract samples of the parameter values and perform Monte-
Carlo based simulations.

3. MODEL UNCERTAINTY: TAXONOMY
Several definition of uncertainties can be found in different areas

of the scientific literature ranging from the absence of knowledge,
to the inadequacy of information or the deficiency of the model-
ing process [33, 16]. Nevertheless, in computing area, the most
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used definitions of uncertainty simply distinguish between natu-
ral variability of physical processes (i.e., aleatory or stochastic un-
certainty) and the uncertainties in knowledge of these processes
(i.e., "epistemic" or state-of-knowledge uncertainty), see for exam-
ple [26, 10].

Among the work of research fields that hold more maturity than
computer science on the study of uncertainties, it is shown that un-
certainties in models can be seen from other perspectives different
from epistemic and aleatory. Learning from them, we have found
that some of these different perspectives also exist in the model-
ing of computing systems; but there is not yet a general enough
taxonomy for uncertainties in models in the computing field.

For proposing such a taxonomy for uncertainties in computer
systems models, we base on a general definition of uncertainty in
modeling given in [33] as: "any deviation from the unachievable
ideal of completely deterministic knowledge of the relevant sys-
tem". Such deviations can lead to an overall “lack of confidence" in
the obtained results based on a judgment that they might be "incom-
plete, blurred, inaccurate, unreliable, inconclusive, or potentially
false" [29].

We present our classification based on the same three categories
or dimensions as proposed in [33]. According to these three dimen-
sions, uncertainties are classified regarding: their location, level
and nature. In the following paragraphs we explain the meaning of
each dimension.

Location.
The location of uncertainty refers to the place where the uncer-

tainty manifests itself within the model. An uncertainty can be lo-
cated in the following parts of a model:

• Context uncertainty is an identification of the boundaries of
the model; that is uncertainty about the information to be
modeled. This uncertainty concerns the completeness of the
model with respect to the real world. It refers to the kind
of information that should be included in the model and the
kind of information that should be abstracted away from it. In
Figure 1(a), elements within the dotted line represent a model
that includes in its context elements Service, Hardware and
MicroHardware, but it does not allow to represent Communi-
cationNode elements. If CommunicationNodes have a strong
influence in system behavior, these models will hold a strong
uncertainty. In turn, continuous line in Figure 1(a) encloses
an example where elements Service, Hardware and Commu-
nicationNode are in the context of the model, while elements
MicroHardware are not.

• Model structural uncertainty concerns the form of the model
itself. This uncertainty refers to how accurately the structure
of the model represents the subset of the real world that has
to be modeled. Following the example in Figure 1, let us
assume that in the real system, due to fault-tolerance in the
connections, two additional nodes exist allowing the commu-
nication between Service B and C. Since the model admits
the representation of CommunicationNode, the replication of
nodes could be represented (e.g., by adding the two Com-
municationNode in dotted lines in Figure 1(b)). The model
in continuous line keeps some uncertainty since its structure
could represent better the real word.

• Input parameters uncertainty is often identified as parameter
uncertainty and it is associated with the actual value of vari-
ables given as input to the model and with the methods used
to calibrate the model parameters.

AService
A Service

B

Service
C

Bus
MicroHardware

CommuncationNode
A

Service
A

Service
C

CommunicationNode
C

CommunicationNode
B

CommunicationNode
A

Service
B

Hardware
A

MicroHardware
Cache

(a) (b)

Hardware

Figure 1: Example of location of uncertainties

The list of possible locations of uncertainties proposed in the lit-
erature is large. The rationale we have followed in the above selec-
tion is that we filtered out the locations that could hardly exist the
models themselves. For example, we have not considered the un-
certainties that are located in the solution algorithms of the models;
e.g., uncertainty about the correct implementation of the algorithm
that analyzes the model and produces the expected performance re-
sults of the system.

Doing an analogy to Model-Driven Engineering metamodeling
levels, context uncertainties are related to the decisions at the meta-
model definition (i.e., which kind of information can be included in
the model), structural uncertainties are related to decisions at the
model definition using the meta-model (i.e., the elements that exist
in the model and their relations), and input parameter uncertainties
are related to the values of the attributes of the model objects.

Level.
The level of uncertainty is where the uncertainty manifests it-

self along the spectrum between deterministic knowledge and total
ignorance. Usual characterizations of uncertainty levels propose
different values in a scale of how much knowledge lacks to achieve
the knowledge necessary for studying the system deterministically.

We believe that a classification that differentiated between sev-
eral amounts of lack of knowledge in a very tailored manner could
misguide future research. Hereafter, to avoid classifications that
could hamper the progress in the field of uncertainties management
by proposing premature biased uncertainty levels, we prefer to clas-
sify the level of uncertainty following the more general ranking of
orders of ignorance proposed in [1]. The five proposed levels of
ignorance (here for uncertainty) are:

• 0th order of uncertainty. Lack of uncertainty, i.e., knowledge.

• 1st order of uncertainty. Lack of knowledge. The subject
lacks knowledge about something but she is aware of such
lack (i.e., known uncertainty).

• 2nd order of uncertainty. Lack of knowledge and lack of
awareness. The subject does not know that she does not
know.

• 3rd order of uncertainty. Lack of process to find out the lack
of awareness. The subject does not have any way to move
from not knowing that she does not know to, at least, be
aware of the existence of the uncertainty.

• 4th order of uncertainty. Meta uncertainty. Uncertainty about
orders of uncertainty.
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Figure 2: Uncertainty taxonomy

Following this classification, software engineers should build self-
adaptive applications having in mind that uncertainties of third and
fourth order in their application models should be avoided. The
second order of uncertainty, instead, may be unavoidable in some
cases (see for example the source of uncertainty called problem-
state identification in [7]). What is more important for the system
is that an uncertainty remains in this level in a transitory manner;
i.e., eventually the uncertainty will be recognized and then it will
decrease its level to the first. Once the uncertainty is in the first or-
der, it could be used some of the known methods proposed to deal
with it. The reduction from the second order to the first one may
be assisted, for instance, by providing self-adaptive software both
with self-evaluating mechanisms and with monitoring capabilities.
In that case, if the results of model-based evaluation do not match
with the real monitored characteristics, then the existence of an un-
certainty in its models can be recognized (then moving the level
of this uncertainty to the first order). Even in presence of these
characteristics, uncertainties of second level can be present. Con-
sider, for example, the case in which performing the model-based
self-evaluation is time consuming and then it is performed only pe-
riodically. In this situation, the system may not continuously be
aware of its lack of knowledge, but the uncertainty will be eventu-
ally recognized and then it will belong to the second order only for
a time-bounded period.

Nature.
The nature of uncertainty refers to whether the uncertainty is

due to the imperfection of the acquired knowledge or is due to the
inherent variability of the phenomena being described. Our taxon-
omy uses the classical distinction between:

• Epistemic uncertainty due to the lack of enough data to build
reliable knowledge, imperfection of the acquired data or im-
perfection in the process of building the knowledge from the
data.

• Aleatory uncertainty due to inherent variability of the some
parts under consideration or randomness of events.

The presented three-dimension classification is sketched in Fig-
ure 2. The aggregated effect of the different uncertainties on the
results of the model analysis is the so-called model output. The
analysis outcome will have an uncertainty that derives from the un-
certainties in the information represented in model and how they
are handled during analysis. Up to now, there exist methods to
manage the presence of uncertainties in the model analysis, but

there do not exist methods to completely eliminate them. There-
fore, the output uncertainty cannot be avoided. Using methods that
consider the uncertainties, it is expected that the outcome of an
analysis that considers the presence of uncertainties to be closer to
the real values of the running system than the outcome of an analy-
sis that do not consider their presence; though this fact cannot even
be completely ensured.

4. MODEL UNCERTAINTY AND SELF-
ADAPTIVE SYSTEMS

When an application is initially architected, the available infor-
mation for engineers regarding some important concepts - such as
the environment where the application will execute, the usage pro-
file of the application or its requirements - is partial and incomplete.
This is reinforced by the facts that all these concepts are prone to
change during the application lifetime, and it is impossible to fore-
see every type of change, the moment in which it will occur and the
value to which they will change. Therefore, models that are used
to evaluate the application properties at design time hold some un-
certainties.

Self-adaptive systems are an effective solution to deal with some
aspects of the lack of information and actual knowledge that exist
when the application is not running yet (e.g, at design time). By
building a self-adaptive system, some of the decisions that should
be otherwise made by engineers at design time can be delayed, and
they can be made by the system itself at runtime when more infor-
mation about changing concepts is available. Self-adaptive systems
usually keep a model of their “world of interest”, and make use of
it to plan their adaptations and when to adapt. However, even at
runtime, information is not complete or accurate. Therefore, infor-
mation in the models used to govern the self-adaptation is subject
to uncertainty [12].

Research works [17, 12] have reported concrete sources of un-
certainties in software systems. Work in [8] also lists sources of
uncertainty. Since the concern of [8] is a model-based software re-
liability evaluation, their presented sources are concentrated on the
uncertainties on software architectural models. We have gathered
different sources of uncertainty in software systems presented in
the literature and we have investigated how these uncertainties can
affect the trustworthiness of the information in the models man-
aged by self-adaptive software. Once the effect of each source of
information in the model is recognized, we can find a relation be-
tween each source of uncertainty and a type of model uncertainty
according to the taxonomy presented in Section 3. We present this
relation in the next subsection.

To avoid incorrect decisions about system self-adaptations, the
software should know that its model contains uncertainties and ap-
ply some methods to handle them during the model analysis phase.
We discuss in Subsection 4.2 methods for handling model uncer-
tainties presented in the literature.

4.1 Sources of uncertainty
In this subsection we propose a classification of the sources of

uncertainties that we have found in the literature regarding the ef-
fect they entail in the model managed by the self-adaptive system.
We classify them according to the taxonomy presented in Section
3. This will make easier the comparison of the similarities and dif-
ferences of the effect of different sources of uncertainties. Having
them classified according to a taxonomy (instead of using simple
lists) will help the selection of general approaches that can deal
with a group of uncertainties concurrently, rather than a particular
approach at a time for each uncertainty. This relation is shown in
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Table 1. Each source of uncertainty is classified according to its
location and nature dimensions of the taxonomy. The level dimen-
sion of the taxonomy is not shown in the table since each source
of uncertainty can be of any level depending on the implemented
capabilities in the system that should deal with the uncertainty.

Source of Classification
Uncertainty Location Nature

Simplifying assumptions [12] Structural/context Epistemic
Model drift [12] Structural Epistemic

Noise in sensing [12] Input parameter Epistemic/
Aleatory

Future parameters value [12] Input parameter Epistemic
Human in the loop [12, 17] Context Epistemic/

Aleatory
Objectives [12] Input parameter / Epistemic

context
Decentralization [12] Context/structural Epistemic

Execution context/ [12] context/ Epistemic
Mobility [17] structural/

input parameters
Cyber-phisical Context/Structural Epistemic

system [12] [17] Input parameter
Automatic learning [17] Structural Epistemic

Input parameter Aleatory
Rapid evolution [17] Structural Epistemic

Input parameter
Granularity of models [8] Context/Structural Epistemic

Different sources Input parameter Epistemic/
of information [8] Aleatory

Table 1: Sources of uncertainty

Due to space reasons, we do not provide a description of each
source of uncertainty here. Readers are referred to works refer-
enced in Table 1 for further details regarding the meaning of each
source of uncertainty. Nevertheless, for the sake of understand-
ability of the process that was followed for the classification of the
sources of uncertainty, we describe in the following some of them
as examples. We have selected: simplifying assumptions, which is
an uncertainty very general in modeling and easily understandable,
future parameter value and automatic learning that are uncertain-
ties more restricted to the domain of self-adaptive systems.

Simplifying assumptions: the model is an abstraction of the real-
ity and some details whose significance is supposed to be minimal
are ignored. This uncertainty can be located, for example, in the
structure (i.e., structural location) of the model if the model lan-
guage has enough modeling power to represent the lacking con-
cepts but they have been deliberately excluded from the model.
It can also be located in the boundaries (i.e., context location) of
the model if it was decided to exclude some information within
the set of type of concerns considered in the model. To illustrate
the difference, let us refer again to the examples in Figure 1. If it
is possible to model the characteristics of every existing Commu-
nicationNode (e.g., routers) between Services but it was decided
not to represent the replication of CommunicationNode between
two Services (elements in dotted lines in Figure 1(b)), then the re-
sults of the model evaluation will be uncertain due to “simplify-
ing assumptions” in the model structure. If properties of hardware
micro-components such as cache memory or the bus between CPU-
memory have an influence in the system properties but the language
to create the model does not allow modeling the characteristics of

micro-components (continuous line in Figure 1(a)), then the results
of the model evaluation will be uncertain due to “simplifying as-
sumptions” in the model context. This source is related to a delib-
erate hiding of information in the model (i.e., epistemic) rather than
to the random nature of the lacking elements.

Future parameter value: uncertainty in the future world where
the system will execute creates uncertainties in the correct actions
to take at present. For example, if the self-adaptive application is
not in the optimal configuration for its current execution environ-
ment, model analysis may produce an advice to change its con-
figuration. However, if the environment conditions are close to a
change and the current configuration is the optimal for the future
environment, the best behavior may be to resign itself to executing
for a short period in the sub-optimal configuration without requir-
ing any adaptation, instead of performing two adaptations in a short
time interval. As future changes can involve changes in the model
structure or parameters, this source of uncertainty may have struc-
tural or input parameter location. Since this source of uncertainty
concerns the future of the environment it shows an aleatory nature.

Automatic learning: adaptive applications that include an au-
tomatic machine-learning phase usually use statistical processes
to create their knowledge about their execution context and most-
useful behavior. This machine-learning process can lead to applica-
tions with uncertain behavior. The location of this uncertainty may
be in the model structure or input parameters depending on how
general are the concepts for which the application has been pro-
vided with machine-leaning capabilities. Regarding the nature of
the uncertainty, it may depend on the point of view. From the point
of view of the application and its models of the world, as long as
the origin of this uncertainty is that the machine had to learn using
imperfect and limited data, the nature of this uncertainty is epis-
temic. From the point of view of the user, since the information
may have passed through a statistical process during its learning to
create the models, it produces some randomness in the model in-
formation and analysis results, and consequently it can be seen as
an aleatory uncertainty.

4.2 Methods to manage uncertainty
While research in uncertainty analysis advances, the set of differ-

ent sources of uncertainties becomes larger. Hopefully, there will
be no need of a completely different and particular approach for
handling each type of uncertainty in the system. Indeed, it would
be much better if more general approaches for managing uncertain-
ties could be reused for different sources of software uncertainties;
for example, two uncertainties that at first sight may look very dif-
ferent can be managed using a similar approach.

In order to have a possibility to manage model uncertainties,
the first step is to create an application that is eventually able to
identify the existence of such uncertainties; i.e., the level of un-
certainty should be at most in the 2nd order. Once the uncer-
tainty is in the second order, its reduction to the first order one
may be assisted, for instance, by providing self-adaptive software
both with self-evaluating mechanisms and with monitoring capa-
bilities. Other techniques that have been proposed in the literature
that allow the software to realize the existence of uncertainties are
the multiple conceptual model [28], which proposes the analysis
of several models of the same system to realize the existence of
uncertainties if their results differ from each other; and expert elic-
itation [28], which manually sets the uncertainty to belong to the
1st order. As previously mentioned, even in presence of methods
to reduce the level of uncertainty to the 1st, uncertainties of second
level can be temporarily present because the system does not apply
these methods are continuously but only periodically.
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Once the placement of the uncertainty level on the first order has
been achieved, the scientific literature has proposed several meth-
ods for handling it. In the following we list the methods we have
found for managing uncertainties. In order to make easier its uti-
lization on the appropriate uncertainties, we classify them regard-
ing the type of uncertainty for which they were initially conceived.
Table 2 shows such classification. Some of these methods were
not proposed in computer science but derived from other research
areas. We do not argue against the possible usefulness of the meth-
ods across other types of uncertainty; further research is necessary
to completely understand whether they can be used.

Since some methods for managing uncertainties were created
through continuous refinements or extensions of other general anal-
ysis methods, references in Table 2 do not show the origin of the
method but a work in which they are applied or their suitability is
discussed. Due to space limitations, we do not provide a descrip-
tion of each method. We refer readers again to works referenced
in the table for further details regarding the usage of each method.
We selected here two of them, which are powerful techniques but
not frequently used in computer science or performance evaluation
field: model averaging and model discrepancy.

Model averaging: This approach proposes the generation of sev-
eral models of the same system. Different modeling languages and
model domains can be used. These models are competing and they
are all plausible. Each model is assigned with a probability of be-
ing the “true” model; i.e., a measure of model adequacy. Every
model is analyzed and the outcome of the analysis is calculated as
the weighted mean -according to the measure of model adequacy-
of the outputs of the models. A self-adaptive system should be
provided with a set of methods, one for each type of model, for
creating, updating and analyzing the model.

Model discrepancy: This approach assumes that the utilized model
is not the “true” model of the system. Instead, it tries to unveil the
discrepancy between the model output and the “true” target value.
Once the discrepancy is known, it is created a “discrepancy term”.
For creating the outcome of the analysis, both the model analysis
output and the discrepancy term value are considered. Ideally, the
discrepancy term is equal to the difference between the output of
the model running at its best (i.e., where the input values of the
model are all equal to the real values) and the real results (the true
target quantity). Calling X the input of the model, f(X) its output
andZ the real values; then, the discrepancy term δx ideally satisfies
Z = f(X)+δx. Using statistical techniques and a subset of inputs
X1, X2... and outputs Z1, Z2, .., the discrepancy term δX can be
estimated parametrically to be used in subsequent analysis.

5. APPLICATION EXAMPLE
In this section we exemplify some of the model uncertainties

classified in Section 3. We base our examples in the field of self-
adaptive service-oriented systems availability evaluation.

Consider a software application whose functionality is the view-
ing of video in streaming (real-time events, films, etc.). To meet its
mission, it requires services that are offered by third-party service
providers over the Internet; e.g., streaming video servers. As there
may be multiple providers for each required service, to increase the
application’s quality, it will be engineered with self-adaptive capa-
bilities in terms of dynamic service provider selection; e.g., if it is
using a service provider and it becomes unavailable, the application
will be able to autonomously bind another different provider. Let
us assume that there are N third party-providers, named spn such
that n ∈ [1..N ]. Figure 3 represents a system of this kind. In this
example, the software application resides in a mobile device and
can connect to the internet using several access media and proto-

cols. Let us assume that there are M access media, named amm

such that m ∈ [1..M ]. The application can adapt its behavior for
availability reasons (the kind of network that it is using and the
third-party server that is requested to execute the service). If the
user starts watching a stream and it disrupts, he will be dissatisfied
with the application.

Figure 3: System base case example

To perform the model-based evaluation of the application’s avail-
ability, the application itself needs the availability models of the
world where it executes. In the following sections, we present a
modeling study of this application from different perspectives and
we highlight the existence of different types of uncertainty among
the ones identified in Section 3 in the availability models, and a
manner to handle each type of uncertainty. We divide the pre-
sentation according to Location dimension in the sections below
and we concentrate on the dimensions input parameter and model-
structure for the sake of space. Although it is a modeling study, to
make realistic examples, we use real data. In particular, due to lack
of accessibility to the logs of real deployment of this system, we
use the availability logs published in [2, 5, 21, 27, 30] regarding
the availability of internet servers. In the examples below we will
use data from these logs and we select each time the log contain-
ing the more representative data to illustrate the uncertainty we are
dealing with.

6. INPUT-PARAMETER UNCERTAINTIES

Nature: aleatory.
To generate the availability model, when the user wants to watch

a stream, the application monitors the responsiveness of each el-
ement it needs; i.e., the lack of deadlock in the application, the
responsiveness of internet access points (via mobile phone antenna
or WiFi router) and third-party servers. Using this information, it
can fill a block diagram model for availability. Figure 4 represents
an instance of this model, where the field status of each block is
filled with the information monitored.

Internet Service Provider:: spN

Mobile Device
status:available

Internet Access Point :: Antenna
status:available

Internet Access Point:: WiFi
status:unavailable

status:available

status:available

status:unavailable

Internet Service Provider:: sp1

Internet Service Provider:: sp2

Figure 4: Block diagram model for availability analysis
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Location Nature Method
Input Epistemic/ Reliability bound [35], Confidence intervals [35], Probability distributions [35], Fuzzy methods,

parameter Aleatory Range of values, mean and variance, Sensitivity analysis,Sensitivity to information sources [8]
Structural Epistemic/ Increasing parameter uncertainty to

Aleatory account for structural uncertainty [28]
Context/ Epistemic Sensitivity to model granularity [8]

Structural Epistemic/ Structural uncertainty term [28], Model averaging [23], Model discrepancy [31],
Aleatory Framework for the establishment of plausible models in [28]

Table 2: Methods to manage uncertainty

In this case, since there is a path from the beginning of the dia-
gram until its end that passes through blocks whose status=avai-
lable, the analysis results will inform about the availability of the
system, the application will bind an unavailable service provider
and it will inform that the stream can be watched.

Problem:
In this case, the application is not aware that there is uncertainty

in the future state of service providers and access points during the
stream viewing. In consequence, the availability analyses ignores
that the state of service providers and access points can change in
the near future. Thus, the user will be dissatisfied if the system
becomes unavailable because he had been informed that the access
to the stream was granted.

Since the sample space size in the availability modeling of an ele-
ment is two (either status=unavailable or status=avai-
lable), the outcome of a study that ignores the aleatory nature of
availability parameters of required elements is obviously insuffi-
cient for informing the user about system availability.

Taming uncertainty:
The availability analysis should consider that some servers may

become unavailable, others may become available, mobile phone
coverage may be lost or a wifi access point may be gained. In this
manner, the application is aware that the state of the required ele-
ments during the streaming is not deterministically known; which
moves it to the first level of uncertainty and enables the uncertainty
management.

This type of uncertainty is a well-studied case in the literature
(e.g., the exponential distribution is broadly used to model the time-
to-fail of elements, while the accessibility of an element at a certain
moment is usually modeled as a Bernoulli trial within a Bernoulli
process) and well covered in availability evaluation research field
[35, 10, 20]. The random nature of the availability parameter value
of an artifact when its execution is required is usually captured by
probability distributions.

Once the existence of this uncertainty is recognized, instead of
representing in the availability model the status of an element as
either available or unavailable, we model the aleatory un-
certainty of each element using a Bernoulli distribution with param-
eter p: each third-party provider spn, accessing media amm and
application app has a parameter pelement denoting a probability
value, where element ∈ {sp1..., spN}∪{am1, ...amN}∪{app}.

The application needs now a source of information to obtain the
pelement values. As a straightforward method, the application can
record the availability information of each element periodically and
create logs with the historical data of elements availability.

Using the data in the selected availability logs, pelement values
are calculated as the proportion of time that the element is acces-
sible divided by the amount of time covered in the logs. Let us
consider, for example, the availability log file web-sites.avt
in [2]. Specifically, we focus on the availability information of the

7th server in the log for our provider sp1, which corresponds to
the information monitored during 209 days about the availability
of mail.yahoo.com, and we obtain that the server was reachable
99.29% of time; therefore we set psp1 = 0.9929. Following a sim-
ilar procedure, we derived the parameter values of the availability
model in Figure 5. The probabilities have been computed using
as availability log the file web-sites.avt in [2] and servers in
lines 2,3,4,5,7,8 corresponding to servers: asia.cnn.com,
canberra.yourguide.com.au, digital.library.upenn.edu, games.yahoo.com,
mail.yahoo.com and msdn.microsoft.com, respectively.

Internet Service Provider:: sp3

Internet Access Point :: Antenna

Internet Access Point:: WiFi

Internet Service Provider:: sp1

Internet Service Provider:: sp2

Mobile Device
p=0.9928

p=0.077

p=0.9929

p=0.988

p=0.988
p=0.922

Figure 5: Block diagram model with probabilities for availabil-
ity analysis

Using standard techniques of availability analysis of series/parallel
blocks:

SystemAv = appAv · amAv · spAv = 0.98177

where appAv = papp = 0.9928, amAv = 1 −
M∏

m=1

(1 −

pamm) = 0.9889 and spAv = 1−
N∏

n=1

(1− pspn) = 0.999993.

Therefore the system knows that, in this configuration, it has a
probability of 0.98177 for being available and can allow the user
to make an informed decision whether to use the application in this
moment or not.

Note that in this example, the modeling of the availability uncer-
tainty through a probability may seem evident. However, this kind
of uncertainty is not always modeled when the main outcome of
the study is not the availability evaluation but, for instance, perfor-
mance evaluation. In these cases, the randomness in the availability
of components or service providers is not represented and they are
represented as “always available”.

Nature:epistemic.
In the application example, the pspn value characterizing a provider

has been calculated as the proportion of time that the provider was
available with respect to its lifetime. All data in the provider log has
then be used to calculate pspn with the underlying assumption that
the log contains data regarding the steady-state behavior of uptimes
and downtimes.
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Problem:
The application in our example collects availability data from

entities that run and are engineered independently of the rest of the
system. As the application cannot acquire more information about
the third-party service providers, these data may be biased.

The real steady-state availability behavior of the service provider,
indeed, may be different from the one deduced from the log. For
example, consider the case in which some bugs that caused un-
availability periods are detected and corrected, in this case the real
availability will be higher with respect to the predicted one. On the
contrary, if it happens that after the deployment is finished, the ser-
vice is no longer the protégé and the engineering team and sysad-
mins change their priorities to other projects, in this case the real
availability can decrease.

This uncertainty does not stem from a random nature of chang-
ing elements in the service provider but it is due to a lack of knowl-
edge about how to interpret the data that are collected during the
monitoring and which data will be used to give value to model pa-
rameters. Therefore, this is an epistemic uncertainty in the model
parameters.

Taming uncertainty:
This kind of uncertainty has been tackled in the literature con-

ducting sensitivity studies [20], using confidence intervals or dis-
tribution functions for the value of parameter pn [25, 32, 11].

Hereafter, instead of showing what it does mean dealing with
this uncertainty considering a first order level, we illustrate how
to tackle the second order level. In other words, we illustrate the
change from a situation where the application does not know that
the availably log does not contain enough information to a situation
where the application knows that the information in the log does not
represent the service provider’s current behavior.

Let us focus the study on one service provider, spn. We use
as availability log for spn the availability data in the 13th line in
web-sites.avt1. The usual availability probability calculation
based on the proportion of time the system was available regarding
the total amount of time would give us:

pspn =
17, 924, 686seconds

18, 135, 257seconds
= 0.98838

To recognize whether the information in the trace represents the
steady-state availability behavior of the provider or not, we split up
the trace in two halves where each half covers the same amount
of time. Then we compare the availability obtained considering
the whole trace and the ones related to the two halves. If the log
contains the steady-state information, the availability calculated in
the three cases above should be similar.

Let us start with the information in the second half of the log. In
this case we obtain:

pspn =
9, 061, 128.5seconds

9, 067, 628.5seconds
= 0.99928

Therefore, in terms of availability, using only the data in the second
half of the log we obtain a probability of downtime of the provider
that is 1−0.98838

1−0.99928
' 16 times lower than the one obtained using the

complete log.
To strengthen the study, we calculate the availability of other

parts of the logs representing the most recent information. For ex-
ample, if we calculate the availability using the last quarter of the
log trace, we obtain

1The monitored website corresponding to the 13th line is vlib.org,
and the trace covered almost 210 days

pspn =
4, 532, 654.25

4, 533, 814.25
= 0.99974

representing a system whose downtime seems 1−0.98838
1−0.99974

' 45
times less probable with respect to the information derived ana-
lyzing all data in the trace. Besides, we calculate the mean length
of each time interval when the system is available and the mean
length of each time interval when the system is unavailable. Figure
6 shows this information. Figure 6 (a) shows the mean time in-
terval length that the service is continuously available when using
the complete log (x-axis is 100%), the last half of time (x-axis is
50%) and the last quarter of time (x-axis is 25%). In turn, Figure
6 (b) shows the mean time interval length that the service is con-
tinuously unavailable (i.e., repair time) for the same log partitions.
These figures show that the availability of the service is evolving
positively.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

Figure 6: Mean length of time intervals where the service in the
13th line in web-sites.avt is continuously: (a) available, (b)
unavailable

Observing the differences in the calculated availability depend-
ing on the considered data in the log, we can suppose that the log
does not show steady state availability information (in the begin-
ning the system is much more unavailable than in the end). Thus,
the calculation of the availability probability using the proportion
of time that the system has been available since the first moment of
existence is not accurate because there is a epistemic uncertainty in
the model input parameters 2.

Using this procedure, the existence of the uncertainty can be re-
alized. At this point, an approach among the ones presented in the
literature, for instance in [10, 15, 8], can be used.

7. MODEL STRUCTURAL UNCERTAINTIES

Nature: aleatory.
The model in Figure 5 calculates the probability of finding avail-

able a service provider as the proportion of time that the provider
was available regarding the whole time monitored. A service provider
is represented as an element of Internet Service Provider::spN in
the model structure, and the availability model contains an Internet
Service Provider::spN element for every service provider that have
been registered in the log.

Problem:
Let us now consider the same system and model from a differ-

ent perspective. As a system that operates in the open-world and
uses third-party service providers, new service providers that offer
2The calculation of the threshold values for which it is assumed
that the average system availability is either similar or different to
the recent system availability is out of the scope of this example.
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Figure 7: Birth and Death times of servers in PlanetLab ordered chronologically

the same service may appear and existing providers may disappear
from the world. Therefore, the number of existing service providers
at a given moment may vary over time. The appeareance of a ser-
vice provider may be represented in the log by a timestamp denot-
ing the time in which it was available by the first time. However,
disappearance of servers is not represented in the log. As a conse-
quence, the availability model is not completely accurate because
it may consider providers with a calculated availability that do no
longer exist.

As a concrete example, let us consider the information in file
pl-app.avt in [30] as availability log of service providers. This
file contains information regarding the availability of 669 servers
of PlanetLab platform. Therefore, service provider availability log
shows the availability sessions of 669 service providers. Figure 7
shows, for each provider, the first time and the last time its ser-
vice was available. So, each line in the figure represents the life-
time of a provider. We can see that the first session of availabil-
ity of some providers was in a point of time days away from the
starting of the application (situation in which we could say that
these providers did not exist in the beginning but they appeared in
the world later). In the same way, we can see that some service
providers passed through periods of availability and unavailability
until a certain point in time in which they started to be continu-
ously unavailable (situation in which we could say that they had
disappeared from the world). This figure shows that 669 different
providers have appeared in the world at some point but the average
number of existing providers is 384.8.

To illustrate an example of uncertainty in availability modeling,
let us consider the value numServer=51 in Figure 7 3. This provider
was available since the first time the application was executed and

3This line corresponds to line 310 in file pl-app.avt in [30],
with ip=152.3.136.1

the last time that this provider was available was 24,895,542 sec-
onds after the application was firstly executed. The current times-
tamp is 45,573,054. Between the starting point at 0 and 45,573,054,
the server was found available for 21,659,147 seconds, which gives
it a calculated availability probability psp310 = 0.4753. However,
since the provider has not been available during the last 45,573,054
- 24,895,542 = 20,677,512 seconds (239 days), it is hardly believ-
able that the provider is just temporarily unavailable. The reason-
able option is to consider that the provider does not longer exists,
and therefore its representing block Internet Service Provider::sp51
in the block diagram should be removed from the model structure.

The appearance and disappearance of providers happen many
times and cannot be anticipated deterministically because they de-
pend on the decision of third-parties and these are random events
from the point of view of the application. From a modeling point of
view, since each existing server is represented as an element in the
structure of the model, and this element can be present or not, this
is an uncertainty of aleatory nature located in the model structure.

Taming uncertainty:
To deal with this uncertainty, assuming that its existence has been

recognized and so it belongs to the first order level, several tech-
niques can be applied. In the following we illustrate the application
of the model averaging technique.

Let us assume that, from previous experiences, engineers know
that observing a continuous unavailability of a provider during the
last week would likely mean that this provider disappeared. Fol-
lowing this assumption may entail both pessimistic prediction er-
rors (e.g., providers that suffered a serious downtime of more than
one week but they will be available again, the so called false posi-
tives), and optimistic ones (e.g., providers that have left the world
only a couple of days ago would still be considered as currently
existing, the so called false negatives).
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Following the model averaging technique, we create three differ-
ent availability models. The input data we use in this experiment
are the first 14 lines in file pl-app.avt in [30]; thus we consider
that in the world up to 14 different providers have appeared at some
point in time. Figure 8 depicts the birth and death moments of each
of these providers.

Figure 8: Birth and Death times of PlanetLab servers in the 14
first lines in pl-app.avt

The first availability model, M1 is generated by considering only
the providers that have not been continuously unavailable during
the last week. That is, since in the used traces the current time is the
45,573,054th second, we take into account servers whose last moni-
tored availability was after the 45, 573, 054−secondsInOneWeek =
44, 968, 254-th second. This gives us an availability model that in-
cludes N=7 service providers in its structure. The calculated avail-
ability of service providers (spAv) using the standard techniques
of availability analysis of parallel blocks gives us an availability of

spAv = 1−
N=7∏
n=1

(1− pspn) = 0.9999982.

The second availability model, M2 is intended to mitigate the
uncertainty inaccuracies due to too pessimistic assumption. This
is done by using the calculated availability of every provider since
the first time it appeared in the world until the current time. The
availability of the system is calculated as if none of the providers

had never left the world. This gives us an spAv = 1 −
N=14∏
n=1

(1 −

pspn) = 0.9999996214. Note that although spAv value in this
case can seem similar to the previous one, this availability value
represents a system almost five times more available than the pre-
vious one.

The third availability model, M3 considers as existing providers
only those that are currently available at the 45,573,054-th sec-
ond. Among the 14 providers, 6 of them are currently available.
Therefore the structure of the availability model for the service
providers has 6 blocks. We calculate the psp of each of these T ser-
vice providers and we use these probabilities to calculate spAv =

1 −
N=6∏
n=1

(1 − pspn) = 0.99999617. Note that this availability

value represents a system around half time less available than the
one obtained with M1.

None of the three availability models exactly represents the real
situation regarding the number of providers that currently exist in
the world as this is an aleatory uncertainty. The first one makes
a prediction regarding the moment in which a provider can be as-
sumed as disappeared, the second one makes an over-estimation of
existing providers and the third one makes a sub-estimation.

M1 M2 M3 Mave
0.9999982 0.9999996214 0.99999617 0.9999981

Table 3: Availability of service providers spAv

Model averaging techniques propose to manage this uncertainty
by weighting the availability results of each model in order to pro-
duce a new result. In our example, we assume to be quite con-
fident about the one-week existence assumption and we provide
a weight of 0.7 to M1, 0.15 to M2 that over estimates the exis-
tence of providers and 0.15 to the model M3 that under-estimates
it. This gives us a service provider averaged availability of spAv =
0.7 · 0.9999982 + 0.15 · 0.9999996214 + 0.15 · 0.99999617, so

spAv = 0.9999981

Table 3 summarizes the results obtained with the different mod-
els.

Nature:epistemic.
The application in our example communicates with service providers

through Internet Access Points. In Figure 3 and in the block dia-
gram in Figure 4, two Internet Access Points, a WiFi point and an
Antenna working in parallel are represented. This model assumes
that the communication across Internet between the application and
service providers is a single-hop process transmitted by an Internet
Access Point.

Problem:
In the actual system, the communication between the service

provider and the application is not a single-hop process routed in
isolation by the Internet access point of the application. There are
other elements that can fail in the communication, for example, the
Internet Access Point of providers, DNS servers or Internet traf-
fic routers in between. We concentrate this example on the Access
Point of providers.

When the service is monitored as not available, the reason can
stem from an unavailability of its Internet Access Point rather than
from the unavailability of the service itself. Monitoring the avail-
ability of Internet Access Point of providers is not as trivial as
controlling the unresponsiveness of the service, although tools as
traceroute can identify failures in communication elements.
If the access point fails, services may be available but they can-
not be reached. Although it is easily noticeable that the lack of
the Internet Access Points in the availability block diagram creates
an inaccuracy in the model, it is also reasonable to justify that the
annotated availability in the service provider block already covers
every possible unavailability in the communication elements. Nev-
ertheless, by avoiding the modeling of the Internet Access Points of
the service provider, we are also falling into a modeling inaccuracy
regarding the independency of the availability of service providers
among each other. Next paragraph exemplifies this case.

Nowadays, many companies and service providers over the in-
ternet are moving their computing infrastructure to the cloud, let us
assume that this is the case of the service providers in our exam-
ple. In this case, two or more providers can rely on the same cloud
provider and belong to the same availability zone. Therefore, they
share the same Internet Access Point, i.e., the owned by the cloud
provider. In our availability model, by using the common formula

spAv = 1 −
N∏
(1 − pspn) it was implicitly assumed that each

service provider was unavailable independently of others, but in re-
ality there are single motives that can make them be useless at the
same time.

12



The nature of this uncertainty is epistemic because it is due to a
lack of knowledge of how the communication between the appli-
cation and service providers proceeds. It is located in the model
structure because the Internet Access Points of service providers
are not considered as blocks in our model, even if it would be pos-
sible since the type Internet Access Point already exists in our avail-
ability block diagram.

Taming uncertainty:
The uncertainty related to the lack of knowledge on the model

structure is difficult to be identified at the beginning of the execu-
tion. It is most likely that the application becomes aware of the un-
certainty during its lifetime, when more data about services avail-
ability is acquired. Therefore, this uncertainty will start belonging
to the second order, and eventually will become of first order. For
this reason, we believe it is more convenient to illustrate afresh the
taming of the uncertainty of second level, suggesting then more
classical methods to deal with it when it is at the first level.

A reasonably easy manner to realize the existence of uncertainty
in the modeling of providers reachability is to check the likelihood
of concurrent unavailability of services. The application should
first recognize that providers are not behaving independently, al-
though at this point it could not be clear which are the actual de-
pendencies. If it is possible to identify the Internet Access Point of
providers as the source of dependency, then the uncertainty will be
of first order. The system will know that the structure of its model is
not completely correct because there are dependencies in the avail-
ability behavior of providers but it lacks complete information to
include them in the model.

Figure 9: Availability intervals of 250 first servers in
pl-app.avt

Figure 9 shows the availability intervals of the first 250 servers in
file pl-app.avt in [30] during the first ten million seconds. Let
us assume that this is the availability behavior ofN = 250 services
of our example system. Each y-axis value represents the availabil-
ity behavior of a service. Horizontal lines are depicted during the
periods when the service spn was available. It can be seen that
availability of the services is not independent because around sec-
ond 7,000,000 none of the services was reachable (there is a lack
of horizontal lines in that period). This fact also happens around
seconds 1,769,200 and 5,847,200, although the concurrent unavail-
ability happens during short periods and the Figure does not show it
so obviously. Figure 10 shows it more clearly as it depicts the num-
ber of services available at each moment between the initial time
and the 10,000,000th second. We can see also in this figure that
at some times the number of available services decreases abruptly
even if it does not reach the zero value (e.g., around 8,675,000th

Figure 10: Number of servers available among the 250 first
servers in pl-app.avt during the firsts 10,000,000 seconds

second). This fact reinforces the argument that some event happens
in the system that affects the availability of a subset of services con-
currently. These abrupt changes in the number of available servers
allow the application to suspect that service availability is not in-
dependent and that the analysis of its availability block diagram
produces too optimistic results, ergo the level of ignorance changes
from the second to the first level, and methods described in Section
4.2 can then be applied.

8. CONCLUSION AND FUTURE WORK
In this paper we have discussed how different types of uncertain-

ties can affect the definition and evaluation of software models. In
particular, exploiting works existing in the literature and belonging
to the field of natural science, we have proposed here a definition of
uncertainty that can be used in computer science research, together
with a taxonomy of different types of modeling uncertainties, that
considers their location, nature and level, with respect to quality
evaluation. Focusing on self-adaptive software systems, we have
then analyzed possible sources of uncertainties together with exist-
ing methods to reduce their impact in the model evaluation step.
We have also shown, using a concrete example together with a set
of realistic data logs, what it does mean taking into account the dif-
ferent types of uncertainties and their input on the final availability
prediction/evaluation using state-of-the art methods.

This research can be extended along several directions. We in-
tend to explore how to generalize methods that have been proven
useful for taming a very concrete uncertainty to allow them to tame
more uncertainties of the same type. Furthermore, we plan to ex-
plore possible dependencies among the different uncertainties and
their relationships and impact on different quality attributes. Fi-
nally, we intend to analyze the different uncertainties in the context
of real-world application scenarios, to assess possible correlation
and identify best practice procedures.
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